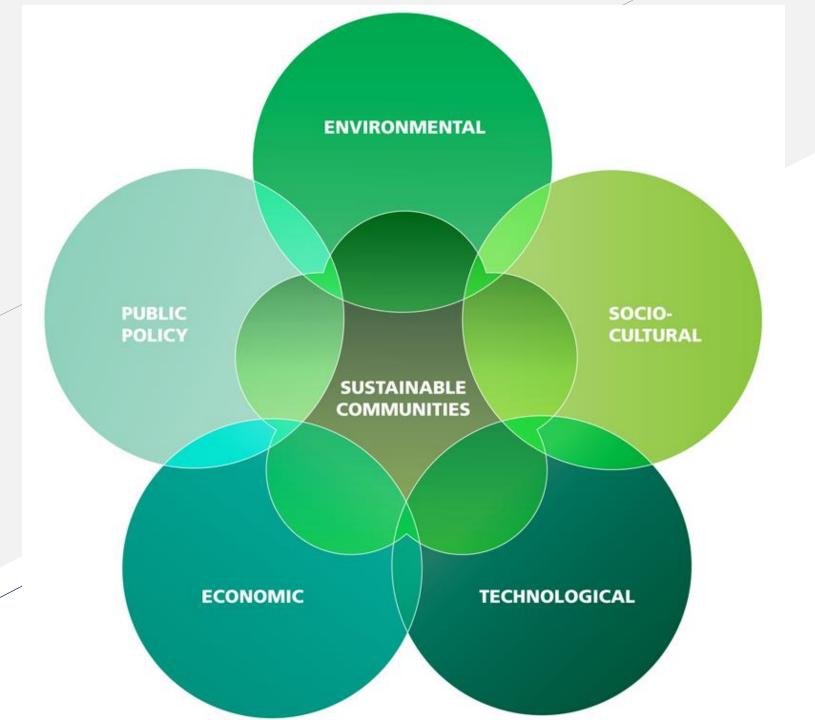
STRIDE

Southeastern Transportation Research, Innovation, Development and Education Center

C 3 2 I Transportation + Health

Sustainable Communities & Mobility

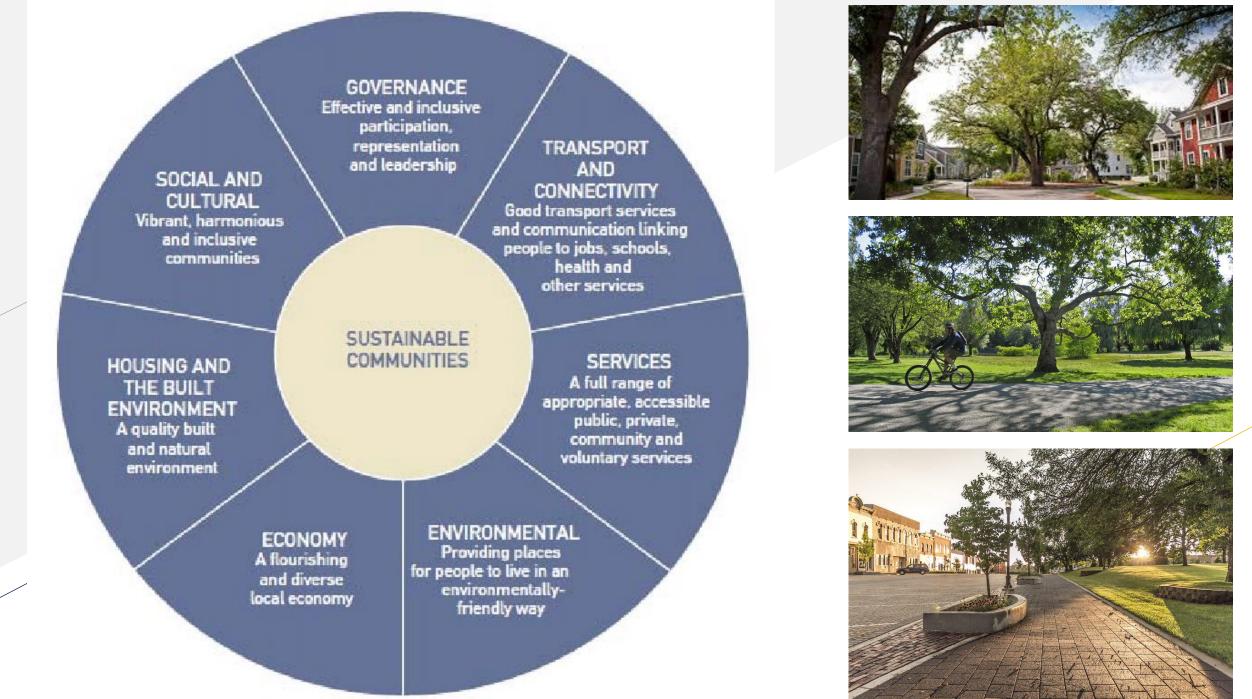
CIVL 642 Public Health, Physical Activity, and Design of the Built Environment

