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ABSTRACT 
Roadway work zones reduce road capacity, increase traffic delays, and create dangerous 
situations for drivers and construction workers. It is important to study real-world work zone 
traffic and driver behavior, including vehicle count, vehicle classification, driving speed, 
headway, lane changing, etc. to understand and analyze how they impact safety and mobility 
under different work zone scenarios (e.g., time periods, traffic conditions, roadway geometry, 
traffic control configurations, etc.). Work zone traffic simulation models have been developed 
to quantitatively evaluate work zone impacts by considering driving behavior (e.g., vehicle 
headway, speed profile, merging location and time, vehicle lateral offset, etc.) and work zone 
scenarios. However, to support simulation models, the real-world traffic and driver behavior 
information at a detailed level is currently lacking. Simulations have to rely on default behavior 
values, which hinders the reliability and accuracy of the results. Recently, widely available 
traffic camera images, together with artificial intelligence, provide a promising alternative for 
cost-effectively acquiring detailed real-world traffic and driver behavior information needed for 
analyzing work zone driver behavior and for developing accurate and reliable simulation 
models.  

However, there is 1) a lack of a system to process raw traffic footage obtained from work zones 
to extract traffic and driver behavior information, especially systems that leverage recent 
advances in computer vision and artificial intelligence (machine learning), 2) a lack of 
understanding of the factors impacting the accuracy of the data extracted using an AI-system, 
and 3) a lack of quantitative analysis that presents the potential benefits of using the extracted 
real-world traffic and driver behavior information in the work zone traffic simulation models in 
comparison to default values. Therefore, a preliminary version of an AI-based work zone traffic 
and driver behavior information extraction system using widely available 2D camera images, 
machine learning, and computer vision has been proposed and developed to extract real-world 
traffic and driver behavior information, including vehicle count, vehicle classification, vehicle 
speed, time headway, and lane change location. A case study using the real-world videos 
collected on I-95 has demonstrated that the data extracted using the preliminary version of the 
developed AI-system is promising and can be analyzed to obtain accurate and refined real-
world work zone traffic and driver information. It can provide valuable input that has previously 
not available to transportation agencies for developing appropriate traffic control strategies to 
manage and/or improve safety and mobility in work zones, and it can greatly help develop 
accurate and reliable traffic simulation models. This research focuses on studying the feasibility 
of using AI technology to extract traffic information to enhance traffic simulation. A separate 
effort with a pilot study with a large diverse data set is recommended in the future to further 
validate, refine and implement the proposed method.   

 

Keywords: Automatic Workzone traffic and driver behavior information extraction, artificial intelligence, 
camera images, traffic simulation, congestion mitigation  
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EXECUTIVE SUMMARY 
Roadway work zones reduce road capacity, increase traffic delays, and create dangerous 
situations for drivers and construction workers. There is a need to study real-world work zone 
traffic and driver behavior in response to different work zone scenarios using widely available 
2D camera footages a) to understand a work zone’s impacts on traffic and driver behavior, and 
b) to develop appropriate traffic control strategies to manage and/or mitigate these impacts. 
Work zone traffic simulation models have been used to quantitatively evaluate the impacts of 
various work zone scenarios on traffic and driver behaviors. However, the lack of real-world 
traffic and driver behavior data is forcing simulations to use default parameter values, which 
may not be representative to the actual traffic and driver behavior, hindering the accuracy and 
reliability of traffic simulation results. Therefore, in this research project, a preliminary version 
of an AI-based work zone traffic and driver behavior information extraction system using widely 
available 2D camera footages, machine learning, and computer vision has been proposed and 
developed to extract real-world traffic and driver behavior information, including vehicle count, 
vehicle classification, vehicle speed, time headway, and lane change location.  

In this report, a case study involving two 30-minute work zone videos was used to 1) 
demonstrate the use of the proposed AI-system, 2) present the benefits of analyzing the 
extracted information to obtain accurate and refined traffic and driver behavior information. 
The results show that the data extracted from 2D cameras can capture different traffic and 
driver behaviors in different traffic conditions. An error analysis was also performed to assess 
the accuracy of the proposed AI-system and identify the factors contributing to the errors. A 
manual data extraction method is proposed to obtain ground truth data used in error analysis, 
and by comparing accuracy in different scenarios, accuracy-impacting factors are identified 
based on three categories: a) sensor-related factors; b) traffic and environment-related factors; 
and c) algorithm-related factors. Based on the error analysis findings, it is recommended that 
the traffic camera be set at a high location (over 50 ft) to occlusion, high frame rate videos be 
used, and vehicle detection and re-identification algorithm be refined to improve the vehicle 
count and traffic speed accuracy of the preliminary version of the proposed AI-system.  

Moreover, a work zone simulation model was developed to perform a study that explored the 
sensitivity of Vissim model outputs to changes in key input parameters, especially lane change 
distance, leveraging the extracted real-world traffic and driver behavior information instead of 
using typical ‘‘default’’ value found in the literature. The outcomes of this simulation study 
confirmed the utility of the extracted real-world traffic and driver behavior information. 
Therefore, when developing a more reliable work zone traffic simulation models, it is 
recommended that the work zone camera footages be used to provide data to calibrate and 
validate the traffic simulation models. 

This research focuses on studying the feasibility of using AI technology to extract traffic 
information to enhance traffic simulation. A separate effort with a pilot study with a large 
diverse data set is recommended in the future to further validate, refine and implement the 
proposed method.  Recommendations in this report include 1) further validating and refining 
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the AI-based work zone traffic and driver information extraction system with a large data set 
for implementation of the developed system, 2) enhancing the driver behavior study using the 
widely available read-world camera images, 3) extending the Vissim traffic simulation study 
presented in this report, and 4) scheduling work zone lane closures and designing work zone 
configuration to enhance safety and mobility.  



Quantitatively Evaluate Work Zone Driver Behavior using 2D Imaging,  
3D LiDAR, & Artificial Intelligence in Support of Congestion Mitigation 

 Model Calibration & Validation (Project G2) 
  

  
13 

 Introduction 
The presence of a work zone reduces road capacity and increases traffic delays, which causes 
twenty-four percent of non-recurring congestion (Chin et al., 2004). In addition, work zones 
also create dangerous situations for drivers and construction workers and have been involved 
in close to 800 fatalities (FARS, 2018) annually in the U.S. There is a need to study the real-
world traffic (traffic volume, traffic speed, etc.) and driver behavior information (e.g., vehicle 
count, vehicle classification, driving speed, headway, lane changing, etc.) in response to 
different work zone scenarios (e.g., time periods, traffic conditions, roadway geometry, traffic 
control configurations, etc.) using the widely available 2D camera footage to a) understand the 
potential work zone impacts on traffic (e.g., traffic speed, delay/queue, and conflicts) and driver 
behavior (e.g., driving speed, merging location and time, vehicle headway, vehicle lateral offset, 
etc.), and b) develop appropriate traffic control strategies to manage and/or reduce these work 
zone impacts. The different work zone scenarios are comprised of 1) time periods, including but 
not limited to different times of the day in which driver behaviors are normal or rushed (8 AM 
going to work or 4 PM returning from work), etc., 2) traffic conditions, including but not limited 
to traffic speed, density, saturation condition, queue condition, etc., 3) roadway geometry 
information, including but not limited to curve/straight sections on/before a work zone, exit 
position, etc., and 4) traffic control configuration information, including but not limited to 
location of starting point of work zone taper, length of the work zone, type of work zone, 
number of lanes closed, setup of traffic merge locations, types of merge signals, etc.  

Work zone traffic simulation models have been developed to quantitatively evaluate work zone 
impacts by considering driving behavior (e.g., vehicle headway, speed profile, merging location 
and time, vehicle lateral offset, etc.) and work zone scenarios. Microcosmic traffic simulation 
for work zones has been predominantly performed using VISSIM or CORSIM (Jehn & Turochy, 
2019; Sun & Elefteriadou, 2010). Ideally, field data measured in a work zone would be used to 
calibrate VISSIM and CORSIM by providing actual data for obtaining reliable simulation results 
and ensuring the simulated scenarios comply with realistic representations. However, detailed 
and region-specific driver behavior data to support simulation models is currently lacking; this 
hinders the reliability and accuracy of simulation results. 

Work zone traffic camera footage, together with artificial intelligence, provide a promising 
alternative that can cost-effectively acquire detailed real-world traffic information (e.g., traffic 
count, density, etc.) and driver behavior information (e.g., vehicle type, vehicle speed, merging 
location and time, vehicle lateral offset, vehicle headway, etc.). Previously, researchers have 
used video-based processing techniques to obtain detailed driver behavior data with a focus on 
collecting speed data (Boora & Ghosh, 2016; Fitzsimmons et al., 2012; Dey et al., 2006; Jacob & 
Anjaneyulu, 2012) and headway data (Sila & Maji, 2017). However, a system to process raw 
camera footage obtained from work zones to extract traffic and driver behavior information is 
lacking, especially a system that uses AI deep learning models (such as Yolo3). Consequently, 
there is a need to develop an AI-based work zone traffic and driver behavior information 
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extraction system (AI-system) using camera footage to obtain real-world work zone driver 
behavior and traffic information. 

After developing such an AI-system, it is important to understand the performance of the 
system, including its accuracy and factors contributing to errors so that we are aware of the 
limitations of the data extracted by the system and can further refine the AI-system. Limited 
research, including Sil and Maji (2014) and Alkherret et al. (2017) studied the accuracy of 
vehicle speed extracted using traditional image-processing techniques and identified a) frame 
rate, b) camera resolution, c) camera angle of view (Sila & Maji, 2017), and d) pixel size of the 
vehicle in the video log images (Alkherret et al., 2017) as impacting the accuracy of speed 
extraction. However, there is a lack of comprehensive studies that assess the accuracy of the 
data extracted using AI-based video processing techniques and identify how various factors 
(e.g., camera configuration, including height, distance, angle, and resolution, frame rate, 
lighting conditions, vehicle occlusions, processing algorithms, etc.) impact the accuracy of the 
detected speed, count, headway, etc. Therefore, there is a need to assess the accuracy of the 
data extracted using an AI-based work zone traffic and driver behavior information extraction 
system and identify the factors contributing to errors in extracted errors.  

 Due to the lack of real-world work zone traffic and driver behavior information, default values 
are often used for the input parameters for the development of work zone traffic simulation 
models. Although the real-world work zone traffic and driver behaviors (such as merge location, 
driving speeds, etc.) vary in different time periods, different geometrical locations, and 
different traffic (saturation) conditions, the default values do not account for this variation. 
Therefore, the use of default values significantly hinders the accuracy and reliability of 
simulation outcomes, especially the inability to capture diverse real-world behaviors. The data 
extracted from the AI-based work zone driver behavior and traffic information extraction 
system provides real-world data to run the traffic simulation models. However, the benefit of 
using the real-world data compared to default values on simulation outcomes is not quantified. 
Therefore, there is a need to quantitatively assess the potential benefits of using the extracted 
real-world traffic and driver behavior information in comparison to default values used in work 
zone traffic simulation models. 

In summary, the following are the research needs that must be addressed: 

There is a need to develop an AI-based work zone traffic and driver behavior information 
extraction system using the camera footage widely available to obtain real-world driver 
behavior and traffic information.  

There is also a need to assess the accuracy of the data extracted using the AI-based work zone 
traffic and driver behavior information extraction system and identify the factors contributing 
to the errors. 

Finally, there is a need to quantitatively assess the potential benefits of using the extracted 
real-world traffic and driver behavior information in the work zone traffic simulation models in 
comparison to default values.  



Quantitatively Evaluate Work Zone Driver Behavior using 2D Imaging,  
3D LiDAR, & Artificial Intelligence in Support of Congestion Mitigation 

 Model Calibration & Validation (Project G2) 
  

  
15 

 

The following are the objectives of this research: 

To develop an AI-based work zone traffic and driver behavior information extraction system 
using work zone camera footage to extract real-world traffic and driver behavior information, 
including vehicle count, vehicle classification, vehicle speed, time headway, and lane change 
location;  

To assess the accuracy of the traffic and driver behavior information extracted (traffic count, 
vehicle classification, vehicle speed) using the AI-based system and identifying the factors 
contributing to the errors;  

To develop a work zone simulation model and perform a sensitivity study to quantitatively 
assess the potential benefits of using the extracted real-world traffic and driver behavior 
information for comparison to default values in work zone traffic simulation models.  

 

This report is organized as follows:  

Chapter 1 introduces the background of the problem, research needs, and objectives.  

Chapter 2 presents a four-part literature review studies related to work zone driver merge 
behavior analysis, techniques for driver behavior and traffic information extraction using 
camera footages and AI, the errors associated with these techniques, and microcosmic traffic 
simulation and parameters.  

Chapter 3 presents a preliminary version of an AI-based traffic and driver behavior extraction 
system (AI-system) using widely available 2D camera footages and AI (Yolo3).  

Chapter 4 presents a case study involving two 30-minute work zone videos collected on an I-95 
work zone near Savannah, Georgia, to 1) demonstrate the use of the proposed AI-system to 
extract traffic and driver behavior information, and 2) present the benefits of analyzing the 
extracted information to obtain accurate and refined traffic and driver behavior information 
(called analyzed information), including traffic counts, traffic speeds, traffic headway, work 
zone driver merge behavior.  

Chapter 5 presents an error analysis methodology, identifies and categorizes the factors 
impacting the performance of the proposed AI-system, and recommends the possible methods 
to remove bias and outliers for improving the accuracy and reliability of the extracted 
information.  

Chapter 6 presents a work zone traffic simulation model developed using the extracted real-
world work zone traffic and driver behavior information and quantitatively assesses the 
sensitivity of traffic simulation outcomes by comparing default values with the extracted real-
world driver behavior and traffic information. The applications of the enhanced work zone 
traffic simulation models using the extracted real-world work zone traffic and driver behavior 
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information to improve transportation agencies’ work zone traffic management are also 
presented.  

Chapter 7 presents conclusions and recommendations.   
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 Literature Review 
This chapter reviews 1) studies related to work zone driver merge behavior, 2) techniques for 
vehicle detection and classification from camera footage and the use of AI to extract traffic and 
driver behavior (vehicle classification, count, speed), 3) error analysis in vehicle classification, 
count, speed estimation, and lane change, including the identification of error-causing factors, 
and 4) microscopic traffic simulation applications in freeway work zones. Finally, this chapter 
presents a summary of the literature review.  

2.1 Work Zone Driver Merge Behavior Analysis 
Unlike regular roadway conditions, work zones are associated with more frequent lane 
changing and merging due to mandatory and discretionary lane closures (He et al., 2016). Such 
lane closures increase the number of traffic conflicts and push drivers to change their behavior 
patterns, which lead to the potential risk for both driver safety and traffic mobility (Zhu & 
Saccomanno, 2004; Edara & Cottrell, 2007). Work zone statistics suggest that 26% of fatalities 
are caused by late merges (defined as changing lanes inside a work zone transition area where 
the lane is closed in a tapered form) in the work zone (Daniel et al., 2000). Therefore, there is 
an urgent need to improve our understanding of where drivers merge in a work zone, how 
drivers’ merge location decisions vary with different vehicle types, and how the merge decision 
behaviors are affected by different roadway and traffic characteristics.  

