Vulnerability of Motorcycle Users to Injury Crashes: A Heterogeneity Based Case-Control Analysis

Behram Wali, Asad J. Khattak, & Aemal J. Khattak. The University of Tennessee, Knoxville & The University of Nebraska, Lincoln.

bwali@vols.utk.edu; akhattak@utk.edu; Khattak@unl.edu

Data Linkage and Assembly

<table>
<thead>
<tr>
<th>Type of helmet coverage</th>
<th>Dependent variable: Injury crash (1/0)</th>
<th>Physical/psychological factors</th>
<th>Drug use/alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorcycle training/traffic convictions</td>
<td>Comprehensive Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rider-related factors/Exposure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conceptual Framework

Research Question

- How different “policy-sensitive” factors relate to the risk of motorcycle injury crashes?

- Data: Orange County, California.
- 351 cases (riders involved in injury crashes)
- Similarly-at-risk 702 matched controls (riders not involved in injury crashes)
- Cases matched with controls by time of day, day of week, road type, urban/rural, location, & travel direction.

Proposed Approach:

- Random parameters logit models.
- Random parameters logit with heterogeneity-in-means.
- Models operating at individual observation & matched-triplet levels.

Motivation:

- Captures between-observation or between-triplet unobserved & observed heterogeneity.
- More accurate estimates/deeper insights.

Model Selection

<table>
<thead>
<tr>
<th>Goodness of Fit Measures</th>
<th>Models for individual observations (ignoring matched-triplet structure)</th>
<th>Models for matched triplets (accounting for matched-triplet structure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed parameter logit</td>
<td>Model 1*</td>
<td>Model 2**</td>
</tr>
<tr>
<td>Random parameter logit</td>
<td>Model 1*</td>
<td>Model 2**</td>
</tr>
</tbody>
</table>

- Degrees of Freedom
- Log-likelihood with constant only, Log-likelihood with random parameters
- Chi-square statistics
- AIC

Model 4 highlighted in bold is the best-fit model.

Selected Results (Relative Risk Estimates)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1 Fixed Parameter Logit</th>
<th>Model 2 Random Parameter Logit</th>
<th>Model 4 Random Parameter Logit - Heterogeneity Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure-related factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total miles driven prior to event</td>
<td>↓ -0.300</td>
<td>↓ -2.57</td>
<td>↑ -0.80</td>
</tr>
<tr>
<td>Number of traffic violations in last 5 years</td>
<td>↓ 56.05</td>
<td>↑ 22.38</td>
<td>↑ 26.58</td>
</tr>
<tr>
<td>Two traffic violations</td>
<td>↓ 128.87</td>
<td>↓ 127.28</td>
<td></td>
</tr>
<tr>
<td>Three traffic violations</td>
<td>↓ 62.26</td>
<td>↓ -99.89</td>
<td>↓ -101.00</td>
</tr>
</tbody>
</table>

- Clothing color
 - Lower clothing motorcycle-oriented ↓ -77.62 | ↓ -96.91 | ↓ -99.85 |
 - Dark upper body clothing color: Red |
 - ↑ 209.88 | ↓ 254.31 | ↓ 297.49 |

- Driver-related factors
 - Motorcycle license being held by the rider for ≥30 or more years |
 - 3 hours or less sleep ↑ -38.18 | ↓ -35.85 | ↓ -33.43 |
 - Female driver ↑ 150.80 | ↓ 151.54 | | |
 - Hispanic or Latinx driver ↓ -52.94 | ↓ -58.19 | ↓ -61.17 |
 - African American ↑ 72.29 | ↓ 101.78 | ↓ 115.98 |
 - Driver age in years ↓ -2.66 | ↓ -2.96 | ↓ -3.92 |
 - Driver weight in pounds ↓ -0.399 | ↓ -0.60 | ↓ -0.70 |
 - Driver is college/university graduate ↓ -25.55 | ↓ -25.32 | ↓ -24.42 |

- Trip-related factors
 - Trip purpose: Urban/School, Work |
 - 1053 days increased risk of crash |
 - Trips during a weekend |
 - Trips in the evening |

- Frequency of road use
- Type of road use
 - Road used daily |
 - Road used once per month |
 - Road used once per year |

- Type of helmet coverage
 - DOT compliant least intrusive helmet |
 - Motorcycle helmet coverage |

- Year of training
 - 5 years or more |
 - 4 years or less |

- Speed before crash/injury
 - Experienced by the rider |
 - Experienced by the police |

- Injury crash a more probable outcome.

- If the rider's speed is > 50 mph, events in which rider also consumed alcohol or multiple drugs significantly increased the mean of the random parameter making injury crash a more probable outcome.

Illustration: Observed & Unobserved Heterogeneity Effects

Despite significant unobserved heterogeneity, the mean effect = 0.97, the mean of the random parameter for speed variable varies as a function of alcohol or multiple drugs involvement (observed heterogeneity).

Effects of speed in crash propensity (probability density)

Support provided by 1) Southeastern Transportation Center (Sponsored by the United States Department of Transportation through grant number DTFR-15-G-UTC192); 2) Collaborative Sciences Center for Road Safety (CSCRS) – A National University Transportation Center. 3) Data provided by FHWA.