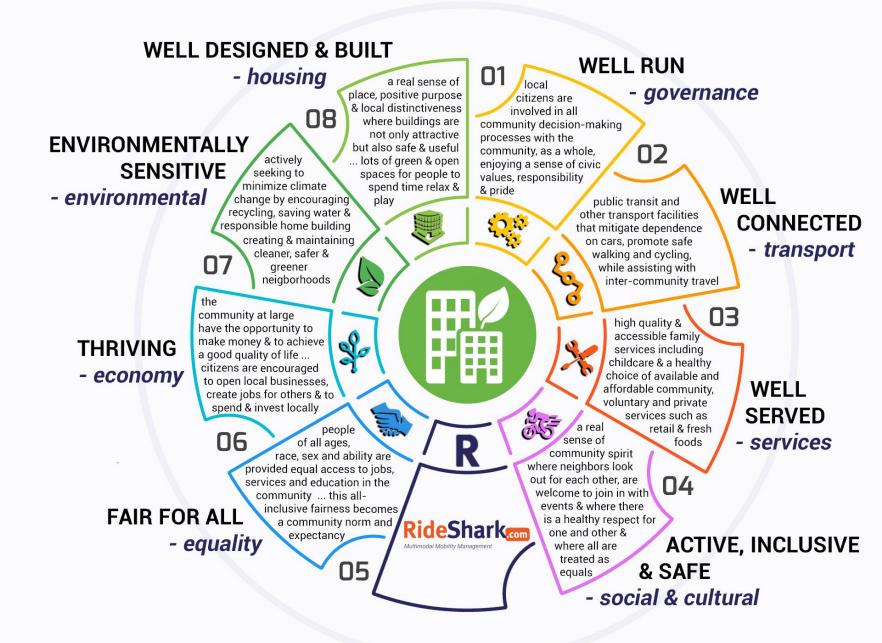

Sustainable Communities

- **1. Mixed Use Developments**
 - Sustainable Transportation
 - Land Use Density
 - Trip Mode Choice

2. Active Living by Design (RWJ)

- Walkability
- Bikeability

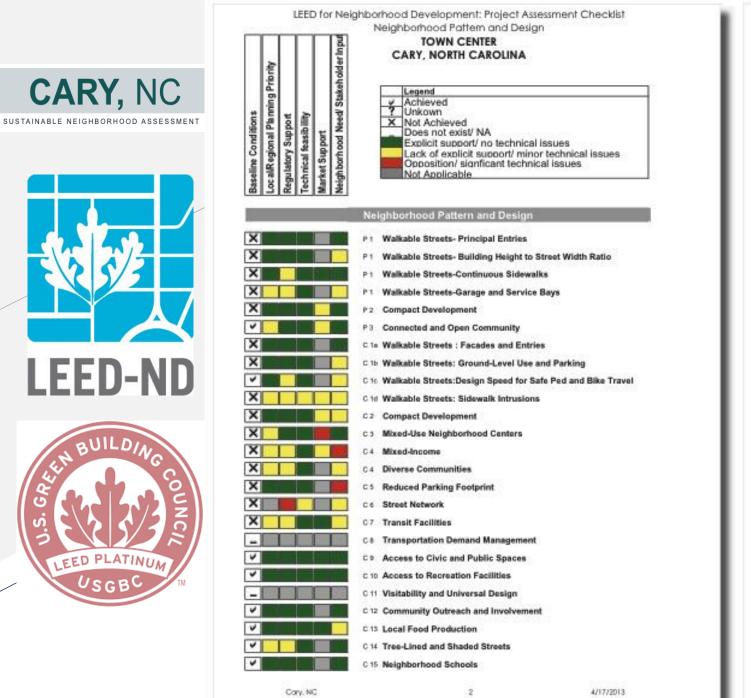

- SUSTAINABLE DEVELOPMENT
- 3. Context Sensitive Solutions
- 4. Energy Consumption
- 5. Greenhouse Gas Emissions