2.1.1 Factors impacting work zone driver merge behavior 
According to Hang et al. (2018), lane change behaviors during the merge at a work zone 
is a continuous process and can be impacted by the highway design elements, 
surrounding traffic conditions, and driver characteristics. The following is a list of 
comprehensive factors that can impact driver merge decisions, including 1) vehicle type 
(Li & Bai, 2009); 2) roadway geometries (Tsai et al., 2011); 3) environmental conditions, 
such as weather (Li & Bai, 2009), and lighting conditions (Ghasemzadeh & Ahmed, 
2019); 4) traffic conditions, such as traffic density (Lou et al., 2015), traffic flow 
(Kockelman & Ma, 2007), and traffic speed (Ito & Kaneyasu, 2017); 5) time of the day (Li 
& Bai, 2009); and 6) work zone configuration, such as design (regular work zone, zipper 
work zone, etc.) (Weng & Meng, 2015), and the nature of the road closed (Sarasua et al., 
2004).  

2.1.2 Work zone driver merge behavior analysis applications and challenges 
In summary, several studies have investigated the impacts of different factors on work 
zone driver behaviors through simulated studies, surveys, and crash data analysis; 
however, study of the actual driver merge behaviors using real-world camera footage 
under different scenarios involving (but not restricted to) different roadway geometries, 
traffic densities, type of lane closed, etc., is still very limited, although there are many 
potential applications of the real-world driver merge behavior analysis, including 1) 
enhancement of the accuracy and reliability of work zone traffic calibration and 
simulation models so the work zone traffic patterns and queues can be predicted more 
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accurately, 2) optimization of work zone configurations and traffic control strategies to 
reduce conflicts (near-crashes and actual crashes) and improve work zone mobility, 3) 
enablement of transportation agencies to develop work zone hazard awareness systems 
to ensure the safety of workers in the work zone, 4) assistance to 
autonomous/connected vehicles so they can safely navigate through work zone areas, 
and 5) prediction of dangerous situations (actual crashes and near-crashes) in different 
roadway and traffic conditions.  

The major challenge faced by researchers studying work zone driver merge behaviors is 
the lack of a) a system to extract real-world traffic and driver behavior information 
(vehicle classification, count, speed, and lane change) using widely available camera 
footages, and b) a methodology to analyze the extracted data. The following section 
(Section 2.2) reviews the traffic and driver behavior (vehicle classification, count, speed, 
and lane change) extraction techniques using camera footages and AI.  

2.2 Review of Traffic and Driver Behavior (vehicle classification, count, 
speed, and lane change) Extraction Techniques Using Camera Images 
and AI  
Conventional traffic detection technologies have the capabilities to detect basic traffic flow 
characteristics, such as the number of vehicles passing a detection site, the height of vehicles, 
and the speed of vehicles. Examples of such technology include inductive loops (Burnos et al., 
2007; Hall, 1992; Ramachandran et al., 2002), microwave (Hall, 1992; Ho & Chung, 2016; Steux 
et al., 2002), infrared (Hall, 1992), etc. These technologies have been widely applied worldwide; 
however, they have been rarely used to detect vehicle trajectory and classification of the 
vehicles (Burnos et al., 2007; Hall, 1992; Kaempchen, 2007; Ramachandran et al., 2002; Steux et 
al., 2002). Consequently, it is difficult to evaluate some driver behaviors, such as change in 
speed over time, solely based on these technologies (Kaempchen, 2007; Ramachandran et al., 
2002). Vision-based vehicle detection uses one or more cameras as the primary sensor suite 
and can obtain continuous trajectory data. 

In this research project, we focus on reviewing the technologies and methods using widely 
available 2D camera footages to automatically detect and classify vehicles in support of 
subsequent traffic information extraction (e.g., vehicle counts, vehicle classification, speed, and 
lane change). 

2.2.1. Vehicle Detection Using Computer Vision, Image Processing, and 
Traditional Machine Learning 
This section presents algorithms and methods using computer vision, image processing, 
and machine learning to process single camera footage for automatic vehicle detection 
and classification. Recent major advances in monocular vision-based vehicle detection 
have mirrored advances in computer vision, machine learning, and pattern recognition. 
There have been immense improvements from template matching to sophisticated 
feature extraction and classification. Please note that a major portion of this review is 
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based on the paper by Sivaraman and Trivedi (2013). The vehicle detection algorithms 
and methods are categorized based on 1) feature-based vehicle detection and 2) vehicle 
detection using classifiers, including conventional machine learning and deep learning. 
They are presented below. 

Feature-Based Vehicle Detection 
In computer vision and image processing, a feature is a piece of information that helps 
solve a computational task. Features may be low-level representations, such as points, 
edges, or objects. Features may also be the result of a general neighborhood operation, 
such as convolution operations or feature detection algorithms, such as SIFT, SURF, etc., 
applied to the image. The idea of a feature is generic, but we might need to choose very 
specific types of features to solve the problem at hand. 

A variety of appearance features have been used in the field to detect vehicles. Many 
prior studies used the principle of symmetry to identify vehicles. They created a vertical 
axis over image patches and checked for symmetry. The symmetry was often checked 
for after finding the edges of vehicles; this principle can be used to detect the rear and 
front of vehicles (Hoffmann, 2006; Hilario et al., 2005; Arrospide et al., 2008). Identifying 
edges helps detect the sides and shadows of vehicles based on the relative distance and 
angle between the edges. Blanc et al. (2007), Chan et al. (2007), Kim (2006), Nuevo et al. 
(2010), and Idler et al. (2006) used the concept of edge energy and symmetry to identify 
the headlights of vehicles during darkness. Chang et al. (2005) and Aytekin and Altug 
(2010) combined edges and symmetry with longitudinal distance and time to estimate 
collisions based on the width of vehicles. 

Over the past two decades, work in this field has advanced to using a more robust set of 
features that have properties such as invariance to scale, angle, brightness, etc. These 
feature sets create vector-based representations of objects and can be used to train 
machine learning models to classify objects. Histograms of oriented gradient (HOG) 
features and Haar-like features are two very popular features that we will discuss in the 
next section. 

Histogram of Gradients 
HOG features (Dalal & Triggs, 2005) are extracted by running an edge detector, 
such as the Sobel Filter, over the image. This filter allows us to calculate the 
horizontal and vertical gradients; then, the magnitude and orientation of the 
gradients are computed and the values are discretized (ie., divided into intervals 
and binned to form a histogram). The histogram is then used as a feature vector. 
HOG features have proven to be very good descriptors and have been used in 
such things as pedestrian and vehicle detection. Teoh and Brunl (2012) and 
Sivaraman and Trivedi (2011) use HOG features. Machida and Naito (2011) used 
HOG to determine the vehicle pose. The main bottleneck of HOG is the amount 
of time it takes to compute the features; Machida and Naito (2011) propose a 
technique that extracts HOG features using GPU’s. 
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Haar Features 
Haar-like features are sums and differences in intensities of rectangular regions 
in an image (Viola & Jones, 2001). In general, the intensities inside each 
rectangular region are summed, and the sums between adjacent regions are 
subtracted. They are computationally inexpensive and are sensitive to vertical 
and horizontal edges and to symmetry, making them ideal for vehicle detection. 
In the work by Liu et al. (2007), the front faces of vehicles following the vehicle 
with a rear-facing camera were detected using Haar-like features. Likewise, 
Haar-like features have been used to detect the rear faces of vehicles ahead 
using a forward-facing camera. Sivaraman and Trivedi (2011), Sun and Bebis 
(2006), Ponsa et al. (2005a), Ponsa et al. (2005b), Cui et al. (2010), Song et al. 
(2008), Withopf and Jahne (2006), Haselhoff et al. (2008); Haselhoff and 
Kummert (2009a), and Chang and Cho (2008) used Haar-like features to find the 
side profiles of vehicles by detecting the rear and front wheels. Haselhoff and 
Kummert (2009b) used Haar-like features to track vehicles. In the work by 
Sivaraman and Trivedi (2012), Haar features were used to find different parts of 
vehicles and localize the vehicle based on the parts. 

Other Features 
Negri et al. (2008) combined HOG and Haar-like features to detect vehicles. Scale 
invariant feature transform (SIFT) features (Lowe, 1999) were used (Zhang et al., 
2011) to find the rear faces of vehicles despite the presence of partial occlusions. 
Lin et al. (2012) used SURF (Bay et al., 2008) and edges to detect vehicles in the 
blind spot. Zhang et al. (2006) used Gabor and Haar features for vehicle detection. 
Principal component analysis and independent component analysis was used by 
Wang and Lien (2008) for detecting parked sedans in static images. 

The major issue with feature-based detections is their limitation of what can be 
expressed; each type of feature, such as SIFT or ORB, has unique characteristics, 
but by using just one of them, the levels of expression are limited. Deep learning 
feature extraction is an inherent part of the algorithm that is learned through 
backpropagation, allowing the model to learn the features that best represent 
the object. Another issue is that pure, feature-based matching without using any 
classification model will not be robust to different conditions and different 
instances in the same class of objects. 

Vehicle Detection Using Classifiers 
Classification is the process of assigning a discrete label to an entity. In machine 
learning, certain algorithms, such as SVM’s, Decision Trees, etc., are trained based on 
feature vectors to correctly identify the class of a data point. Computer vision makes use 
of these classifiers that are trained on feature vectors, such as the ones mentioned in 
the previous section, to predict the class of an object in an image. 
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Classification models/algorithms can be broadly split into two categories: discriminative 
and generative. Discriminative classifiers model the posterior probability of a class given 
a label, whereas generative models model the joint probability of the data and label. 
Discriminative models have been used more widely than generative models for vehicle 
detection. In classifier-based techniques, it is common for features of the chosen kind to 
be extracted for each patch in an image, and the classifier would classify whether that 
patch contains the object the algorithm is searching for. 

Support Vector Machines 
Support Vector Machines are binary classifiers that learn to draw a hyperplane 
that maintains the maximum margin between the two classes. An example of the 
boundary that an SVM can learn is shown in Figure 2-1. As can be observed, the 
boundary is placed so that the distance between the two classes is maximized. 
SVM’s were very popular due to the fact that they were non-parametric and can 
learn non- linear decision boundaries using the “kernel trick.” SVMs can be used 
for multi-class classification using the “one-versus-all” training paradigm. In this 
concept, if there are n different classes, we train each specialized SVM to predict 
whether the instance belongs to the class it is trained to recognize or not. The 
SVM with the highest confidence/score is deemed to be the winner, and the 
class that the SVM was trained to recognize is allotted as the class of that 
instance. 

 

FIGURE 2-1: DECISION BOUNDARY OF AN SVM 

SVMs have been widely used for vehicle detection. In the work done by Liu et al. 
(2007), Haar wavelet coefficients were used to train an SVM to detect vehicles. 
SVM classification trained on HOG features has been used in Teoh and Brunl 
(2012), Sivaraman and Trivedi (2011), and Sun and Bebis (2006). The HOG-SVM 
formulation was extended to detect and calculate vehicle orientation using 
multiplicative kernels in Yuan et al. (2010). SVMs trained on edge features were 
used in Blanc et al. (2007) and Kim (2006) to detect vehicles. Zhang et al. (2006) 
combined Haar and Gabor features with SVM classification. 
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Boosting 
Boosting is the concept of creating an ensemble of multiple weak classifiers that 
can form an extremely well-performing classifier when combined together. 

AdaBoost (Freund & Schapire, 1999) has been also widely used for classification. 
Liu et al. (2005) used AdaBoost classification to detect vehicles based on 
symmetry feature scores. In Khammari et al. (2005), edge features were 
classified using AdaBoost. Haar-like feature extraction and AdaBoost 
classification were used to detect the rear faces of vehicles in Cui et al. (2010), 
Withopf and Jahne (2006), Kallenbach et al. (2006), Son and Mita (2009), and 
Acunzo et al. (2007). Chang and Cho (2008) detected the front and rear of 
vehicles from the side view using Haar features and AdaBoost classification. The 
combination of Haar features and AdaBoost classification was used to detect 
different parts of vehicles in Sivaraman and Trivedi (2012). 

Identifying objects as a combination of their parts was one technique that has 
been extensively used for vehicle detection. This approach helps because we can 
exploit the spatial properties between parts to localize the entire object, as well 
as weed out false positives if objects do not contain all the required parts. In 
Blanc et al. (2007), a combination of SURF and edge features was used to detect 
vehicles with vehicle parts identified by key point detection. Zhang et al. (2006) 
used SIFT features and hidden conditional random fields to detect various parts 
of vehicles and then identify the vehicle. Takeuchi et al. (2010), Niknejad et al. 
(2011), and Niknejad et al. (2012) used the deformable parts model based on 
HOG and SVMs to identify vehicles. Sivaraman and Trivedi (2012) and Sivaraman 
and Trivedi (2013b) independently detected the front and rear parts of a vehicle 
encoded by an SVM. 

Robert (2009) proposed a method that detects vehicles based on a hierarchy of 
features detection and fusion. The first layer of the hierarchy extracts image 
features. The next layer fuses image features to detect vehicle features, such as 
headlights, windshields, and vehicle appearance. The last layer fuses the vehicle 
features to train a classifier. From vehicle standards, the authors find the 
average size of a headlight and its average height (in meters ). A headlight is 
modeled by a disk and is projected to all pixels of the camera image. Similarly, 
they find the average distance between the headlights of a vehicle (around 1m. 
for a car and 2m. for a heavy vehicle). They then use a homography matrix to 
convert the distances in meters to pixel distances for all pixels of interest in the 
camera image plane, creating two new 2D arrays of cars and heavy vehicles 
headlights’ separation distance. They go on to find the windshield by estimating 
where it would be based on the presence of headlights. Then, they find the 
median value of the windshield to ascertain whether the confidence of their 
detection should increase or decrease. Their heuristic is that the windshield is 
usually dark. If the confidence is too low after the 2 stages mentioned above, 
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they extract features from the patch containing the headlights and windshield 
and use an SVM/ANN classifier to classify the patch. 

The problem with parts-based detections lies with the fact that we have to 
customize/choose features that best identify the part; for example, in the paper 
mentioned above, the features methodology to identify headlights was different 
from that of the windshield. In case we need to identify more than one class of 
objects, such as vehicles and humans, we would need to customize parts-based 
models to detect humans. It is an idea that does not scale very well.  

Deep learning modules have proven to learn lower-level features, such as edges, 
texture, etc. and gradually learn higher features, such as shapes; they also 
eventually learn to represent individual parts if they are distinct enough. This can 
be observed in the studies on scene recognition. All of these 
features/representations are learned automatically by the network through 
backpropagation if there are enough training examples. Therefore, using deep 
learning for multi-class detection would be much easier. 

2.2.2. Vehicle Detection and Classification Using Deep Learning (Yolo3) 
In recent years, increasing computer power has made it possible to build neural 
networks with a large number of hidden layers. Object recognition and detection have 
become an increasingly trivial task. There are 2 main kinds of deep learning 
architectures that are used to identify and detect vehicles/objects in images or videos:  

1. Networks that use region proposal networks that predict if an object is present in a 
particular region of the image, such as the RCNN and Faster RCNN. 

