Analysis of Work Zone Crash Reports to Determine Factors Associated With Crash Severity

Nicholas L. Jehn

Graduate Research Assistant

Auburn University

November 16, 2017

Southeastern Transportation Research, Innovation, Development and Education Center

INTRODUCTION

 Work zones are commonplace and present an environment favorable for severe but preventable crashes

 Fatal work zone crashes accounted for 2.7% of all fatalities on Alabama highways in 2015, which was 40% higher than the national proportion (ALDOT 2016: NUTS A 2016)

2016; NHTSA 2016)

 The factors influencing work zone crash severity are not well-understood despite substantial research efforts

LITERATURE REVIEW

- Focus areas, methods, and findings vary greatly among past studies
- Generally agreed upon that work zones increase crash frequency and that most work zone crashes occur within the activity area (Garber and Zhao 2001; Yang et al. 2014)
- No common thread among factors that influence work zone crash severity (Akepati et al. 2011; Ozturk et al. 2015)
- Lack of detailed, useful work zone crash data (Dissanayake and Dias 2015; NCHRP Report 627; ATSSA 2013) COLLEGE OF ENGINEERING

LITERATURE REVIEW

 The Model Minimum Uniform Crash Criteria (NHTSA 2017) defines a work zone-related crash as "in or related to a construction zone...whether or not workers were actually present...even if the first harmful event occurred before the first warning sign"

 Despite this, only 39% of crashes in the study database were marked as work zone-related by attending law enforcement officers

RESEARCH OBJECTIVES

- Develop a multi-year work zone crash database using traffic crash reports and ALDOT project inspector reports
- Determine factors associated with work zone crash severity and quantify their significance using frequency distribution and regression analysis
- Provide recommendations for improving work zone design, operations, and crash reporting practices
- Suggest topics for future research using this database and others

DATA COLLECTION AND MANAGEMENT

- 5,410 hardcopy crash records were scanned and manually entered into a spreadsheet from three main sources:
 - Alabama Uniform Traffic Crash Reports
 - Contractor Letters to ALDOT
 - ALDOT Traffic Control Inspector Reports (Form C-25A)

DATA COLLECTION AND MANAGEMENT

Form C-25A

- Completed even for crashes not marked as work zone-related by law enforcement officers
- Contains information related to traffic control in place, worker involvement, and construction equipment involvement
- Used to verify and supplement information from traffic crash reports

AUBURN

DATA COLLECTION AND MANAGEMENT

- Each crash record (row) was described by 152 data fields (columns)
- These fields were evaluated to determine which were irrelevant or had multiple categories that could be collapsed

Independent Variables Considered in Model Development

Variable No.	Variable Group	Variable Name		
1	Temporal	Time of Day		
2	Characteristics	Day of Week		
3	Environmental Environmental	-Light		
4	Characteristics	Weather		
5	Griaragionstics	Locale		
6		Highway Classification		
7	Doodway	Highway Side		
8	Roadway Characteristics	Traffic Control		
9		Trafficway Lanes		
10		Readway Condition		
11		Primary Contributing Factor		
12	Crash	First Harmful Event		
13	Characteristics	First Harmful Event Location		
14		Manner of Crash		
15	Work Zone	Work Zone Relationship		
16	Characteristics	Work Zone Type		

- 16 variables initially retained
- 12 variables used in final model

METHODOLOGY

Crash severity is described by the KABCO scale:

K = Fatal

A = Incapacitating Injury

B = Non-incapacitating Injury

C = Possible Injury

O = Property Damage Only

 An ordered probit regression model was found appropriate and processed in SPSS Statistics

FINDINGS

- 25 categories from 11 of 12 modeled variables found significant at α = 0.05
- Work Zone Relationship (i.e. location within work zone)
 was the only variable with no significant categories
- Crash characteristics such as Primary Contributing
 Factor, First Harmful Event, and Manner of Crash had the
 strongest influence on crash severity in the database
- Speed <u>may</u> be an underlying factor influencing the significance of several other variables

Temporal Characteristics

Parameter		Coefficient	t-statistic	p-value
γ ₁ (Threshold 1)		1.174	30.976	< 0.001
γ ₂ (Threshold 2)		1.600	39.604	< 0.001
γ ₃ (Threshold 3)		1.966	44.580	< 0.001
γ ₄ (Threshold 4)		2.847	44.905	< 0.001
Temporal	Time of Day: Overnight	0.190	2.473	0.013
Characteristics	Time of Day: Evening	0.146	2.928	0.003

Environmental Characteristics

Parameter		Coefficient	t-statistic	p-value
γ_1 (Threshold 1)		1.174	30.976	< 0.001
γ_2 (Threshold 2)		1.600	39.604	< 0.001
γ₃ (Threshold 3)		1.966	44.580	< 0.001
γ_4 (Threshold 4)		2.847	44.905	< 0.001
Environmental	Locale: Open Country	0.188	4.687	< 0.001
Characteristics	Weather: Rain	-0.196	-3.234	0.001

- Open Country (i.e. rural) locales increase the risk of severe work zone crashes
 - Speed limits are higher and drivers less likely to expect work zones in rural areas
- During Rain, severe work zone crashes are less likely
 - Drivers are more cautious during adverse weather conditions and work zones are less likely to be operational

Roadway Characteristics

Parameter			Coefficient	t-statistic	p-value
γ ₁ (Threshold 1)		1.174	30.976	< 0.001	
γ ₂ (Threshold 2)		1.600	39.604	< 0.001	
γ ₃ (Threshold 3)		1.966	44.580	< 0.001	
γ ₄ (Threshold 4)		2.847	44.905	< 0.001	
Roadway Characteristics	Traffic Control: No Passing Zone		0.677	5.609	< 0.001
	Highway Classification: Federal		0.365	7.249	< 0.001
	Highway Classification: State		0.199	3.545	< 0.001
	Trafficway Lanes: Two		0.162	3.277	0.001