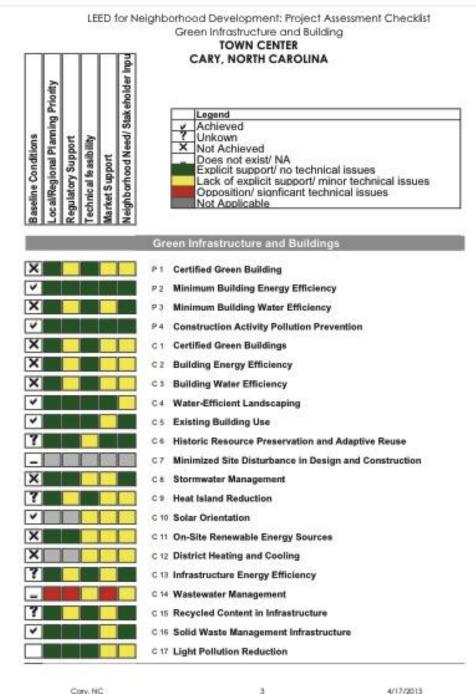


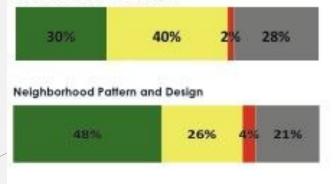
THE KEY COMPONENTS OF SUSTAINABLE COMMUNITIES

WELL DESIGNED & BUILT

<image>






https://www.globalgreen.org/blog/sustainable-neighborhood-assesments

Smart Location and Linkages

Green Infrastructure and Building

45%	41%	4 <mark>%</mark> 21%

ULD EED PLATINUM USGBC

Legend "Likely"

LEED-ND

11. Cary lowne Center 18. Grasswadt Plaza The Arbo 19. Fred G. Bond Metro Park 324 10. Hemlock Eleffs Nature Preserve/Stevens Nature Center 11. Kaka Booth Amphitheatre at Regency Park 12. Lake Graboree Carv 32a. Horth Cary Park 33. Page-Walker Arts and History Center 26 13a. Sk8-Cary Skam Park 15. Thomas Brooks Park 36. Triangle Aquatic Center 37. USA Baseball National Training Complex 35 entown Cary 34. Wake Hed Soccer Park 18. Western Wake Hed Cornerstone 25 Exit 290 Maynard Crossing Exit 18 Scottish Hills Kilda Kilarnev a Centrun MacGregor Do Legend - Highway Regency Park

Related LEED-ND Credits

Connections Calegory: Smart Location & Linkages Locations w/Reduced Auto Dependence [credit 3]. Bicycle Network & Storage [credit 4] Calegory: Neighborhood Paltern & Design Walkable Streets (prerequisite & credit I). Mored-Use Neighborhood Centers [credit 3]

Transit Facilities [credit 7] Tree-Lined & Shaded Streets (credit 14)

Town Park Site

Category: Neighborhood Pattern & Design Mixed-Use Neighborhood Centers (credit 3) Access to Civic & Public Space (credit 9) Access to Recreational Facilities [Credit 10] Local Food Production [credit 13]

Downtown

(credit 4)

Map Key

POINTS OF INTEREST IN CARY (great start) 13. Antrak Station in Downtown Cary 14. Astwarth Wilage 15. Cary Chamber of Commerce 16. Cary Tennis Park

Category: Smart Location & Linkages Preferred Location (credit 1) Brownfield Redevelopment [credit 2] Category: Neighborhood Pattern & Design Access to Civic and Public Spaces [credit 9] Access to Recreation Facilities (credit 10) Local Food Production (credit 13) Category: Green Infrastructure & Building Stormwater Management [czedl.4] Water Efficient Landscoping

- US Route

Point Requirements for **LEED-ND** Certification

Certified:	40-49		
Silver:	50-59		
Gold:	60-79		
Platinum:	80+		

Town of Cary

LEED for Neighborhood D)evelo	pment	
Smart Location & Linkage	Total 27	Achievable 8	Possible 11
Neighborhood Pattern & Design	.44	21	12
Green Building & Infrastructure	29	13	12
	100	42	34

THE GEOGRAPHY OF TRANSPORT SYSTEMS

Transportation Sustainability

Sustainable Transportation

1. Sustainable Development & Transport

Geography of Transport Systems, Dr. Jean-Paul Rodrigue https://transportgeography.org/?page_id=5725

Sustainable Transportation 2.