2. Networks that divide the entire image into segments/zones and predict if an object 
is present in those zones, such as SSD and YOLO. 

Yolo (You Only Look Once) (Redmon, 2016) is an object detection model. This is a one-
stage detection model, meaning all the outputs ([object-class-probabilities] 
[xcenter][ycenter] [width] [height] [confidence]) are computed at the same time.  

Yolo (like other deep neural network-based object detection techniques) basically 
adapts historical detection algorithm ideas to a regression model using a deep neural 
network and vectorized computation. The YOLO object detection process is shown in 
Figure 2-2; the network first extracts features like we would first extract Haar features in 
Viola and Jones (2004), which are then used by the last layers of the network to regress 
bounding boxes’ locations, dimensions, and class probabilities. Like in a classical sliding 
window algorithm, the image is divided into an SxS grid in which each cell contains B 
anchor boxes generating SxSxB bounding boxes. However, unlike a sliding window, the 
YOLO deep neural network processes all the image cells at the same time. Finally, non-
maximal suppression over IoU values is used to avoid multiple detections of the same 
objects. 
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FIGURE 2-2: YOLO OBJECT DETECTION PROCESS (REDMON, 2016) 

2.3 Error Analysis and Identification of Factors Causing Errors in Traffic 
and Driver Behavior Information Extraction Using a Camera  
The purpose of this review is to 1) identify the errors, summarize the factors that impact the 
accuracy of driving behavior data extracted using AI-based image processing techniques at 
various stages of processing (image down sampling, resizing, vehicle detection, classification, 
tracking, count, and speed computation, etc.), and 2) identify the potential methods to 
reduce/manage the errors when extracting the traffic and driver behavior information. 
Although there are several image processing techniques to process and extract traffic and 
driver behavior information from camera footage, the focus of this literature review is on using 
AI-based image processing techniques such as Yolo, Faster-RCNN, etc. for vehicle detection and 
classification.  

The outcomes of this review recommend best practices to 1) collect (e.g., camera setup (e.g., 
height, distance, angle, etc.), lighting, video resolution, and frequency), 2) process (vehicle 
detection, classification, and tracking technique, count computation, speed computation, etc.), 
and 3) manage the errors to reduce and/or manage their impact on the extracted traffic and 
driver behavior information using AI-based image processing techniques.  

2.3.1. Review of Error-Causing Factors in Traffic and Driver Behavior 
Information Extraction 
In this section, a review of error-causing factors in traffic and driver behavior 
information extraction is presented. The review focuses on errors that could occur in 
different stages of traffic and driver behavior information extraction and categorizes the 
errors based on the error-causing factors. A typical traffic and driver behavior 
information extraction using AI-based image processing techniques consists of the 
following stages: 
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Stage 1: Preprocessing the acquired camera video (images resized to the same size, 
extraction, and segmentation of the road surface before using it in the YOLO algorithm 
(Song et al., 2019); camera calibration to compute lane-mark equations (Liu et al., 2020) 
Stage 2: Vehicle detection (computation of a bounding box) 
Stage 3: Vehicle classification 
Stage 4: Vehicle tracking 
Stage 5: Vehicle count estimation (traffic density can then be deduced)  
Stage 6: Vehicle speed estimation 
Stage 7: Lane change location determination 

The review showed three major categories of error-causing factors impacting the 
accuracy of the extracted traffic and driver behavior information. Error! Reference s
ource not found. summarizes the methods developed to address the factors impacting 
the accuracy of extracted traffic information, and there are detailed factors under each 
of the three categories. As shown in Error! Reference source not found., the factors r
elated to camera height and angle, camera resolution, viewing location, camera speed, 
and traffic density (vehicle occlusions) have been addressed and improved by high 
position and definition cameras (the hardware improvement and camera setup). Many 
methods have been developed to improve the tracking algorithms, as shown in Error! R
eference source not found.. Many methods have been developed to address the 
lighting and shadow issues. These improvements show the importance and interest in 
addressing these factors. Although improvement has been made, the lighting and 
shadow factors and roads that are especially busy still remain a challenge. There is a 
need for developing an enhanced method to improve robustness for complicated 
shadows (such as shadows from trees) (Liu et al., 2020). 

TABLE 2-1: METHODS TO ADDRESS FACTORS IMPACTING VEHICLE COUNT AND SPEED COMPUTATION ACCURACY 

 Methods 

High 
position 

and 
definition 
camera 

RSCH 
method 

GMM YOLO Faster 
R-

CNN 

Pretraining 
data 

Kalman 
filter 

ORB 
algorithm 

Virtual 
loops 
(15m) 

UAV 
method 

Fa
ct

o
rs

 

Sensor 

Camera 
height and 

angle 

          

Camera 
resolution 

          

Viewing 
location 

          

Camera 
movements 

          

Camera 
speed 

          

Traffic and 
environment 

Traffic 
density 

          

Vehicle 
type 

          

Lightning 
and 

shadows 

  illumination    illumination     
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Driver 
behavior 

          

Road shape           

AI-system 
algorithm 

factors 

Tracking 
algorithm 

          

Training 
data 

          

Sensor factors: 
Five major sensor factors impact the accuracy of the extracted traffic and driver 
behavior information at various stages of the processing: 1) camera height and angle, 2) 
camera resolution, 3) viewing distance, 4) camera movements and 5) camera 
speed/frame rate. 

1. Camera height and angle: 
When the camera height is low and the camera angle is weak relative to the 
horizontal, the chances of getting multiple vehicle occlusion situations increase 
(Buch et al., 2011). Therefore, vehicles cannot be detected accurately (i.e. the 
bounding box cannot be drawn correctly, or the vehicle detection is completely 
missed) and misclassification occurs. Even though solutions exist to tackle 
occlusions, it can lead to important estimation errors in case of total occlusion: 
the vehicle that is completely hidden behind another vehicle cannot be detected, 
tracked, classified, or counted. 
 

2. Camera resolution (Song et al., 2019; Liu et al., 2020; Maji, 2017; Buch et al., 
2011)  
A poor resolution video contains fewer vehicle feature points and, therefore, 
detection and classification using YOLO is affected because the algorithm 
extracts features from images to detect and classify vehicles. If detection is 
performed on a preprocessed image computed using foreground segmentation 
techniques, a poor camera resolution can reduce the accuracy of the 
segmentation because there are not sufficient pixels to segment a vehicle 
properly or because poor resolution adds noise to the video. 
 

3. Viewing distance (Song et al., 2019; Liu et al., 2020; Jamzad, 2005): 
When vehicles are farther away, they have fewer pixels to be detected. This 
impacts classification, as well. Assuming the vehicle is correctly detected and 
classified at a longer distance from the camera, the speed computation at that 
location may be inaccurate because the actual distance travelled by the vehicle 
between two-time stamps is difficult to estimate because of the pixel vs. 
distance error. For example, 100 pixels may represent 1 m close to the camera, 
but only 10 pixels may represent 1 m farther away from the camera.  
 

4. Camera movements (Ke et al., 2016; Lam et al., 2004): 
Since the camera is moving, it is difficult to estimate the distance a vehicle 
travels between frames; all methods using a reference line do not work because 
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the position of the reference line changes; therefore, counting and speed 
computation are impacted. NOTE: This is an issue if the camera is on a drone 
flying above the roads, but it can also be an issue if the camera is only mounted 
on a pole and is shaking. Detection techniques relying on foreground 
segmentation need the background to be stationary and fixed. Since both 
foreground and background are moving, detection is impacted. 
 

5. Camera speed/frame rate (Maji, 2017): 
When the camera’s speed/frame rate is low, it is challenging to track a vehicle 
position because the time between two frames is too high. In that case, two 
consecutive bounding boxes do not overlap, or non-corresponding bounding 
boxes are detected as being the same. It also impacts counting and speed 
computation because if the time between frames is too high, it is possible that 
no frame containing the vehicle crossing the virtual line is recorded; on one 
frame, the vehicle bounding box is situated before the line, and on the next 
frame, the bounding box is situated after the line. Therefore, the vehicle’s 
crossing of the reference line is not detected.  
 

Traffic and environmental factors 
Five major traffic and environmental factors impact the accuracy of the extracted traffic 
and driver behavior information at various stages of the processing: 1) traffic density, 2) 
vehicle type, 3) lighting and shadows, 4) driver behavior, and 5) road shape. 

1. Traffic density: 
In heavy traffic, vehicle occlusions happen frequently (Bharadwaj et al., 2016; Li 
et al., 2014; Buch et al., 2011; Sohn, 2018; Pang et al., 2004; Pang et al., 2007; 
Jamzad, 2005; Zhang et al., 2008). The impact is more important when the 
occlusion is severe; this can happen when many vehicles are involved or when 
vehicles are almost completely hidden, etc. Heavy traffic is often slow, which 
impacts preprocessing foreground segmentation; some vehicles are considered 
to belong to the background because their positions have not changed between 
consecutive frames (Buch et al., 2011). 
 

2. Vehicle type: 
Vehicle type can impact counting methods that use several virtual detection 
loops for each lane; some vehicles are very large and occupy almost two lanes 
and, therefore, are counted twice (Li et al., 2014). If a particular vehicle type is 
not represented enough in the training data, the classification of that vehicle 
type will be inaccurate. This point is also mentioned in AI-system algorithm 
factors below. A vehicle with a color similar to the background color cannot be 
segmented fully or extracted correctly, and its length and area are hard to obtain 
accurately. Therefore, this condition impacts detection and classification that is 
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based on vehicle length (Liu et al., 2020; Jamzad, 2005). Vehicle type impacts 
vehicle length-based classification because some large car dimensions are close 
to the dimensions of a bus or a truck (Song et al., 2019). 
 

3. Lighting and shadows (Song et al., 2019; Liu et al., 2020; Bharadwaj et al., 2016; 
Li et al., 2014; Buch et al., 2011; Chang et al., 2018; Mousa et al., 2014; Pang et 
al., 2007; Jamzad, 2005; Ke et al., 2016; Lam et al., 2004):  
For methods using interest points (a point with rich information around it, robust 
to perturbations such as those caused by various illuminations), more interest 
points are detected during the day than at night. Some of these points are 
inaccurate, leading to wrong detections and wrong tracking. At night, only 
accurate feature points are detected (such as vehicle lights), leading to accurate 
vehicle tracking (Ke et al., 2016). This means that at night, when using the 
interest point method (Ke et al., 2016) (the Kanade-Lucas-Tomasi tracker), 
tracking is more accurate than daytime tracking, but the classification would be 
poor (it is based on vehicle lengths). Lightning and shadows may affect 
classification (Liu et al., 2020) because they create “wrong” feature points; the 
algorithm considers the shadow as being part of the vehicle. The impact of this 
factor decreases if the neural network has been trained with several situations 
containing shadows and illuminations. When using foreground segmentation 
methods and when the illumination is insufficient, it is difficult to extract the 
edge of the vehicle or detect a moving vehicle because some parts of the vehicle 
may have different colors. Shadows or reflective regions affect foreground 
segmentation, and shadows are considered part of the vehicle, which leads to 
errors when extracting vehicle shapes and dimensions. Therefore, vehicle 
detection and classification are impacted (Buch et al., 2011; Lam et al., 2004; Li 
et al., 2014; Mousa et al., 2014; Rad and Jamzad, 2005; Song et al., 2019). 
 

4. Driver behavior:  
Non-lane-based movements of vehicles impact detection accuracy mostly 
because they  lead to occlusion situations (Bharadwaj et al., 2016; Li et al., 2014; 
Mousa et al., 2014). Tracking accuracy is impacted because vehicles change lanes 
between two frames.  Therefore, predictive trajectory algorithms can lose a 
vehicle. When the vehicle is detected again, it can be counted twice (Bharadwaj 
et al., 2016; Li et al., 2014; Buch et al., 2011; Pang et al., 2004; Jamzad, 2005). 
Speed computation is impacted because vehicles changing lanes do not follow a 
straight path; therefore, it is difficult to estimate the travelled distance. 
Algorithms using the bounding box approach may have tracking failures in high-
speed traffic because of a lack of bounding box overlap when a vehicle has 
moved a longer distance. 
 

5. Roadway geometry: 
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The virtual loop is placed on a slight slope, which is difficult to detect. Therefore, 
between the two lines of the loop, the road is not flat, and the estimated 
distance between the two reference lines is slightly wrong, which leads to speed 
computation errors (Liu et al., 2020). 
 

AI-system algorithm factors 
There are two major AI-system algorithm factors impacting the accuracy of vehicle 
count and speed estimation at various stages of the processing: 1) the tracking 
algorithm and 2) the training data. 

1. Tracking algorithm: 
Algorithms tracking a particular vehicle feature, such as a vehicle’s head (front) 
may lead to tracking failure when there are two consecutive vehicles and one 
vehicle’s feature point is hidden by the other vehicle; both vehicles are, 
consequently, considered to be one single vehicle (Jamzad, 2005). Tracking 
errors impact the algorithms that use tracking positions to count and compute 
speed (Bharadwaj et al., 2016; Jamzad, 2005). Tracking failures (i.e. vehicle 
tracking is lost and then recovered) lead to overcounting (the recovered vehicle 
is counted twice).  
 

2. Training data: 
When there is not sufficient training labelled data for a vehicle class, the class is 
poorly detected and classified (Buch et al., 2011; Chang et al., 2018; Sohn, 2018). 
If there is not sufficient data, including complicated situations containing 
shadows, varying illumination conditions, poor lightning, etc., vehicles will be 
poorly detected and classified.  
 

2.3.2. Review of Methods to Improve Accuracy in Traffic and Driver 
Behavior Information Extraction and Needs to Further Improve Accuracy 
The following presents the methods adopted by the researchers to reduce and manage 
errors when detecting, classifying, tracking, and counting vehicles and when computing 
vehicles’ speeds. They are categorized based on the different stages of a typical traffic 
and driver behavior information extracted using AI-based image processing techniques. 

Detection 
Many of the errors mentioned above are due to vehicle occlusions. Many documents 
propose methods to solve this problem. The methods giving the best results are 
presented below. They are classified as sensor-based solutions or algorithm-based 
solutions.  

In sensor-based solutions, to reduce the number of occlusions, it is recommended to 
place a high-definition camera in a high position, close to the road and pointing to the 
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road to get a better viewing angle, which limits the occlusion (Buch et al. 2011). The 
camera should speed should not be too low. 

In algorithm-based solutions, there are two major algorithm-based solutions: 1) 
recursive segmentation and the convex hull method, and 2) YOLO and deep learning 
methods. 

The method presented in Chang et al. (2018) seems to provide excellent results. It 
proposes a real-time video processing algorithm to segment multiple vehicles involved 
in an occlusion by analyzing the closure and convex hull of vehicles (recursive 
segmentation and convex hull methods). 

To detect vehicles, as done in many papers, this method extracts the moving 
foreground. Many documents use the modified Gaussian mixture model (GMM) for this 
purpose instead of other less robust models. This model is robust to illumination 
changes but has a slightly higher computational complexity than other methods (Buch et 
al. 2011). Using the convex hull of the occluded vehicle region, occlusions are detected, 
and vehicles are segmented using recursive segmentation. If there is no occlusion, the 
vehicle is simply detected. This method outperformed other methods for detection and 
counting, but it needs good video resolution to obtain accurate foreground detection.  