- In Alabama, 62% of all Federal and State route lanemiles are classified as rural (FHWA 2016)
- In 2015, 48% of all fatalities nationwide occurred on rural facilities, which had a fatality rate 2.6 times greater than those in urban areas (NHTSA 2016)
- In 2015, 16.1% of all fatal work zone crashes in Alabama occurred in no-passing zones (ALDOT 2015)

Crash Characteristics

Parameter		Coefficient	t-statistic	p-value
γ ₁ (Threshold 1)		1.174	30.976	< 0.001
γ_2 (Threshold 2)		1.600	39.604	< 0.001
γ₃ (Threshold 3)		1.966	44.580	< 0.001
γ ₄ (Threshold 4)		2.847	44.905	< 0.001
	Manner of Crash: Head-On	1.430	9.127	< 0.001
Crash Characteristics	First Harmful Event: Rollover/Jackknife	0.863	6.001	< 0.001
	First Harmful Event: Collision with Bicyclist/Pedestrian	0.574	3.032	0.002
	Manner of Crash: Angle	0.546	10.889	< 0.001
	Manner of Crash: Single Vehicle Crash	0.397	7.089	< 0.001
	Primary Contributing Factor: Excessive Speed	0.281	3.253	0.001

- Crashes involving pedestrians were not frequent (41 records), but were often fatal (17 fatalities)
- Excessive speed had the highest frequency of the above categories (241 records) and lead to fatal or injury crashes 36% of the time
- The significant crash types in the model are typically severe, but especially in Alabama work zones

COLLEGE OF ENGINEERING

Work Zone Characteristics

Parameter		Coefficient	t-statistic	p-value
γ ₁ (Threshold 1)		1.174	30.976	< 0.001
γ_2 (Threshold 2)		1.600	39.604	< 0.001
γ ₃ (Threshold 3)		1.966	44.580	< 0.001
γ₄ (Threshold 4)		2.847	44.905	< 0.001
Work Zone	Work Zone Type: Work on Shoulder/Median	0.436	2.856	0.004
Characteristics	Work Zone Type: Lane Shift/Closure	0.316	2.580	0.010

- Work zones involving shoulder/median work or a lane shift/closure had a positive influence on crash severity relative to crashes marked not applicable
- Crashes occurring in temporary work zones that involve a change in normal traffic patterns are more likely to be severe

CONCLUSIONS

 The coefficients in the regression model could often be explained by statistical trends that hold true among all highways, but many fatality rates were exaggerated in the study database

STUDY LIMITATIONS

- Due to data cleaning issues and time constraints, supplemental data from form C-25 was not fully utilized
- A Work Zone Relationship of Not in/Related to Work Zone constituted 60% of the database, so analysis of this variable was limited
- Future research using this database and others should take advantage of information from supplemental reports

RECOMMENDATIONS

- Agencies should be particularly focused on improving design and operation of temporary work zones, especially those occurring in rural areas
- ALDOT and other agencies should work to improve work zone crash reporting policies by:
 - Providing proper training to law enforcement officers
 - Ensuring adequate geographic coverage of reporting
 - Maintaining electronic databases created from the sources used in this study

QUESTIONS?

SAMUEL GINN
COLLEGE OF ENGINEERING

REFERENCES

- 1. Alabama Department of Transportation. *Alabama Traffic Crash Facts 2015*.
- 2. National Highway Traffic Safety Administration. *Traffic Safety Facts 2015*. Publication 812 384. NHTSA, U.S. Department of Transportation. Washington, D.C., 2016.
- 3. Garber, N. J., and M. Zhao. Distribution and Characteristics of Crashes at Different Work Zone Locations in Virginia. *Transportation Research Record:*Journal of the Transportation Research Board, No. 1794, 2001, pp. 19–25.
- 4. Yang, H., O. Ozturk, K. Ozbay, and K. Xie. Work Zone Safety Analysis and Modeling: A State-of-the-Art Review. *Taylor and Francis Online: Journal of Traffic Injury Prevention*, 2014.
- 5. Akepati, S., and S. Dissanayake. Identification of Risk Factors Associated with Injury Severity of Work Zone Crashes. In *Transportation and Development Institute Congress 2011: Integrated Transportation and Development for a Better Tomorrow,* pp. 1296–1305.
- 6. Ozturk, O., K. Ozbay, and H. Yang. Investigating the Impact of Work Zones on Crash Severity by Comparative Analysis. *Presented at the 94th Annual Meeting of the Transportation Research Board*. Washington, D.C., 2015.
- 7. Dissanayake, S., and I. M. Dias. *Work Zone Crash Analysis and Modeling to Identify Factors Associated with Crash Severity and Frequency*. Publication MATC-KSU 262. 2015.
- 8. Ullman, G. L., M. D. Finley, J. E. Bryden, R. Srinivasan, and F. M. Council. *NCHRP Report 627: Traffic Safety Evaluation of Nighttime and Daytime Work Zones*. Transportation Research Board. Washington, D.C., 2008.
- 9. Chandler, B., N. Kehoe, C. O'Donnell, T. Luttrell, and E. Perry. Work Zone Safety Data Collection and Analysis Guide. ATSSA, 2013.
- 10. National Highway Traffic Safety Administration. MMUCC Guideline: Fifth Edition. NHTSA, U.S. Department of Transportation. Washington, D.C., 2017.