> American Society of Landscape Architects https://www.asla.org/sustainabletransportation.aspx

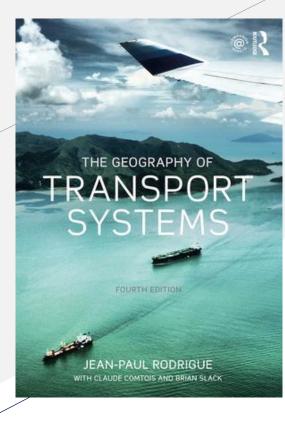
Transportation Sustainability Research Center 3.

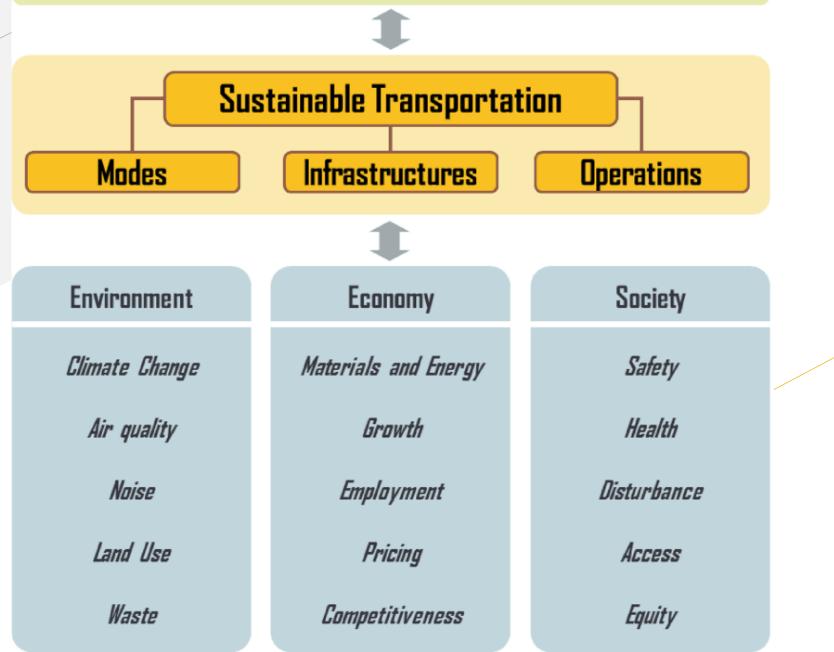
Univ. of California Berkeley

https://tsrc.berkeley.edu/

Sustainable Transportation (UC- Berkeley)

- 1. Advanced Vehicles & Fuels
- 2. Energy & Infrastructure
- 3. Future of Mobility
- 4. Goods Movement
- 5. Mobility for Special Populations
- 6. Shared Mobility

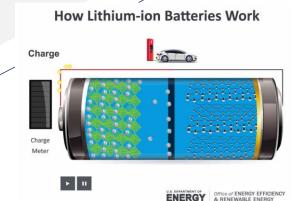


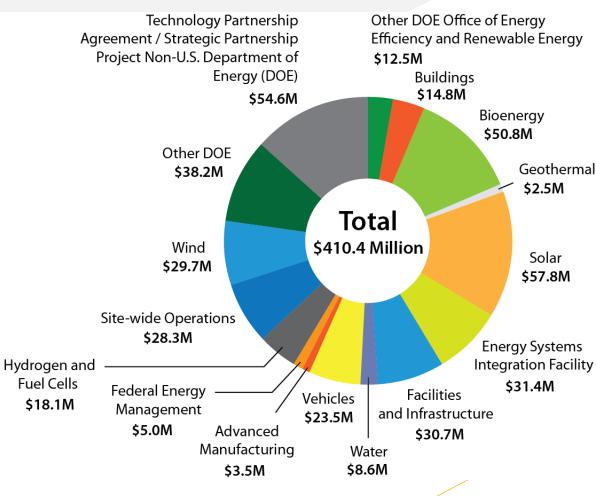

American Society of Landscape Architects

Sustainable Transportation (ASLA)