Other efficient methods use the YOLO3 algorithm to detect vehicles (Song et al. 2019; 
Liu et al. 2020). These methods use convolutional neural networks to extract the 
features of the input image. These algorithms are able to robustly detect vehicles and 
are immune to rainy conditions, night time, and complicated illumination conditions if 
correctly trained (Song et al. 2019; Liu et al. 2020). When the traffic is busy where 
vehicles occlude each other, the detector is still robust enough to get accurate bounding 
boxes of vehicles (Liu et al., 2020). 

To reduce computation time, the method from Song et al. (2019) extracts and divides 
the road surface using a GMM-based model. Then, the YOLO3 algorithm is used only on 
the road, which achieves better detection results and reduces computation time 
because only the road zone containing vehicles is processed instead of the entire image. 
It is also possible to reduce the frame rate and, preferably, to use a GPU to train a deep 
CNN (Song et al., 2019; Sohn, 2018) to reduce computation time. However, a frame rate 
that is too low may also lead to more errors (frame rate is only mentioned without 
further details in most documents). If traffic is really busy, a faster R-CNN algorithm can 
be used to get slightly better performance, but the computational cost is higher (Song et 
al., 2019; Liu et al., 2020). 

Classification 
Classification can be improved by training the classification algorithm with more diverse 
data, including different sizes and class objects (Song et al., 2019), occlusion situations 
(Sohn, 2018), rainy conditions, night times, and complicated illumination conditions (Liu 
et al., 2020)). However, such diverse labeled data is rare, and labeling its own data is 
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really time-consuming. To tackle this problem, documents (Sohn, 2018; Chang et al., 
2018) propose pretraining strategies to improve classification performance when 
labeled data is limited and unlabeled data is used instead; for example, using 
unsupervised methods to pre-train the CNN before using supervised methods (Chang et 
al., 2018) using more or less accurate data (which is easily obtained) to pre-train the 
CNN in (Liu et al., 2020). 

Tracking 
For tracking, most methods use bounding boxes computed from vehicle feature points. 
Many methods use a Kalman filter to predict the position of a vehicle bounding box on 
the next frame, which limits the loss of vehicles (Liu et al., 2020; Buch et al., 2011; 
Jamzad, 2005). 

The ORB algorithm in Song et al. (2019) seems to provide accurate results. It uses the 
Features From Accelerated Segment Test (FAST) to detect feature points inside a 
predicted bounding box and to check if an object matches the feature points or not 
(Song et al., 2019). Detection of feature points is performed only in the bounding box 
instead of on the entire road surface, which improves computing time (Liu et al., 2020; 
Buch et al., 2011; Jamzad, 2005). 

Traffic and Driver Behavior Information Extraction 
For traffic and driver behavior information extraction using 2D camera footage, two 
scenarios can be improved: one case occurs when the camera is stationary (not moving) 
and the second case occurs when the camera is moving.  

When the camera is not moving, methods to count vehicles and compute speeds rely on 
accurate detection and tracking. If tracking is accurate, tracked vehicles can be counted. 
Methods using reference lines on images are accurate if the camera is not moving. In a 
similar way, if tracking is accurate and if the video has good resolution, consecutive 
vehicle tracked positions can be used to compute speeds. If the camera is not moving, 
using a virtual speed loop is accurate; Maji documents (2017) show that error is optimal 
for a speed loop length of 15 meters.  

When the camera is moving (for example, in unmanned aerial vehicles with mounted 
cameras), different methods have to be used because both background and foreground 
are moving. Ke et al. (2016) provide a robust method to detect vehicles using Shi-Tomasi 
interest point tracking and motion-vector clustering (vehicles are detected and tracked 
thanks to their feature points’ similar motion criteria and compared to the background 
feature points. Furthermore, interest points on the same vehicle share the same 
motion, so it can be determined if a group of interest points belongs to the same vehicle 
or not). Simple classification is performed based on the number of interest points of 
every vehicle. Counting is performed by counting the detected vehicles, and speed 
computation is performed by computing the average speed of all interests points of one 
vehicle. Even though this system classification method is a bit simple and sometimes 
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inaccurate, large errors occur when the image frames contain very few vehicles, it works 
well in both day and night settings (tracking is particularly efficient at night), and it is not 
sensitive to UAV movements. Furthermore, this type of system is not impacted by 
occlusions, since its camera flies (via a drone) right over the road; it can also deal with 
static backgrounds and has a high processing speed (real-time).  

2.4 Review of Microscopic Traffic Simulation Applications in Freeway 
Work Zones  
As highlighted in Chapter 1, the ever-increasing presence of work zones on our nation’s 
highways has a profound impact on the mobility and safety of the traveling public. The Texas 
A&M Transportation Institute (TTI) estimates that drivers incurred 8.8 billion hours of delay in 
2017, approximately 10% of which is attributable to work zones (Texas A&M Transportation 
Institute, 2019; FHWA, 2020). While the 762 fatal work zone crashes reported by the National 
Highway Traffic Safety Administration (NHTSA) in 2019 constitute a relatively minor proportion 
of the more than 33,000 fatal crashes occurring on all facilities, they represent a 13% increase 
from the 672 fatal work zone crashes reported in 2018. Moreover, these adverse safety impacts 
are magnified on freeways; Interstate highways accounted for only 13% of all fatal crashes but 
more than 38% of all fatal work zone crashes in 2019 (NHTSA, 2019).  

To counteract these trends, researchers and practitioners have spent several decades studying 
the various factors that influence freeway work zone capacity in support of agency work zone 
scheduling and traffic control practices. A comprehensive literature search conducted in a 2013 
study summarized these efforts, underscoring that a myriad of geometric, traffic stream, 
environmental, and work zone-specific characteristics have been found to influence work zone 
capacity (Weng and Meng, 2013). More recently, for example, a recent study focused on the 
impact of work activity types on the traffic conditions for freeway work zone based on the data 
from 10 reconstruction sites in Missouri (Bharadwaj et al., 2018). The researchers found that 
pavement-related activities have higher variation (1120 to 1728 vphpl) in capacity values 
compared to bridge-related activities (1488 to 1656 vphpl) for a 3-2 lane closure. The reason 
given for the discrepancy was that pavement-related work occurs frequently and covers a wide 
range of activities (pavement operation, pavement repair, and pavement resurfacing) than 
bridge-related works (bridge rehabilitation).  An approach that combined geometric data 
generated by LiDAR with connected vehicle speed data at freeway work zone was used in 
another recent study to examine the influence of reconstruction area geometric features on 
traffic operations at two sites (Mekker et al., 2018).  It was found that when lane width was 
reduced to 10-10.5 feet within a short segment and the merging taper was approximately 200 
feet shorter than the standard, the work zone capacity decreased substantially and sooner led 
to congestion.      

A more recent synthesis of work zone capacity models presents the factors considered as inputs 
to those models (Masshadi et al., 2021). That meta-analysis found that heavy vehicle 
percentage, number of open and closed lanes, and work zone intensity are the most commonly 
considered parameters among 40 selected studies. The next most frequently applied inputs to 
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capacity models were lane closure side and work zone length, found in almost half of the 
models reviewed. 

Though the Highway Capacity Manual, 6th Edition includes a methodology for estimating 
freeway work zone capacity based on data from 90 archival literature sources and 12 field-
collected datasets, the ability of this deterministic model to capture the full range of 
characteristics unique to specific sites across the southeastern United States is limited (TRB, 
2016; Yeom et al., 2016). Furthermore, large-scale field data collection efforts are time and 
resource intensive. As a result, microsimulation has recently emerged as a valuable tool for 
assessing freeway work zone operations in a more comprehensive manner.   

 

Recent applications of microsimulation to freeway work zones have varied in scope and 
purpose, from the development of analytical models for estimating capacity (Heaslip et al., 
2009) to site-specific calibration and validation recommendations (Edara and Chatterjee, 2010; 
Kan et al., 2014; Yeom et al., 2016). Others have focused on guiding agency decision-making 
practices by assessing merge control strategies (Ramadan and Sisiopiku, 2016; Ren et al., 2021) 
or producing stochastic capacity estimates for use in risk tolerance-based work zone scheduling 
(Jehn and Turochy, 2020). Nonetheless, driving behavior at freeway work zones is still not fully 
understood. Microsimulation models developed as part of prior studies have typically lacked 
the field data necessary for informing the selection of input parameters capable of replicating 
the complexity of real-world traffic operations.  

2.5 Summary 
Review of methods for the use of AI in extracting traffic and driver behavior information:  

- AI-based vehicle detection and classification is promising among the different techniques; 

Yolo is the most suitable algorithm for vehicle detection and classification. 

- A virtual speed loop and a reference line are commonly used methods to compute speed 

and count in absence of robust tracking, and camera calibration and will be adopted in the 

AI-based traffic and driver behavior extraction system. 

Review of error causing factors in traffic and driver behavior information extraction:  

- Several factors, including sensors, traffic, environment, and the AI-system algorithm 

factors impact the accuracy of the AI and image-based vehicle count, classification, and 

speed computation.  

- There is a lack of detailed (vehicle level, time interval) and comprehensive evaluation 

(different stages of data extraction) studies to identify the various factors (such as 

algorithm used, frame rate, traffic speed, traffic volume, lightning conditions, viewing 

location) that can have an impact on the accuracy of vehicle detection, classification, 

tracking, count, and speed computation, especially in work zones. The quantitative 

analysis of the impact of different factors (such as the impact of traffic speed on count 

accuracy) on the results is lacking.  
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Review of microscopic traffic simulation applications in freeway work zones showed that prior 
studies have lacked the field data necessary for informing the selection of input parameters 
capable of replicating the complexity of real-world traffic operations. 
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 TRAFFIC AND DRIVER BEHAVIOR EXTRACTION 
SYSTEM USING 2D IMAGES AND AI (Yolo3)  
An AI-based traffic and driver behavior information extraction system is developed to study 
real-world traffic and driver behavior information. This chapter presents the development of a 
traffic and driver behavior information extraction system that uses 2D images and AI. The 
extracted information focuses on vehicle classification, vehicle count, and vehicle speed. This 
chapter is organized into the following three parts: 

Part 1: Development of AI system for Traffic and Driver Behavior Information Extraction  
Part 2: Vehicle Detection and Classification Using 2D Images and AI (Yolo3)  
Part 3: Vehicle Count and Speed Computation Methodology Using the Outcomes of AI-
based Vehicle Detections and Classification 

3.1 Development of an AI system for Traffic and Driver Behavior 
Information Extraction  
In this section, the outline of the data extraction procedure is presented. We designed an AI-
based system to extract vehicle type, vehicle speed, lane change counts and location, and the 
traffic volume and flow using widely available camera footages. We combined the different 
steps involved in driver behavior and traffic information extraction into six operating modules 
as follows:  

1. Pre-processing module that involves preparation of video data for downstream 
processing;  

2. Camera calibration module that involves extraction of camera parameters for 
converting the image pixel coordinates to real-world coordinates; 

3. Vehicle detection, classification, and re-identification module that involves detection 
and classification of vehicles by type (trucks, cars, etc.) and extraction of vehicle 
trajectories from the image sequences; 

4. Data extraction module that involves computation of vehicle speed, count, and lane 
change based on the data extraction inputs, camera parameters, and trajectories; 

5. Data aggregation module that involves post-processing data and infers useful 
information, such as time series, statistical distribution, etc., from raw 
measurements;  

6. Data storage module that corresponds to the memory system where the collected 
data is stored.  

Figure 3-1 illustrates the architecture of the AI-based system and the inputs that are associated 
with each module. In the next section, we discuss the three system inputs and details of the six 
modules, including the purposes, subcomponents, inputs, and outputs.  
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FIGURE 3-1: ARCHITECTURE OF AI-BASED DRIVER BEHAVIOR AND TRAFFIC INFORMATION EXTRACTION SYSTEM 

System inputs 
System inputs can be divided into 2 different types: data inputs and user inputs. Data 
input is the traffic video the user wishes to extract and analyze. User inputs include 
labeling required by the modules of the system, such as the data extraction module and 
the camera calibration module. Some of the examples of user inputs include lane 
marking labeling to perform lane-based data aggregation, zone labeling to perform 
zones-based data aggregation, virtual speed loop labeling to compute speed and count 
vehicles at a specific location on the road, and camera calibration reference points. 
These user inputs are discussed below.  

Lane Marking Labelling 
To aggregate traffic and driver behavior information in each lane, the system requires 
information about where the lanes are located. Therefore, the lane markings need to be 
labelled on the image to demarcate the lanes. The lane markings may be labelled either 
manually or automatically. Figure 3-2 shows an example of lane marking labelling on a 
real image.  
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FIGURE 3-2: EXAMPLE OF LANE MARKING LABELLING ON A REAL IMAGE 

Zone Labelling 
To aggregate traffic and driver behavior information in each zone upstream of the 
camera, the system requires information about where the zones are located. Therefore, 
the zones need to be labelled on the image to demarcate the lanes. The following 
example illustrates the zone labelling in a work zone area. To aggregate the lane change 
counts in each zone within a work zone area, the upstream roadway is demarcated into 
four zones, as shown in Figure 3-3. Figure 3-4 shows an example of zone labeling in a 
real image.  

• Zone 1: Covers the transition area 

• Zone 2: 500 ft. upstream from the beginning of transition area 

• Zone 3: 500 ft. to 1000 ft. upstream from the beginning of transition area 

• Zone 4: 1000 ft. and beyond upstream from the beginning of transition area 

 

FIGURE 3-3: ZONE DEMARCATION IN A WORK ZONE 

 

FIGURE 3-4: EXAMPLE OF ZONE LABELLING ON A REAL IMAGE 

Virtual Speed Loop Labelling 
To compute speed and count vehicles at a specific location on the road using the 
system, it is required that users indicate the location of the vehicle whose speed needs 
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to be computed, and the vehicle count needs to be recorded. Like a loop detector used 
in the vehicle speed computation and counting the vehicles on the actual roadway, this 
system relies on a virtual loop detector to do the same. Therefore, the user needs to 
label the entry and exit points of the virtual speed loop on the image. An example of 
virtual speed loop labeling is shown in Figure 3-5. Here, the virtual speed loop entry and 
exit are marked at 40 feet from each other, and this distance is based on the standard 
lane marking design.  

 

FIGURE 3-5: EXAMPLE OF VIRTUAL SPEED LOOP LABELING ON REAL IMAGE 

Camera calibration reference points 
To obtain the camera intrinsic and extrinsic parameters to be able to back project 2D 
image points to the 3D real-world points and access the real-world physical distances 
from the image, a few calibration reference points (pairs of 2D image coordinates and 
real-world 3D coordinates) are required. These reference points help obtain the 
camera’s intrinsic and extrinsic parameters directly from the images. These reference 
point inputs can be avoided if the camera’s intrinsic and extrinsic parameters are 
already available. 

Finally, it is noted that the system is completely oblivious to the way these inputs are 
collected. Hence, some inputs, such as lane marking labels or camera calibration 
reference points, might be retrieved automatically via algorithms, while some others, 
like work zone labels, may require a user’s manual intervention. In the next few 
sections, the six system modules are presented. 

Module 1. Pre-processing module 
Pre-processing is required to down sample the number of images from the video 
camera and prepare the down-sampled images to run AI-based vehicle detection, 
classification, and re-identification algorithms. The input for this module is the raw video 
feed from the camera. This module involves two steps: image extraction and image 
resizing. 
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Image extraction 
Most modern traffic video uses a 30-frame-per-second frame rate. Given the 
computation time required to run tracking, an AI-based vehicle detection algorithm, and 
the data extraction modules, processing 30 image frames will take an enormous amount 
of time. Therefore, we need to down sample the number of images and extract them. 
However, the down sampling frame rate must be chosen so that the traffic and driver 
behavior information can be efficiently extracted by the system without compromising 
the quality of the data. For example, the down sampling frame rate must be selected so 
that the tracking algorithm can precisely re-identify the vehicles in each subsequent 
frame. If the down- sampled frame rate is low (e.g., 5 fps), the vehicle would have 
moved a significant distance so that the tracking algorithm would fail to re-identify the 
vehicle in the subsequent frame, thereby losing that vehicle’s position data and, 
subsequently, its speed data. Therefore, the final down sampling frame rate must be 
chosen depending on the vehicle detection and tracking algorithms chosen, acceptable 
processing time, and the availability of computation resources (GPU, CPU).  

Image resizing 
In this step, the extracted images are resized to a smaller image size (e.g., 1080x1080 
pixels to 700x700 pixels) to optimize the vehicle detection and classification algorithm’s 
computation time.  

The down sampled and resized images are fed as inputs into the vehicle detection, 
classification, and re-identification module. One image, typically the first image, is fed as 
input to the camera calibration module.  

Module 2. Camera calibration 
The purpose of this module is to calibrate the camera that captures the input video; that 
is, we need to compute camera intrinsic and extrinsic parameters to be able to back 
project 2D points (point coordinates in the image plane) to the 3D world points 
(latitude, longitude) and access the physical measurements from the image. Intrinsic 
parameters correspond to parameters of the camera; extrinsic parameters are directly 
linked to camera orientation and location in the 3D world. 

Calibrations of cameras usually use algorithms allowing the retrieval of the camera 
Matrix M, as defined in Equation 1 and 2, from the 2D coordinates and 3D coordinates 
of 6 known camera calibration points (Tsai, 1987). However, some methods (Criminisi, 
Reid, & Zisserman 2000; Sinha, Steedly, Szeliski et al., 2008) allow the use of geometrical 
properties of vanishing points along with several constraints on camera intrinsic 
parameters to retrieve several camera parameters. It is recommended to combine these 
2 types of methods using an optimization program to relax constraints on the intrinsic 
parameters and obtain an accurate camera calibration algorithm like in Tang et al. 
(2018). 
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Equation 1. Camera calibration equation with (𝑥,) point coordinates in the image plane, 
(𝑋𝑌𝑍) point coordinates in the 3D world and M as defined in Equation 2. 

 

Equation 2. Calibration parameters: intrinsic and extrinsic parameters. 𝑅 and 𝑇 matrices 
correspond to the camera extrinsic parameters. 

Therefore, our camera calibration module is primarily made of two main components, 
as shown in Figure 3-6: 

1. A vanishing point detection module. This module will be used to retrieve 
vanishing points in the image. Once again, the system will be oblivious to the 
way these points are detected. Indeed, this task can typically be automated 
(Criminisi, 2002; Kong, 2013) or semi-automated (Tang, 2018). 

2. An optimization problem solved using an algorithm like EDA (Larranaga et al., 
2002) 

The module is fed 2 types of inputs: 

1. one of the video images. 
2. a few calibration reference points (pairs of 3D world points and 2D image 

coordinates) were used to solve the optimization problem. 
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FIGURE 3-6: CAMERA CALIBRATION COMPONENT DESIGN 

Our investigation revealed that the vanishing-points-based methods, although 
theoretically possible, can be challenging when obtaining reliable results in certain 
cases. As the method requires two vanishing points using parallel lines from the scene 
and even though the pavement markings provide a very good reference to find parallel 
lines that are parallel to the travel lanes, it can be difficult to find accurate parallel lines 
that are perpendicular to the travel lanes in certain scenes. It is recommended to refine 
the current method or use more robust methods for vanishing point detection in the 
camera calibration module.  

However, when reliable camera calibration can not be obtained, the virtual speed loop 
labeling can still be used as a fallback method for extracting traffic speed. Since not all 
videos used in this project were able to obtain reliable camera calibration results, to 
minimize the impact of unreliable camera calibration on some videos, the traffic speed 
results presented in this report were not obtained through camera calibration but 
virtual speed loops with a bounding box- based method. 

Module 3. Vehicle detection, classification, and re-identification module 
The purpose of this module is to detect, classify, and extract 2D trajectories of the 
vehicle crossing the camera’s field of view. These trajectories are needed to extract any 
traffic information or driver behavior from the video. The idea is to be able to detect 
and classify vehicles entering the camera’s field of view using a deep learning-based 
detection algorithm like Yolo (Redmon, 2016) or Faster RCNN (Ren, 2015), which have 
proven to achieve high performances in detection tasks (Everingham, 2015). The vehicle 
trajectory is then extracted using a tracking algorithm like a Kalman Filter or a particle 
filter. 

Our vehicle detection, classification, and re-identification module is composed of two 
algorithms: 1. An AI-based vehicle detection and classification algorithm allowing us to 
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detect vehicles appearing in the image, and 2. a tracking algorithm allowing re-
identification of vehicles along several consecutive video images. Figure 3-7 shows the 
design of this module along with its relationship to the pre-processing module. The 
input for this module is the down-sampled and resized images (about 18,000 images) 
from the video data (e.g., 30-minute video) that are sequentially indexed with an image 
number (1 to 18,000).  

 

FIGURE 3-7: VEHICLE DETECTION, CLASSIFICATION AND RE-IDENTIFICATION MODULE ALONG WITH THE 

PRE-PROCESSING MODULE 

These images are processed by the detection algorithm, which will output bounding box 
detections of the vehicles in every image. The tracking algorithm is then fed with these 
detections and the images. For each image, the tracking algorithm will track previously 
detected vehicles and match these vehicles with the bounding boxes provided by the 
detection model for the image. Unmatched tracked vehicles are considered "lost" and 
deleted when they are not matched with any detection for multiple consecutive images. 
This approach is very similar to SORT (Bewley, 2016). Ultimately, this module outputs 
four items: 

1. vehicle bounding box coordinates: the locations and dimensions of boxes 
containing the vehicles in each image;  

2. vehicle bounding boxes classification: every detected bounding box is 
categorized (truck or car) by the vehicle within it;  

3. vehicle identifier: every vehicle detected in the video is given a unique identifier; 
this identifier is used to re-identify the vehicle along with the images it appears 
in. 

4. vehicle trajectory: the location of every uniquely identified vehicle is appended 
together to generate the vehicle trajectory. 
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Module 4. Data extraction module 
The purpose of this module is to compute traffic information, such as lane-based traffic 
volume, driver behavior measurements, vehicle speeds, zone-based lane change 
locations, and counts. The inputs for this module come from the trajectories extracted 
from the vehicle detection, classification, and re-identification module; camera 
parameters are obtained from the camera calibration module, and the user inputs, such 
as the virtual speed loop labels, lane marking labels, and the zone labels, are input. This 
module is composed of 3 sub-modules: 

1. Lane-based vehicle count is a sub-module allowing extraction of the number of 
vehicles appearing in the camera’s field of view for each lane. 

2. Vehicle speed computation is a sub-module allowing extraction of speed 
measurements for every detected vehicle. 

3. Zone-based lane change counting is a sub-module allowing detection and 
counting of the lane changes with their corresponding zone (as defined in the 
earlier “system inputs” section). 

Module 5. Data aggregation module 
The purpose of this module is to aggregate data collected from the data extraction 
module for representing the data in time series or computing traffic statistics so it can 
be used to study driver behavior and to plan traffic management strategies. For 
example, a time series for traffic flow at 5-minute intervals can be generated by 
aggregating lane-based vehicle counts into 5-minute bins. Another example is to 
aggregate the lane-based vehicle speeds into 5-minute bins and analyze the speed 
distribution statistics, including the mean, standard distribution, etc. The users can 
decide the granularity of the aggregated data depending on their needs (such as 5-
minute aggregation for advanced warnings of traffic slowdown, hourly aggregation for 
traffic control planning, etc.).  

The following sections will discuss specific methods to be used in Modules 3 and 4. 
Section 3.2 discusses the Vehicle Detection and Classification Using 2D Images and AI, 
and Section 3.3 describes the Vehicle Count and Speed Computation methodology using 
the outcomes of AI-based vehicle detections and classification. 

3.2 Vehicle Detection and Classification Using 2D Images and AI (Yolo3) 
This section presents the development of automatic vehicle detection and classification using a 
single camera. In this project, YoloV3 deep neural network (Joseph Redmon, 2018) with weights 
pre-trained on a COCO dataset was used. YOLOv3 was chosen because it processes frames in a 
reasonable amount of time and has very good performance in terms of mean average accuracy 
and precision. 

As described in Chapter 2, YoloV3 is the third iteration of YOLO (You Only Look Once) (Redmon, 
2016), an object detection model. This is a one-stage detection model, meaning all the 
detection and classification outputs, including the bounding box locations and dimensions on 



Quantitatively Evaluate Work Zone Driver Behavior using 2D Imaging,  
3D LiDAR, & Artificial Intelligence in Support of Congestion Mitigation 

 Model Calibration & Validation (Project G2) 
  

  
44 

the image, classification of the bounding box, and the classification confidence score, are 
computed at the same time. The output format from YOLOv3 is shown as the following: 

<image-id>, <x-left>, <y-up>, <x-right>, <y-down>, <confidence>, <label> 

Where: 

• image-id corresponds to the image number 

• x-left is the smallest horizontal coordinate of the bounding box  

• x-right is the greatest horizontal coordinate of the bounding box  

• y-up is the highest vertical coordinate of the bounding box 

• y-down is the lowest vertical coordinate of the bounding box 

• confidence corresponds to the confidence of the model that the detection is a true 

positive 

• label corresponds to the type of vehicle (car or truck) 

3.3 Vehicle Count and Speed Computation Methodology Using the 
Outcomes of AI-based Vehicle Detection and Classification  
This section details the engineering approach of using the AI-based vehicle detection and 
classification results for determining traffic and driver behavior information. The extracted 
information includes traffic count, traffic speed, time headway between vehicles and lane 
change behavior. The proposed AI-system uses separate components for extracting the 
information. The following subsections detail the processing steps involved in each data 
extraction component. 

3.3.1 Data Extraction Component: Count  

 
FIGURE 3-8: TRAFFIC COUNT DATA EXTRACTION PROCESSING FLOWCHART 



Quantitatively Evaluate Work Zone Driver Behavior using 2D Imaging,  
3D LiDAR, & Artificial Intelligence in Support of Congestion Mitigation 

 Model Calibration & Validation (Project G2) 
  

  
45 

The objective of this component is to determine lane-wise traffic count using vehicle 
detection bounding boxes. The core of the proposed method is to use a reference 
location, and whenever a vehicle (bounding box) moves past the reference location, we 
will include that vehicle in the count.  

1. Establish short-term vehicle tracking from bounding boxes of detected vehicles. 

Vehicle tracking using bounding boxes is performed by comparing the bounding 
boxes in two consecutive frames and linking the bounding boxes with the largest 
IOU as the bounding boxes from the same vehicle. 

 

 

FIGURE 3-9: SHORT-TERM VEHICLE TRACKING FOR TRAFFIC COUNTING 

• Inputs: Bounding boxes from two consecutive video frames. 

• Outputs: Information about which two bounding boxes in the different frames 
belong to the same vehicle or are not a good candidate for a tracked bounding 
box (this could be due to detection being lost or a false detection in one frame). 
 

2. Identify the frame in which a vehicle’s bounding box FIRST crosses the reference 
line. 

The purpose of this step is to identify the frame in which the vehicle’s bounding 
box first crosses the reference line; it may take a vehicle’s bounding box multiple 
frames to cross the reference line (used for counting). If the count goes up by 
one every time a bounding box touches the reference line, the final count results 
will be massively over-estimated. Therefore, it is important not to count 
bounding boxes from the same vehicle twice. 
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FIGURE 3-10: CONDITION FOR TRAFFIC COUNTING USING BOUNDING BOXES AND REFERENCE LINES 

• Inputs: 1) bounding boxes from two consecutive frames, 2) information about which 

two bounding boxes belong to the same vehicle, and 3) position of each reference 

line in different travel lane. 

• Outputs: The frame ID that a vehicle’s bounding box first touches the reference line. 

 

3. Log counted vehicle base on its class and lane. 

To provide detailed lane-wise traffic count information, this data extraction 
component needs to log counted vehicles to produce a total traffic count, lane-
wise traffic count, and vehicle-class-based traffic count. The frame ID of each 
vehicle passing the reference line can provide information regarding the time 
between the leading and following cars. 

• Inputs: 1) detection results, 2) frame of the bounding box that first touches the 
referent line, and 3) which reference line the bounding box passed. 

• Outputs: A csv file recording all input information. 



Quantitatively Evaluate Work Zone Driver Behavior using 2D Imaging,  
3D LiDAR, & Artificial Intelligence in Support of Congestion Mitigation 

 Model Calibration & Validation (Project G2) 
  

  
47 

3.3.2 Data Extraction Component: Speed  

 
FIGURE 3-11: TRAFFIC SPEED DATA EXTRACTION PROCESSING FLOWCHART 

The objective of this component is to determine vehicle traffic speed using the vehicle 
detection bounding boxes. The core of the proposed method is to use two reference 
locations with known distances to form a virtual speed loop; based on the time it takes 
for a vehicle to travel through the speed loop (extrapolated from frame ID), the speed of 
the vehicle can be computed. The following steps describe the method: 

1. Establish vehicle tracking from bounding boxes using OpenCV tracker 

The step is performed using OpenCV Tracker with the “CSRT” algorithm. 
Establishing tracking enables us to identify the frames when the vehicle of 
interest enters and exits the virtual speed loop and to estimate its traveling 
speed. Without tracking, it would be impossible to know if the bounding box 
interacting with the virtual speed loop belongs to the same vehicle or not.  

 

FIGURE 3-12: LONG-TERM VEHICLE TRACKING USING OPENCV TRACKER 

• Inputs: Detection file with bounding box information in each frame 

• Outputs: Established tracking information with a unique ID is assigned to each 
successfully tracked vehicle. 
 



Quantitatively Evaluate Work Zone Driver Behavior using 2D Imaging,  
3D LiDAR, & Artificial Intelligence in Support of Congestion Mitigation 

 Model Calibration & Validation (Project G2) 
  

  
48 

2. Estimate a consistent reference point from the vehicle to enforce spatial-temporal 
consistency 

Using a consistent reference point on the vehicle when checking whether the 
vehicle has passed each reference speed line ensures the consistency and 
reliability of the computed traffic speed. One way to keep this consistency is to 
always use the center of the front grille as the reference point. The reference 
point estimation assumes the relative position of the reference point stays 
relatively the same in different vehicles at different distances.  