- 1. Transportation responsible for 30% of greenhouse gas emissions
- 2. 40% of American adults are obese, those most reliant on cars, most at risk
- 3. Adverse impact of Interstate routes in cities mostly on vulnerable populations
- 4. Access to jobs, services and community is too dependent on automobile ownership
- 5. Stormwater runoff water-quality issues heavily influenced by automobile pollutants

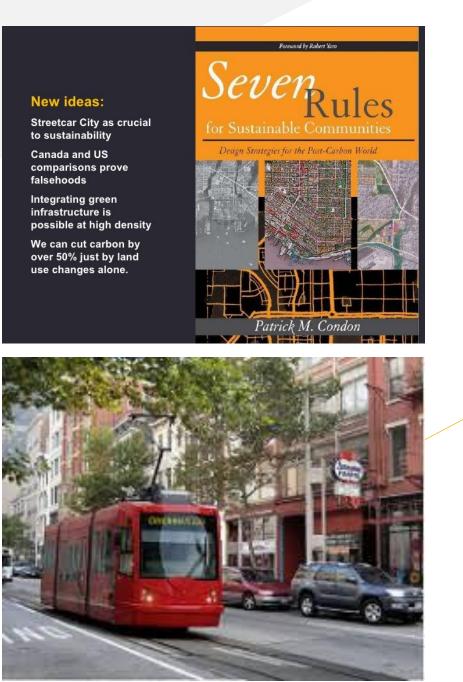
Sustainable Development

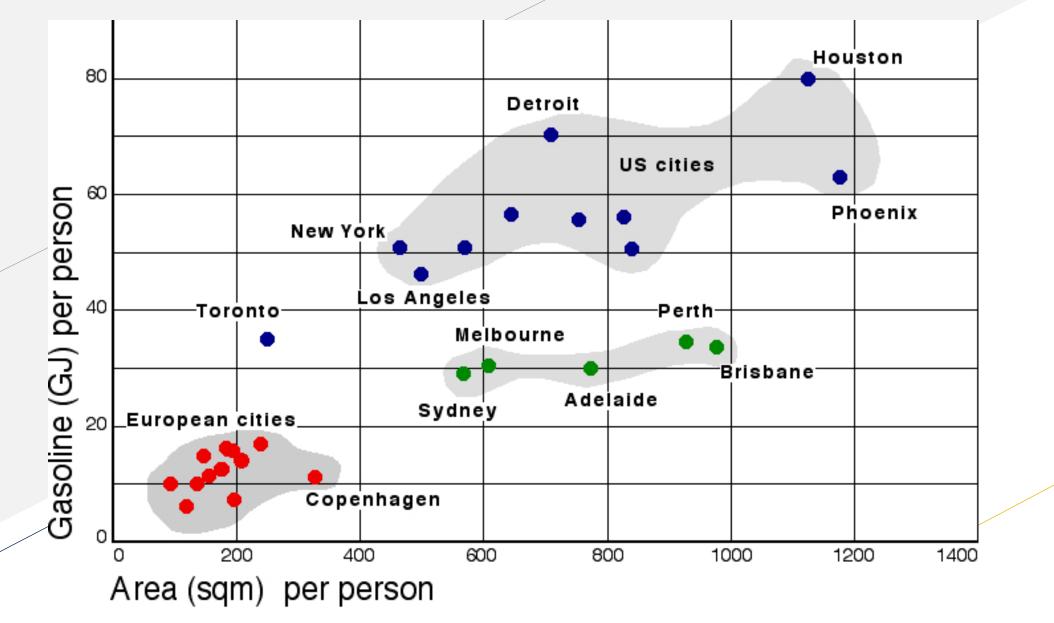



Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES OFFICE

- **1.** Batteries, Charging, & Electric Vehicles
- 2. Energy Efficient Mobility Systems
- 3. Advanced Combustion Systems & Fuels
- 4. Lightweight & Propulsion Materials
- 5. Technology Integration





7 Rules for Sustainable Communities ~ *P.M. Condon*

- 1. Restore the street car city
- 2. Design an Interconnected street system
- 3. Locate commercial services, transit & schools within a 5-minute walk
- 4. Locate good jobs close to affordable homes
- 5. Provide a diversity of housing types
- 6. Create a linked system of natural areas & parks
- 7. Invest in lighter, greener, cheaper & smarter infrastructure.

https://www.slideshare.net/IslandPress/seven-rules-for-sustainablecommunities-wash-dc-building-museum-2011