 

FIGURE 3-13: VEHICLE REFERENCE POINT ESTIMATION USING A BOUNDING BOX 
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• Inputs: 1) estimation parameters, which indicate the relative position of the 
reference point within the bounding box; 2) bounding boxes from the detection 
file.  

• Outputs: Location of reference point within each bounding box. 
 

3. Find frames of interest (FOI) when the vehicle first enters and exits the virtual speed 
loop. 

Identifying the frames that a vehicle first enters and exits the virtual speed loop 
can help us extrapolate the time it takes for a vehicle to travel through the speed 
loop. The time information is one of the key inputs for computing vehicle speed. 

 

FIGURE 3-14: SAMPLE CALCULATION OF A VEHICLE’S TIME SPENT IN THE VIRTUAL LOOP 

• Inputs: 1) bounding boxes with tracking labels (bounding boxes from the same 
vehicle would have same tracking labels), 2) the reference point position in each 
frame, and 3) the location of virtual speed lines. 

• Outputs: 1) for each vehicle, the frame IDs of when it first enters and exits the 
virtual speed loop. 2) the time it took for the vehicle to travel through the speed 
loop. 

4. Compute individual vehicle speed using FOI 

Once the time for a vehicle to cross the virtual loop is calculated, the speed of 
the vehicle can be computed using the distances 𝑑 traveled by the vehicle and 
the time it takes for the reference point to intersect the entry and exit labels, Δ𝑡. 

𝑠 =  
𝑑 

 ∆𝑡
 

• Inputs: 1) tracking ID of the vehicle, 2) the time it takes the vehicle to pass 
through the speed loop; and 3) the length of the speed loop. 

• Outputs: individual vehicle speed computed from 𝑉 =
𝑑𝑠

𝑑𝑡
. This is shown as a csv 

file that logs tracking ID, FOI, and vehicle speed. 

 

  



Quantitatively Evaluate Work Zone Driver Behavior using 2D Imaging,  
3D LiDAR, & Artificial Intelligence in Support of Congestion Mitigation 

 Model Calibration & Validation (Project G2) 
  

  
50 

3.3.3 Data extraction component: Time headway 
Desired time headway, as a required input in traffic simulation model, is an important 
information of driver behavior. The objective of this component is to derive traffic 
headway information from traffic count and the timestamp when each count occurs. 

As described in traffic count data extraction component section, for each counted 
vehicle, the AI-system records the frame id when the vehicle crosses the reference line. 
Using this information, the time difference between two consecutive counts can be 
inferred base on the difference in frame id. Since the vehicles are being counted when 
their bounding boxes initially cross the reference line, the time difference between two 
counts can be effectively used as the time headway between a leading and following 
vehicle. Figure 3-15 illustrates how time headways are computed from the vehicle count 
sequence.  

 

FIGURE 3-15: COMPUTE TIME HEADWAY FROM VEHICLE COUNT SEQUENCE 

Certain traffic simulation software, such as Vissim, uses time gap parameters to describe 
driver following behavior. The difference between time headway and time gap is that 
time headway is based on the time difference between two vehicle’s front bumpers 
crossing the same reference point, while time gap is the time difference between the 
leading vehicle’s rear bumper and the following vehicle’s front bumper. Although the 
current version of the AI-system does not record the time a vehicle’s rear bumper 
crosses the reference line, the AI-system does provide enough information for the time 
gap between vehicles to be estimated. As shown in Figure 3-16, the time gap can be 
calculated by subtracting the time for the leading vehicle to travel its car length from 
the time headway. As previous data extraction component records the speed and 
vehicle type of each counted vehicle, self-time, and by extension time gap, can be 
estimated by assuming a typical vehicle length for each vehicle type. 
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FIGURE 3-16: ESTIMATING TIME GAP FROM TIME HEADWAY 

3.3.4 Data extraction component: Lane change 
Extracting driver merge decision data (consisting of vehicle type and merging zone) 
involves the following three major steps:  

1) Detecting individual vehicles and their positions in the image,  
2) Classifying the detected vehicles (cars or trucks) in the image, and  
3) Determining the merge location (the change lane decision) for each vehicle from the 

image sequence (frames) and classifying its corresponding zone (Zones1 to 4) and 
vehicle type.  

Figure 3-17 illustrates the data extraction procedure. Each image is given a frame 
number to keep track of the sequence of the images, as shown in Figure 3-17(a). Figure 
3-17(a) also illustrates Steps 1 and 2 for vehicle detection and vehicle classification in 
each image. The two vehicle-classification categories are cars and trucks; the “cars” 
class (represented by orange boxes in Figure 3-17(a) includes passenger vehicles 
(sedans, SUVs, and small cars), and the “trucks” class (represented by green boxes in 
Figure 3-17(a)) includes pickup trucks, buses, and trailers. The position of each detected 
vehicle and the class of each vehicle in the image is recorded. Figure 3-17(b) illustrates 
how to determine the merge location. When the position of a detected vehicle in the 
image sequence crosses the pavement marking line separating the closed lane from the 
open lane, we determine the merge location and record its corresponding zone number.  

Table 3-1 shows an example of how zone-based vehicle merge count is recorded. As 
graphically illustrated in Figure 3-17 (b), at frame #57, the car’s position changes from 
the closed lane to the open lane in Zone 2. Hence, in Table 3-1, a new record (57) is 
added under Frame # and the merge count in the corresponding zone (Zone 2) and 
vehicle type (Cars) is incremented by 1. Similarly, the first truck’s merge zone was 
recorded at Frame #47 in Zone 3, and the second truck merge location is recorded at 
Frame #97 in Zone 4. When the next car merges lanes in Zone 2, the count will be 
incremented to 2 at the corresponding frame number. The total number of vehicles that 
merged lanes at the end of 97 frames is 3. From Table 3-1, we can infer when (frame #) 
and where (zone #) each class of vehicle changes lanes for merging.  

The lane-change location can be identified in this study. With the location reference, we 
can compute the location based on the distance to the work zone taper or different 
zones of the work zone, which is the one we used in our study. In addition, the speed 
during the lane change can also be computed in the future.  
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FIGURE 3-17 ILLUSTRATION OF DATA EXTRACTION STEPS 

 
TABLE 3-1 ZONE-BASED VEHICLE MERGE COUNT INCREMENT TABLE ALONG WITH VEHICLE TYPE 

  Zone 1 Zone 2 Zone 3 Zone 4 

Frame # Cars  Trucks Cars Trucks  Cars Trucks  Cars Trucks 

47 0 0 0 0 0 1 0 0 

57 0 0 1 0 0 1 0 0 

97 0 0 1 0 0 1 0 1 

 

We demonstrate the implementation of the system through a case study on work zone 
traffic videos collected from Georgia Interstate-95 (I-95), in the following chapter. 
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 CASE STUDY OF THE AI-BASED SYSTEM AND 
DRIVER BEHAVIOR ANALYSIS 
In this chapter, a case study presents the use of the proposed AI-system to extract traffic and 
driver behavior information from two 30-minute traffic footages using the proposed AI-system. 
In addition, this chapter also presents the benefits of analyzing the extracted information to 
obtain accurate and refined traffic and driver behavior information. The analyzed traffic and 
driver behavior information includes vehicle counts, vehicle types, driver behaviors, individual 
vehicle speeds, individual time headways/gaps, and lane change locations.  

The case study involves two 30-minute work zone videos collected in a work zone on I-95 near 
Savannah, Georgia; the videos were chosen by design to analyze the impact of traffic density 
and vehicle type on work zone driver merge behaviors. First, we show the implementation of 
the proposed AI-system and the results of traffic count and speed aggregated into 3-minute 
intervals. Second, we demonstrate the application of using the extracted data for driver 
behavior study at the work zone with a) high traffic density conditions and b) low traffic density 
conditions. 

4.1 Case study data description.  
In this case study, we use two 30-minute-long work zone videos that were taken on I-95 with a 
camera mounted on a tower, as shown in Figure 4-1: Camera mounting tower and work zone 
sites for collecting videos. The work zone is in a straight section of the interstate with a right-
lane closure. The videos were collected during clear weather conditions from 3:00 PM to 3:30 
PM (video A) and 2:30 PM to 3:00 PM (video B). The two videos were chosen because of the 
difference in their traffic conditions. Video A shows dynamic traffic conditions in which the 
traffic evolves from slow-moving, high-density conditions to nearly free-flowing, low-density 
conditions. Video B shows a more static traffic condition in which traffic is constantly slow-
moving, as shown in Figure 4-2. In Video A, the transition from congested traffic conditions to 
non-congested traffic occurred around the 9 to 10-minute mark.  

 

(a) camera mounting tower   (b) work zone sites 
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FIGURE 4-1: CAMERA MOUNTING TOWER AND WORK ZONE SITES FOR COLLECTING VIDEOS 

 

 

(a) low traffic density condition  (b) high traffic density condition 
FIGURE 4-2: VIDEOS A AND B WITH LOW AND HIGH TRAFFIC DENSITY CONDITION IN THE WORK ZONE 

4.2 Use of the AI-system 
The user interface of the AI-system provides an interactive way for the user to set up the AI-
system and visualize vehicle detection and reference lines on the original traffic video frames, 
as shown in the left part of Figure 4.3. Interactive functions of the interface are shown in the 
right part of Figure 4.3, including loading data, drawing of reference lines, defining reference 
distance, cycling through video frames, etc. Using this user interface, the user can complete the 
setup of the AI-system by drawing the boundaries of each lane and drawing two reference lines 
across the entire roadway with a known real-world distance. To control the real-world distance 
of the two reference lines, pavement striping is typically used as a visual aid, as the pavement 
striping has fixed 10-ft lengths and 30-ft gaps. 

 

 
FIGURE 4-3: USER INTERFACE AND REQUIRED INPUT FOR IMPLEMENTING AI-SYSTEM 
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By performing vehicle detection and classification using the Yolo3 deep-learning model, 
detection and classification results are obtained; a portion of the results are shown in Table 4-1. 
Each entry in the table represents one instance of detection; the information regarding that 
detection is also recorded. Information includes the frame index of the detection, bounding box 
location within that frame (x, y, width, height), the confidence level of the detection, and the 
classification of the detection.  

TABLE 4-1 SAMPLE VEHICLE DETECTION RESULTS USING YOLO3 

Frame 
Index 

X y width height confidence label 

4438 1021 846 210.6931 158.1098 0.999565 car 

4435 992 815 209.3338 155.1874 0.999516 car 

2078 986 856 213.1085 155.4163 0.999494 truck 

6267 944 831 196.1606 137.9711 0.99949 car 

4434 982 800 215.4278 160.2763 0.999476 car 

6266 923 811 199.7261 142.763 0.999459 car 

4436 997 827 211.4515 155.8624 0.999434 car 

12610 984 851 208.1568 149.3467 0.999421 truck 

4443 1059 882 226.681 180.8946 0.999411 truck 

4867 1198 823 212.9472 135.7052 0.9994 car 

1387 996 864 194.5786 143.9435 0.999399 car 

4442 1051 871 222.3091 182.1582 0.999386 car 

… … … … … … … 

 

The 30-minute videos each contain 17962 frames (downsampled from 30 frames per second to 
10 frames per second). Among these frames, the Yolo3 vehicle detection yielded more than 
443,000 detection instances with an average detection confidence of 0.657. The classification 
results show about 24.4% of detections are classified as “trucks,” and the rest are classified as 
“cars.” These vehicle detection results are then used by the data extraction components 
described in Chapter 3 to extract traffic and driver behavior information. 

4.4 Traffic and driver behavior analysis 
This section presents the benefits of obtaining the traffic and driver behavior information by 
conducting traffic and driver behavior analysis. The analysis uses information that can be 
extracted using widely available 2D cameras, the information extracted includes vehicle counts, 
vehicle types, driver behaviors, individual vehicle speeds, individual time headways/gaps, and 
lane change locations. Although the preliminary version of the proposed AI-System produces a 
promising outcome, there is still a discrepancy between the AI extracted data and the ground 
reference data (manually extracted data). To better demonstrate the use of the data extracted 
using widely available 2D camera images, we used the ground reference in the subsequent 
sections in this chapter to better present the traffic and driver behavior study that can be 
performed using the extracted data.  
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Traffic count results 
Table 4-2 and Figure 4-4 show the traffic count results obtained from the case study 
videos; the traffic count results are aggregated into five-minute intervals. The results 
generally show a higher proportion of vehicles traveling in the inner lane than in the 
outer lane, but the difference in traffic count number is reduced in high traffic density 
conditions.  

TABLE 4-2 LANE-WISE TRAFFIC COUNT AGGREGATED IN FIVE-MINUTE INTERVALS 

Time 
interval 

Video A Video B 

Inner Lane Outer Lane Both Lane Inner Lane Outer Lane Both Lane 

1-5 min 92 76 168 48 56 104 
6-10 min 93 64 157 70 51 121 

11-15 min 90 70 160 88 85 173 
16-20 min 83 59 142 67 69 136 
21-25 min 92 62 154 98 88 186 
26-30 min 96 66 162 101 103 204 

Total 546 397 943 472 452 924 

 
(a) Video A      (b) Video B 

FIGURE 4-4: VEHICLE COUNTS OVER TIME AGGREGATED INTO FIVE-MINUTE INTERVALS 

Traffic speed results 
The traffic speed information obtained from the case study videos is shown in Table 4-3. 
In this table, the speed is reported for each travel lane, and the statistical values, such as 
minimum, maximum, mean, median, and standard deviation, are used to describe the 
distribution of the traffic speed. This level of detail can be expected from the AI-system, 
as the system estimated speed at the individual vehicle level; thus, the system enables 
users to obtain speed information statistics that describe the distribution of traffic 
overall speed.  

TABLE 4-3 STATISTICS OF EXTRACTED SPEED DATA IN 5-MINUTE INTERVALS 

Video A  

Bins Inner Lane Speed (MPH) Outer Lane Speed (MPH) 

Minutes Min Mean Max Median SD Min Mean Max Median SD 
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0-5 7.5 21.9 35.4 22.5 6.7 7.5 19.8 30.9 19.1 6.1 

5-10 19.1 26.1 41.3 24.8 5.0 15.4 20.2 41.3 19.1 3.9 

10-15 30.9 47.7 82.5 49.5 10.7 27.5 45.5 82.5 41.3 11.0 

15-20 41.3 56.3 82.5 61.9 7.8 41.3 53.3 61.9 49.5 7.2 

20-25 24.8 54.9 82.5 49.5 10.2 41.3 50.9 61.9 49.5 6.6 

25-30 41.3 56.2 82.5 61.9 8.8 41.3 53.5 82.5 49.5 7.6 

Video B 

Bins Inner Lane Speed (MPH) Outer Lane Speed (MPH) 

Minutes Min Mean Max Median SD Min Mean Max Median SD 

0-5 1.1 12.3 22.5 12.4 4.4 2.8 11.1 17.7 11.3 3.5 

5-10 2.6 15.4 22.5 16.5 4.3 8.8 13.2 19.1 13.8 2.5 

10-15 7.5 20.9 35.4 20.6 5.2 6.7 16.5 27.5 16.5 4.4 

15-20 3.8 14.3 22.5 14.6 3.6 2.4 13.2 22.5 13.0 4.1 

20-25 14.6 23.4 35.4 22.5 4.8 5.6 21.9 30.9 22.5 6.4 

25-30 15.4 27.6 35.4 27.5 4.8 15.4 27.8 35.4 27.5 4.3 

 

Figure 4-5 shows the average traffic speed in each lane. The results show a similar speed 
trend is being followed by traffic in both lanes, but a higher average speed can be found 
in the inner lane than in the outer lane; this result is reflective of typical traffic 
conditions. The traffic speed also captured the lower traffic speed in high-density 
conditions ( in Video B and in the beginning of Video A) and the transition from a 
congested to a non-congested condition in Video A.  

 
(a) Video A      (b) Video B 

FIGURE 4-5 TRAFFIC SPEED ESTIMATION IN INNER AND OUTER LANES 
 

Traffic headway results 
The preliminary version of the AI-system enables the extraction of time headway 
information at the individual vehicle level. Since the information about the drivers’ 
following behaviors can be used in traffic simulation software like Vissim, the time gap 
information (as shown in Figure 3-16 of Chapter 3, time gap, Tg = Th - Ts) is estimated 
from the extracted time headway. Table 4-4 shows the time gap results. One advantage 
of having time headway information at the vehicle-level is the ability to filter the dataset 
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to suit the needs of the analysis. As an example, Table 4-4 also shows the time gap 
results where time gaps larger than 4-sec were removed to mitigate the impact of 
results from the random arrival of vehicles; this improves the reliability of the inferred 
driver following behavior using the filtered time gap results.  
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TABLE 4-4 STATISTICAL VALUES OF TIME-GAP FROM VIDEO A AND B 

Video A (inner lane)  

Bins Time Gap (sec) Time Gap under 4-sec (sec) 

Minutes Min Mean Max Median SD Min Mean Max Median SD 

0-5 0.550 2.297 8.525 1.850 1.484 0.550 1.959 3.975 1.825 0.891 

5-10 0.450 2.424 13.375 1.775 2.093 0.450 1.821 3.900 1.625 0.817 

10-15 0.400 2.621 14.650 1.800 2.477 0.400 1.534 3.900 1.350 0.816 

15-20 0.350 2.499 17.825 1.500 2.917 0.350 1.566 3.975 1.350 0.944 

20-25 0.200 2.618 30.675 1.450 3.781 0.200 1.549 3.800 1.300 0.913 

25-30 0.350 2.594 12.000 1.650 2.534 0.350 1.506 3.900 1.250 0.822 

Video A (outer lane)  

Bins Time Gap (sec) Time Gap under 4-sec (sec) 

Minutes Min Mean Max Median SD Min Mean Max Median SD 

0-5 0.550 2.760 10.750 2.100 2.027 0.550 2.015 3.950 1.900 0.931 

5-10 0.575 3.233 15.200 2.225 2.673 0.575 2.016 3.975 1.825 0.894 

10-15 0.400 2.976 8.600 2.050 2.014 0.400 1.857 4.000 1.613 0.940 

15-20 0.250 3.796 15.850 2.588 3.629 0.250 1.851 4.000 1.650 0.993 

20-25 0.600 3.230 14.000 1.850 3.260 0.600 1.672 3.500 1.550 0.814 

25-30 0.425 4.016 31.000 2.600 4.575 0.425 1.961 3.700 1.925 0.949 

Video B (inner lane) 

Bins Time Gap (sec) Time Gap under 4-sec (sec) 

Minutes Min Mean Max Median SD Min Mean Max Median SD 

0-5 0.675 3.481 15.300 2.300 3.253 0.675 2.070 3.625 2.000 0.765 

5-10 0.450 2.790 13.900 2.150 2.281 0.450 1.814 3.150 1.850 0.787 

10-15 0.500 2.268 6.825 1.850 1.329 0.500 1.871 3.600 1.750 0.752 

15-20 0.750 2.792 9.550 2.388 1.760 0.750 2.230 3.950 2.250 0.803 

20-25 0.450 2.061 5.600 1.875 1.167 0.450 1.859 3.725 1.750 0.896 

25-30 0.400 2.144 8.200 1.775 1.422 0.400 1.828 4.000 1.700 0.864 

Video B (outer lane) 

Bins Time Gap (sec) Time Gap under 4-sec (sec) 

Minutes Min Mean Max Median SD Min Mean Max Median SD 

0-5 1.000 2.966 9.650 2.650 1.640 1.000 2.380 4.000 2.425 0.838 

5-10 0.500 3.507 10.750 3.200 2.192 0.500 2.200 3.850 1.925 0.936 

10-15 0.400 2.320 12.225 2.075 1.701 0.400 1.957 3.800 1.875 0.822 

15-20 0.750 2.624 7.050 2.288 1.325 0.750 2.290 4.000 2.100 0.878 

20-25 0.350 2.229 8.050 1.950 1.358 0.350 1.852 3.800 1.750 0.760 

25-30 0.400 1.868 8.750 1.625 1.270 0.400 1.651 3.450 1.500 0.780 
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Based on the time-gap results obtained from the videos, we have observed that the 
drivers typically follow each other with a time-gap in the range between 1.5 sec to 2.5 
sec. In different traffic conditions, speed does not significantly change the following 
behavior of outer lane vehicles, while the inner lane drivers follow each other closer at 
higher speeds (1.5 sec compared to 1.9 sec). Also, the following behavior shows a 
slightly smaller variation (standard deviation) in high traffic density conditions. 

Work zone merge behavior analysis  
In this section, we analyze the impact of traffic density on the work zone driver merge 
behavior using the two highway work zone scenarios consisting of a) high traffic density 
conditions and b) low traffic density conditions. We grouped the lane change positions 
of each vehicle merging from the closed lane to the adjacent open lane into four zones, 
plotted the percentage of vehicles merging in each zone, and analyzed the merge 
location distribution to classify work zone driver merge behavior (by each vehicle type) 
as 1) late or early merges, and 2) dangerously late merges. We then compared the work 
zone driver merge behaviors for the two scenarios with high and low traffic density 
conditions to determine the impact of traffic density on the work zone driver merge 
behaviors.  

Zones for grouping driver merge locations 
To group the different drivers’ merge locations in a work zone and analyze drivers’ 
merge location distribution, we defined four zones. Accordingly, we divided the work 
zone transition area and the advance warning area into four zones, as illustrated in 
Figure 4-6. Zone 1 represents the transition area, which consists of traffic control 
barriers (such as cones or cylinders) placed on the travel lane arranged in a tapering 
manner, gradually decreasing lane width. Zone 2, Zone 3, and Zone 4 cover the advance 
warning areas; they are 0 ft. to 500 ft. (152 m), 500 ft. (152 m) to 1000 ft. (304 m), and 
1000 ft. (304 m) to 1500 ft (458 m), measured upstream from the beginning of the 
transition area (the work zone taper), respectively.  

 

FIGURE 4-6 FOUR ZONES DEFINED IN THIS STUDY TO GROUP THE MERGE LOCATIONS (ADOPTED FROM TSAI 

ET AL., 2011) [1 FEET = 0.305 M] 
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Data Processing 
The four zone boundaries, the two reference lines for the virtual speed loop, and the 
merge detection line (based on the pavement marking between the closed lane and 
adjacent open lane) were manually drawn on the images, as shown in Figure 4-7. In 
both scenarios, the merge locations, along with vehicle type, frame #, and zone, were 
recorded visually. 

 

FIGURE 4-7 MANUAL DRAWING OF MERGE ZONES, VIRTUAL SPEED LOOP REFERENCE LINES AND THE 

MERGE DETECTION LINE IN IMAGES COLLECTED FROM THE GA I-95 WORK ZONE. 

Using the traffic speed and the traffic flow extracted from the proposed AI-system, the 
traffic density was calculated. For example, traffic and merge data extracted from the 
scenario with low traffic density condition is summarized below: 

Traffic Flow    = 1034 vehicles/0.5 hours 

Traffic Speed     = 43.5 mph 

Traffic Density   = 29.5 vehicles/mile 

Number of merges   = 32 (17 cars, 15 trucks)  

Similarly, traffic and merge data extracted from the scenario with high traffic density 
condition is summarized below: 

Traffic Flow    = 1170 vehicles/0.5 hours 

Traffic Speed     = 20 mph 

Traffic Density   = 117 vehicles/mile 

Number of merges   = 85 (81 cars, 4 trucks) 
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Work zone driver merge behavior data analysis  
After the data is extracted and processed for the two scenarios, there are three steps in 
work zone driver merge behavior data analysis: 

Step 1: Determining the percentage of drivers merging in each zone by dividing the 
number of merges in each zone by the total number of merges. The percentages are 
computed separately for cars and trucks. 

Step 2: Plotting the percentage of merges in each zone as a histogram separately for 
each vehicle type. This histogram produces a statistical distribution of the drivers’ 
merging locations in different zones.  

Step 3: Analyzing the impact of traffic density on driver merge location based on work 
zone driver merge behavior classifications, including 1) late or early driver merge 
behaviors, and 2) dangerously late merge behaviors. The details of each behavior are 
discussed below.  

Analysis 1: Late or early driver merge behavior.  

Earlier driver merge behavior will result in a higher percentage of drivers perform merge 
maneuver in Zone 1 and Zone 2, while later driver merge behavior will result in a higher 
percentage of drivers perform merge maneuver in Zone 3 and Zone 4. Therefore, based 
on the distribution of merge locations among Zone 1 to Zone 4, the driver merge 
behavior can be evaluated across different traffic scenarios.  

Analysis 2: Dangerously late merge behavior.  

In addition, if the percentage of vehicles in Zone 1 are higher in one scenario than in 
others, it indicates that the dangerous late driver merge behavior in this scenario is 
higher in than in other scenarios. Dangerous late merge occurs when a vehicle merges 
inside the transition zone (Zone 1) and is likely to impact the safety and mobility in the 
work zone. Merging in Zone 1 is dangerous because the pavement width continuously 
reduces, and the driver is at risk of crashing into the traffic control cones or, even, at risk 
of crashing with adjacent lane vehicles or causing congestion. 

Work zone driver merge behavior results 
This section presents the analysis results of the work zone driver merge behavior for the 
two scenarios – low and high traffic density condition. The analysis was performed using 
the steps discussed in the data analysis section above. The analysis data for this case 
study is shown in Figure 4-8. It is observed that at low traffic density, the majority of car 
drivers tend to merge early (88% in Zone 3 and 4). However, in high traffic density, 
nearly half the car drivers merge late (53% in Zone 1 and 2). Comparing the two traffic 
conditions (low, and high traffic density) for dangerous late merges, it is clearly seen (in 
Figure 4-8) that car drivers merge later in high traffic density conditions than in low 
traffic density conditions (the percentage of dangerous late merges increases from 6% 
in low traffic density to 28% in high traffic density conditions for Zone 1). This late merge 
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behavior could be attributed to 1) drivers' tendency to merge early to avoid changing 
(reducing) speed, 2) drivers’ feeling safer to merge late at slow speeds than at high 
speeds,  ) drivers’ seeing the work zone earlier in low traffic density than in high traffic 
density, or 4) drivers being eager to get home at 5 pm and behaving aggressively 
(especially in the high traffic density scenario). 

 

FIGURE 4-8 COMPARISON OF THE PERCENTAGE OF CARS MERGING AT DIFFERENT ZONES AT LOW, AND 

HIGH-DENSITY TRAFFIC CONDITIONS 
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 ERROR ANALYSIS AND IDENTIFICATION OF 
FACTORS 
A preliminary version of the AI-system has been developed in this research, and improvements 
of this preliminary AI-system are required. To further improve the developed AI-system, it is 
important to identify the errors and analyze the detailed causal factors and reasons of the 
errors (error analysis) so improvements can be made. The error analysis is an essential but 
complicated procedure for establishing a refined, robust, and sustainable AI-system. This 
chapter presents an error analysis methodology 1) by comparing the results obtained from the 
AI system with manually collected ground reference data and 2) by identifying the factors and 
reasons that impact the accuracy of the extracted traffic and driver behavior information (e.g. 
vehicle count and vehicle speed) using the developed AI-system. These factors and reasons are 
grouped based on three categories of factors (a. sensor, b. traffic and environment, and c. 
algorithm) presented in Table 2-1. Finally, this chapter also recommends the possible methods, 
including statistical methods and multi-interval aggregation methods, etc., to remove bias and 
outliers for improving the accuracy and reliability of the extracted information (e.g., vehicle 
count and vehicle speed). 

5.1 Error Analysis Methodology 
This section presents the error analysis methodology. The purpose of the error analysis is to 
study the accuracy of real-world driver behavior extracted using the AI-system and to identify 
the factors impacting the accuracy and to quantitatively analyze the impact of the factors 
causing the errors. This section presents the design of error analysis and the data preparation 
of the ground reference traffic data.  

5.1.1 Design of Error Analysis 
The design of error analysis is to compare the performance of automatically extracted 
traffic information with ground reference data for a 30-minute long work zone traffic 
video a) to study the statistical distribution and signature of errors/differences, b) to 
identify the factors causing the errors, c) to qualitatively show the impact of different 
levels of error-causing factors, d) to recommend the statistical method, like median and 
standard deviation to eliminate the outliers/bias caused by error-causing factors, and e) 
to quantify/categorize the automatically extracted and refined traffic and driver 
behavior information. 