Urban Design to Reduce Automobile Dependence http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.543.5452&rep=rep1&type=pdf

Newman, Kenworthy's 1989, revised 2006

Does Mass Transit Help Low-Income Workers? – Cato Institute

https://www.cato.org/multimedia/cato-daily-podcast/does-mass-transit-help-low-income-workers

Transportation, Land Use & Freedom

https://www.libertarianism.org/media/free-thoughts/transportation-land-use-freedom

Zoning, Land-Use Planning, and Housing Affordability

https://www.cato.org/multimedia/cato-daily-podcast/zoning-land-use-planning-housing-affordability

History of US Transportation: Role of Government, Innovation

Railroads http://www.trainhistory.net/railway-history/railroad-timeline/

https://visual.ly/community/infographic/transportation/history-transportation

https://www.infoplease.com/science-health/transportation/road

Public Transit

Vehicles

http://www.trainhistory.net/railway-history/railroad-timeline/

Highways <u>http://www.greatachievements.org/?id=3786</u> <u>https://www.transportation.gov/50/timeline</u>

EXECUTIVE

JUDICIAL

Branch of Government

Budgeting & Legislation

Appointments/Vision/Agenda/Appointments

Rulings on Legal Actions

Means of Influence

US DEPT. OF TRANSPORTATION

	001		SIGNIATION				
FAA Air	US Coast Guard Maritime	FHWA Highways	Motor Carrier Trucking	Fed RR Railroads	FTA Transit	NHTSA Safety	Trans. Engineering Network Elements
							Policy Planning (Integration) Network Priorities Engineering/Design Construction Operation Maintenance Management
Local/Regional Airport Authorities	US Army Corps of Engineers State Port Auth.	State DOT's Local Gov & AAA	Trucking Association	RR Corps State RR's	Local Transit Authorities		Major Coordinating Agency/Industry Partners
Airport fields Terminals Landside NAVAIDS	Ports Harbors Channels Terminals	Interstates NHS Rural roads Urban streets		Track Design Switch yards Stations Right-of-way	Bus routes Fixed Guideways Terminals Paratransit		Facility Network Infrastructure
Com. Aircraft Gen. Aviation Military Aircraft	Container ships RO/RO ships Break Bulk ships Inland barges Multimodal	Urban trips Rural trips Commerce HOV Toll roads	Local deliveries Long haul 2-3 trailer rigs	Locomotives Box Cars Container cars Rolling stock	Buses Rolling stock Light Rail Heavy Rail People Movers PRT		Vehicles Usage Type
Noise Security	Dredging Environment Capacity Landside access	Safety Air Quality Energy Congestion	Safety Weight Haz Mat Regulation	Safety Haz Mat Access	Reliability Cost/Trip Density	Safety Accident data Investigations	Major Engineering Issues & Factors

Mode Choice – travel forecasting is used for:

- 1. Major transportation capital investment projects to evaluate competing modes
- 2. Transit service changes, which may encourage/discourage use of transit
- 3. Pricing policy analyses, which may discourage use of modes w/ increased prices
- 4. Long range forecasts, changes in demographics or travel conditions may alter relative worth of different modes for some or all travelers;
- 5. Land use planning analyses, where changes in development patterns may make certain modes more or less attractive relative to others.
- 6. For transit modes, other characteristics usually part of mode choice include:
 - Walk access time
 - Auto access time
 - Initial wait time
 - Transfer wait time
 - Transfer travel time (e.g. walking between stops)
 - Fare

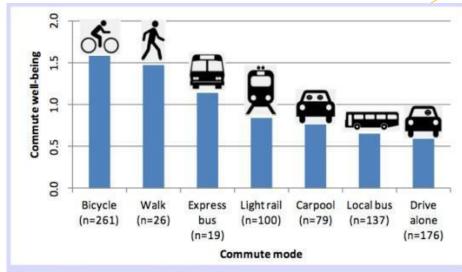


Fig. 3. Variation in commute well-being by mode

Urban Travel Modes & Public Transit

- MaaS Bike Share, Scooter Share, Ride Share, Car Share
- Auto SOV, Taxi, Shuttle, Van Pool, HOV, HOT
- Light Rail (Street Car)
- Heavy rail
- Commuter rail
- People Mover Systems
- Local bus service
- Express bus service
- Paratransit service
- Busways (Bus Rapid Transit)

Walkability, Bikeability, Active Living by Design

Complete Communities (video)

https://www.completecommunitiesde.org/planning/healthy-andlivable/designing-walkable/

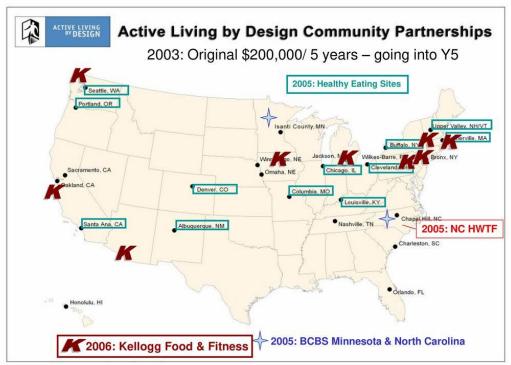
Walkability & Bikeability

Walk Score dominates evaluation

CDC Walkability Audit Too

https://www.cdc.gov/physicalactivity/worksitepa/pdf/walkability_audit_tool.pdf

San Francisco Bikeability & LOS


http://sustainablecities.weebly.com/uploads/1/2/3/3/12335040/ stanford sustainable cities bikeability report.pdf

Robert Woods Johnson Foundation

<u>https://www.rwjf.org/en/library/research/2011/10/active-living-by-</u> <u>design.html</u>

https://dirt.asla.org/2011/01/26/designing-for-active-living/

Context Sensitive Solutions

Federal Highway Administration

https://www.fhwa.dot.gov/planning/css/

Complete Communities

https://www.completecommunitiesde.org/planning/complet e-streets/css/

Context Sensitive Solutions

Definition:

Context sensitive solutions (CSS) is a collaborative, interdisciplinary approach that involves all stakeholders in providing a transportation facility that fits its setting. This approach leads to preserving and enhancing scenic, aesthetic, historic, community, and environmental resources, while improving or maintaining safety, mobility, and infrastructure conditions.

Principles:

These core principles apply to transportation processes, outcomes, and decision-making:

- Strive toward a shared stakeholder vision to provide a basis for decisions.
- Demonstrate a comprehensive understanding of contexts.
- Foster continuing communication and collaboration to achieve consensus.
- Exercise flexibility and creativity to shape effective transportation solutions, while preserving and enhancing community and natural environments.

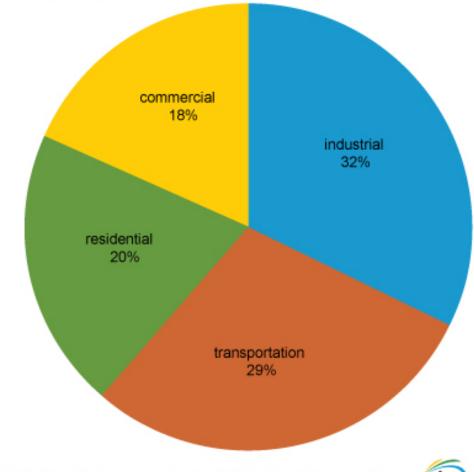
Why does MaineDOT utilize CSS?

Transportation facilities (highways, bridges, airports, walking trails, intermodal facilities, etc.) impact communities in ways beyond facilitating travel from one point to another. These facilities are integral components to the regional landscape and as such construction or modifications to them could have positive or adverse impacts. MaineDOT's utilization of CSS is a dynamic process reflective of the uniqueness of different communities in Maine as well as features that may be exclusive of a specific transportation facility.

CSS projects in Maine typically follow these steps:

- 1. Problem Identification
- 2. Formation of Multidisciplinary Teams
- 3. Stakeholder Identification
- 4. Purpose and Need Identification
- 5. Stakeholder Outreach Plan
- 6. Alternative Identification and Evaluation
- 7. Policy Decision
- 8. Inter-local Agreement
- 9. Design
- 10. Construction
- 11. Evaluation

The CSS process leads to outcomes that:

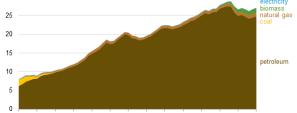

- Are in harmony with the community and preserve the environmental, scenic, aesthetic, historic, and natural resource values of the area.
- · Are safe for all users.
- Solve problems that are agreed upon by a range of stakeholders.
- Meet or exceed the expectations of both designers and stakeholders, thereby adding lasting value to the community, the environment, and the transportation system.
- Demonstrate effective and efficient use of resources (people, time, budget, etc.) among all parties.

For more information:
www.contextsensitivesolutions.org
www.fhwa.dot.gov
http://www.fhwa.dot.gov/safetealu/
www.nepa.gov
http://www.maine.gov/mdot/planning-documents/stpa/index.htm

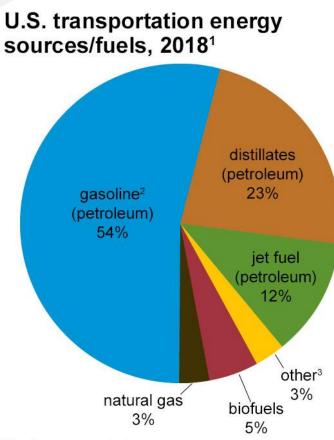
Energy consumption & greenhouse gas emission

Shares of total U.S. energy consumption by end-use sectors, 2017

Total = 97.7 quadrillion British thermal units



Note: Sum of individual percentages may not equal 100 because of independent rounding. Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 2.1, April 2018, preliminary data eia

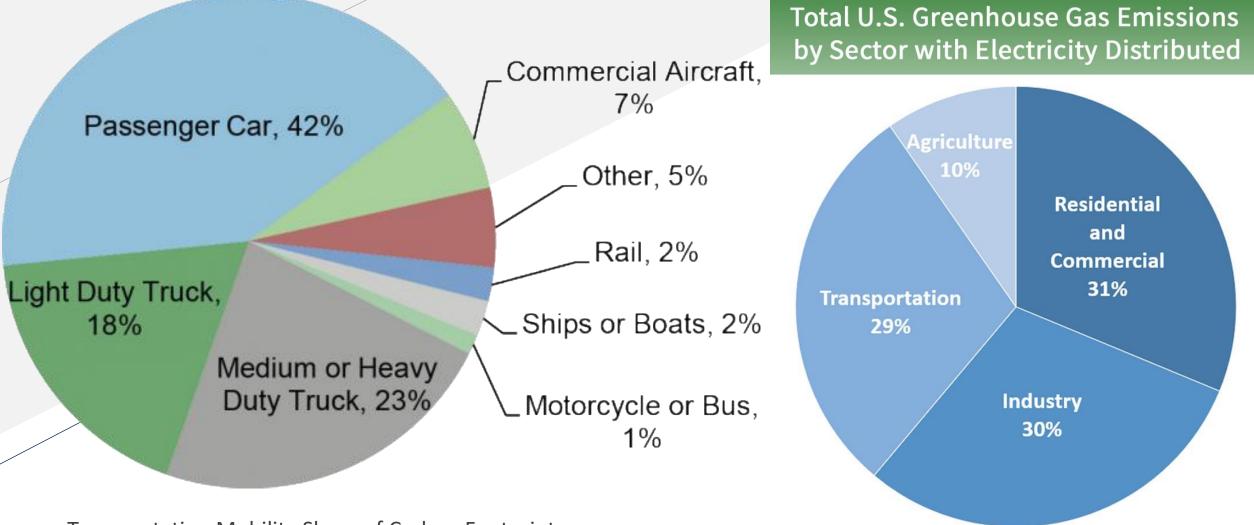


Energy consumption in the transportation sector (1949-2014) quadrillion Btu 30

1949 1954 1959 1964 1969 1974 1979 1984 1989 1994 1999 2004 2009 2014

¹ Based on energy content

eia


²Motor gasoline and aviation gas; excludes ethanol

³ Includes residual fuel oil, lubricants, hydrocarbon gas liquids (mostly propane), and electricity (includes electrical system energy losses).

Note: Sum of individual components may not equal 100% because of independent rounding.

Source: U.S. Energy Information Administration, *Monthly* eia Energy Review, Tables 2.5, 3.8c, and 10.2b, April 2019, preliminary data

Energy consumption & greenhouse gas emission

Transportation Mobility Share of Carbon Footprint

U.S. Environmental Protection Agency (2019). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017

STRIDE Southeastern Transportation Research, Innovation, Development and Education Center

Sustainable Communities & Mobility Thank You.

Villiam I Davis Ph.D. P.E.

William J. Davis, Ph.D., P.E.

843 953 7687

jeff.davis@citadel.edu

www.citadel.edu/root/cee

CIVL 642 Public Health, Physical Activity, and Design of the Built Environment