5.1.2 Ground Reference Data preparation (on I-95) 
Figure 5-1 shows the traffic annotation tool used to manually extract traffic count and 
speed information. Using this traffic annotation tool, the ground reference is obtained 
by manually triggering the tool to log the frame ID every time a vehicle crosses the 
reference lines. The reference lines were drawn using the pavement markings as 
references, which ensures an estimated distance of 40 ft (10-ft long striping with 30-ft 
gaps) between the two reference lines.  
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FIGURE 5-1: USER INTERFACE OF TRAFFIC ANNOTATOR WITH REFERENCE LINES 

Using the traffic annotation tool, ground reference data obtained includes the lane that 
a vehicle is traveling in, the frame IDs of a vehicle entering and exiting the virtual speed 
loop, and vehicle class categorized by length (passenger car, pickup truck, and semi-
truck). The traffic count is obtained based on the number of vehicles that enter the 
virtual speed loop and the time of occurrence of a count is obtained from the number of 
vehicles that enter the virtual speed loop. The time spent in the virtual speed loop is 
calculated based on the time difference between the frames in which the same vehicle 
enters the loop and exits the loop. Since the real-world length of the speed loop is 
known (about 40-ft), the estimated vehicle speed can be calculated.  
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TABLE 5-1 EXTRACTED LANE-WISE TRAFFIC DATA USING AI-SYSTEM AND GROUND REFERENCE TRAFFIC DATA 

 Inner Lane Outer Lane Both Lanes 

Time 
(minute) 

Estimated 
Speed 
(MPH) 

GT 
Speed 
(MPH) 

Estimated 
Count 

GT Count 
Estimated 

Speed 
(MPH) 

GT Speed 
(MPH) 

Estimated 
Count 

GT Count 
Estimated 

Speed 
(MPH) 

GT Speed 
(MPH) 

Estimated 
Count 

GT Count 

1 22.60 20.49 1 20 18.61 18.53 19 15 18.81 19.65 20 35 

2  - 11.27 0 12 12.34 11.09 12 12 12.34 11.18 12 24 

3 21.99 17.87 2 17 16.84 15.74 16 13 17.42 16.94 18 30 

4 19.28 25.01 7 25 23.31 23.58 26 17 22.45 24.43 33 42 

5 28.41 29.67 12 18 24.38 26.10 29 19 25.56 27.84 41 37 

6 23.21 22.90 4 20 18.59 19.83 22 15 19.30 21.59 26 35 

7 24.45 25.07 7 20 20.42 21.20 14 10 21.76 23.78 21 30 

8 24.21 23.23 7 16 20.48 20.49 21 13 21.41 22.00 28 29 

9 25.60 27.45 7 19 18.65 19.53 22 13 20.33 24.23 29 32 

10 28.84 32.26 11 18 23.64 20.14 18 13 25.61 27.18 29 31 

11 37.02 38.26 17 22 35.85 38.59 36 15 36.22 38.40 53 37 

12 40.86 43.13 22 19 34.04 39.26 36 10 36.63 41.80 58 29 

13 40.99 46.75 16 21 36.29 38.11 31 14 37.89 43.29 47 35 

14 54.55 57.00 19 17 47.72 53.81 45 20 49.75 55.28 64 37 

15 53.48 61.48 17 11 49.34 54.73 31 11 50.81 58.11 48 22 

16 48.93 52.99 17 20 45.53 50.23 34 12 46.67 51.96 51 32 

17 49.21 57.47 20 16 47.65 56.91 39 15 48.18 57.20 59 31 

18 51.65 57.73 16 15 49.46 55.19 31 13 50.21 56.55 47 28 

19 50.35 55.13 23 19 46.27 48.66 29 10 48.08 52.90 52 29 

20 47.53 59.64 17 13 48.84 53.61 28 9 48.35 57.17 45 22 

21 51.13 57.73 21 24 44.79 51.55 33 16 47.26 55.26 54 40 

22 44.06 57.27 22 27 48.46 53.84 36 18 46.79 55.90 58 45 

23 52.20 56.76 15 17 46.24 51.70 33 13 48.11 54.57 48 30 

24 45.24 48.45 17 8 37.92 41.24 17 2 41.58 47.01 34 10 

25 48.77 47.30 14 16 42.54 46.95 35 13 44.32 47.14 49 29 

26 46.09 48.18 17 19 41.07 50.44 39 13 42.60 49.10 56 32 

27 50.77 59.48 22 26 51.39 56.15 36 13 51.16 58.37 58 39 

28 47.87 55.34 19 20 45.22 53.20 27 10 46.31 54.63 46 30 

29 50.47 56.76 18 17 46.09 51.70 36 13 47.55 54.57 54 30 
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30 64.60 61.56 6 14 53.34 55.31 23 17 55.67 58.13 29 31 

Total 45.02 43.76 413 546 39.17 40.03 854 397 41.07 41.62 1267 943 
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5.2 Error Analysis Findings, Interpretations, and Recommendations  
This section presents the findings and analysis made by comparing the results obtained from 
the AI-system and the ground reference data. Although time headway is one of the pieces of 
information extracted by the AI-system, the accuracy of obtained headway information heavily 
depends on the traffic count accuracy. Therefore, the error analysis was performed with the 
main focuses on identifying factors that impact the accuracy in 1) vehicle count estimation and 
2) vehicle speed estimation. Also, a pilot study is presented to 1) investigate the impact of 
different analysis periods/intervals, 2) experiment with different data cleaning methods, and 3) 
establish a framework to identify error cases and correct atypical cases (speeding or slow 
traffic). Finally, recommendations are made that could improve the accuracy of the extracted 
data. 

Table 5-1 shows the aggregated 1-minute traffic speed and count results from the manually 
obtained ground reference and the results estimated by the AI-system. The results show a 
34.4% overestimation in total traffic count; the majority of overestimation cases occur in the 
outer lane, while the inner lane shows a closer traffic count to the ground reference. On the 
other hand, vehicle traffic speed results show very minimal error compared to the ground 
reference; the 30-minute average speed shows less than 2 MPH difference to the ground 
reference. Error analysis performed in the following sections show, in vehicle traffic count, the 
primary error causing factors are traffic and environment related. In low speed conditions, 
errors in count are caused by sensor-related factors, and in higher speed conditions, errors in 
count are caused by algorithm-related factors. The primary error-causing factor in traffic speed 
estimation is algorithm-related. 

5.2.1 Vehicle count error analysis results 
Figure 5-2 shows the lane-wise traffic count in each 3-minute interval of the video. We 
can see at the beginning of the video that the inner lane suffered significant 
undercounting before the 10-minute mark from Figure 5-2a. On the other hand, the 
outer lane shows overestimation of the traffic count, and this is most obvious after the 
10-minute mark.  

 
(a) manual traffic count and AI-system traffic count (est.) for the inner lane 
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(b) manual traffic count and AI-system traffic count (est.) for the outer lane 

FIGURE 5-2: TRAFFIC COUNT BY AI-SYSTEM AND MANUAL COUNT IN INNER AND OUTER LANES 

Since the traffic speed starts to increase at around the 9 to 10-minute mark, this 
observation suggests that the traffic speed could be an important factor impacting the 
performance of the vehicle traffic count. Upon further investigation, Figure 5-3 shows 
the relationship between traffic count error and traffic speed and traffic density; the 
positive count error indicates over-counting, and the negative count error indicates 
undercounting. The results show a positive relationship between count error and traffic 
speed and a negative relationship between count error and traffic density.  

 
(a) count error at different traffic speed   (b) count error at different traffic density 

FIGURE 5-3: TRAFFIC COUNT ERROR AT DIFFERENT TRAFFIC SPEED AND DENSITY 

Although the relationships between count errors, traffic speed, and traffic density are 
observed, the causes of these errors at different speeds and densities are different. At 
low traffic speed, typically caused by high traffic density, we observed undercounting is 
most obvious in the inner lane. Such errors are likely caused by the high traffic density in 
the outer lane blocking the view of the camera to the inner lane and leads to false-
negative detection by Yolo3. This is a sensor-related error, as it is due to the height and 
angle of the camera. 

On the other end of the spectrum, we observed a higher rate of overcounting at higher 
traffic speeds. As described in Chapter 3, vehicle counting relies on short-term vehicle 
tracking near the reference line; this tracking uses the intersection over union (IOU) 
area between bounding boxes in the consecutive frames. At high traffic speeds, 
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bounding boxes of the same vehicle may move significant distances in consecutive 
frames, which may cause short-term tracking to fail and recognize bounding boxes from 
the same vehicle in different frames as separate instances for counting, thus, leading to 
overcounting. This is an algorithm-related error, since it is caused by short-term tracking 
failure. 

In addition to traffic speed, vehicle detection results from Yolo3 are another source of 
error. Figure 5-4 shows examples of false-positive and false-negative vehicle detections 
by Yolo3. As mentioned, high traffic density conditions are more likely to cause false-
negative detections due to occlusion. False-positive detections were also observed for 
some vehicles, especially for vehicles with a trailer, causing Yolo3 to detect both the 
vehicle and the trailer as separate vehicles. Overall, since these types of vehicles do not 
make up a large portion of the traffic, the impact of this algorithm-related factor is not 
as obvious as the impact of traffic speed.  

 

(a) false-positive detection      (b) false-negative detections 

FIGURE 5-4: EXAMPLE OF FALSE-POSITIVE DETECTIONS AND OCCLUSION CAUSED FALSE-NEGATIVES 

5.2.2 Vehicle speed error analysis results 
Figure 5-5 shows the lane-wise traffic speed in each 1-minute interval of the video. From 
the figures, we can see in both traffic lanes that the AI-system captured traffic speed 
very accurately at the conditions in which traffic speed is below 40 MPH, while showing 
slight underestimation at a higher speed. The max error in average speed observed was 
around 10 MPH.  
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(a) inner lane traffic speed     (b) outer lane traffic speed 

FIGURE 5-5: TRAFFIC SPEED ESTIMATED (EST.) BY AI-SYSTEM AND MANUAL METHOD (GT) IN ONE 

MINUTE INTERVALS 

 

 

(a) aggregated in 1-minute intervals   (b) aggregated in 3-minute intervals 

FIGURE 5-6: TRAFFIC SPEED ESTIMATION ERRORS AT DIFFERENT GROUND REFERENCE TRAFFIC SPEED 

By plotting the traffic speed error against ground reference speed, as can be observed in 
Figure 5-6, the AI-system tends to underestimate speed in faster traffic than slower 
traffic. The error is likely caused by the fact that when the AI-system determines the 
time a vehicle exits the virtual speed loop, it only records the frame when the reference 
point of the vehicle has moved past the reference line. Since the frame rate of video 
used is at 10 fps, this means the AI-system is effectively rounding up the time a vehicle 
spends in the virtual loop to the nearest 0.1 seconds. This rounding error in travel time 
will cause a lower estimated speed, and, as the vehicle travels faster, the effect of 
rounding becomes more significant, thus causing a larger underestimation of speed at 
higher traffic speeds. This effect is illustrated in Figure 5-7. Since this error is introduced 
because of how speed is estimated, this is an algorithm-related error. 
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FIGURE 5-7: TRAFFIC SPEED COMPUTATION ERRORS INTRODUCED BY HIGH VEHICLE SPEED 
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5.2.3 Pilot study of data cleaning and error case identification using 
statistical analysis 
As part of error analysis in this section, a pilot study is presented 1) to explore the 
smallest temporal resolution required to identify atypical traffic and error cases 
produced by the AI-system, 2) to propose methods to identify atypical traffic and error 
cases, and 3) to propose methods to remove the bias in traffic speed computation. 

Using the first 15 minutes of traffic video, Figure 5-8 represents the traffic speed 
distribution aggregated in 3-minute, 5-minute, and 15-minute intervals. From the 
distribution of traffic speeds, we can see the traffic distribution is a normal-distribution-
liked distribution. Thus, by assuming a normal distribution, we can identify outliers in 
the distribution and investigate further and verify if it is atypical traffic that is driving too 
fast or too slow or if it is an error case produced by the AI-system. 

With the assumption that traffic speed distribution follows normal distribution, we can 
observe that when traffic is analyzed at 3-minute intervals, such distributions can be 
easily observed; at 5-minute intervals, the normal distribution shape is still very 
noticeable but may present skewness during the transition of traffic speed condition 
change. Figure 5-8 also shows that when traffic speed data is aggregated at 15-minute 
intervals, identifying outlier cases is difficult, as the traffic condition changes during the 
15-minute period and makes it so that the distribution no longer follows normal 
distribution.  

 

 
(a) traffic speed distribution results aggregated in 3-minute intervals 
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(b) traffic speed distribution results aggregated in 5-minute intervals 

 
(c) traffic speed distribution results aggregated in 15-minute intervals 

FIGURE 5-8: TRAFFIC SPEED DISTRIBUTION RESULTS OF THE SAME 15-MINUTE PERIOD AGGREGATED IN 

DIFFERENT TIME INTERVALS. 

As a method to identify outliers in the distribution, we marked instances with more than 
two times the standard deviation from the mean as potential atypical traffic cases. 
However, these cases are not necessarily caused by errors in the AI-system. As shown in 
Figure 5-9, by comparing the distribution between AI-system results and ground truth, 
we can see cases marked as outliers by the standard deviation threshold method are 
not error results but some atypical vehicles traveling faster than other vehicles . 
Therefore, further investigation is needed for these cases before deciding which 
instances should be removed.  

   
(a) estimated speed distribution   (b) ground truth distribution 

FIGURE 5-9: TRAFFIC SPEED DISTRIBUTION EXTRACTED USING AI-SYSTEM (A) COMPARED WITH GROUND 

TRUTH DISTRIBUTION (B) 
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FIGURE 5-10: PROCEDURE FOR IDENTIFYING ERROR CASES 

Although simply using the standard deviation method cannot guarantee identification of 
error-cases produced by the AI-system, this method does help identify potential error 
cases for further investigation. Using the “object_id” recorded by the AI-system, the 
results can be traced back to the frames and bounding boxes used to compute the 
traffic speed. Figure 5-10 shows two cases where potential cases are traced back to the 
video frames in which Case (a) shows the trajectory of the bounding boxes and frames 
where the bounding boxes were obtained. We can see the bounding boxes belong to 
the same vehicle in all frames, indicating this instance is not an error case. In Case (b), 
the bounding box does not belong to any vehicle visible in the frame, indicating an 
error; the exact cause of this case has yet to be determined. It might be caused by 
incorrect vehicle detection or mismatching of vehicle detection and video frame.  

The procedure presented in this section is mostly a manual analysis to demonstrate the 
process of identifying error cases; a more robust and automatic method should be 
explored for large-scale implementation.  
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(a) correct vehicle trajectory tracking case  

 
(b) incorrect vehicle trajectory tracking case 

FIGURE 5.10 CORRECT AND INCORRECT VEHICLE TRAJECTORY TRACKING CASES 

5.2.4 Interpretations and recommendations  
The results presented in this chapter show that traffic speed and occlusion are the main 
impacting factors in vehicle traffic count errors. In this analysis, we found higher traffic 
speed generally leads to higher traffic over-counting due to short-term vehicle tracking 
failure (algorithm-related factor), and in congested conditions, occlusion, sensor-related 
factors also cause undercounting, especially for inner-lane traffic. This shows traffic 
conditions would impact the traffic count accuracy and algorithm and sensor-related 
factors also impact the accuracy in high and low traffic speed conditions, respectively. 
The AI-system generally produces accurate traffic speed results, but we observed a 
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larger amount of underestimation at higher traffic speeds than at lower traffic speeds. 
We found that traffic speed and video frame rate impact the accuracy in speed results, 
and the errors are caused by algorithm-related factors. 

As a recommendation, we believe that increasing the frame rate of videos would help 
improve the performance of the AI-system. From the standpoint of vehicle counting, 
when using a higher frame rate, the AI-system would have more frames to track the 
vehicle; thus, we can expect an improvement in higher speed conditions. The increasing 
frame rate of the video would also help improve speed estimation, as illustrated in 
Figure 5-7. The reason for speed error at high speeds is caused by trajectory data points 
being too far apart from frame to frame, and the time spent in the virtual speed loop is 
always rounded up to the nearest 0.1 seconds. Table 5-2 shows the error when one 
more frame was counted as the vehicle spent in the virtual speed loop due to rounding; 
the error is computed by adding the frame time of one frame to the time spent in the 
speed loop and compared to the re-estimated speed to the actual speed. Since the error 
in the time spent in the speed loop equals one frame time, the speed error represents 
the maximum speed error that can be introduced by the frame rate; we can see the 
error is reduced significantly when increasing the frame rate from 10 fps to 30 fps. 

TABLE 5-2: IMPACT OF MISCOUNTING ONE FRAME TO SPEED ESTIMATION 

Actual Speed 
(MPH) 

Time Spent in 
Speed Loop (40-ft) 

Speed Error when 
over-count one 
frame (@ 10fps) 

Speed Error when 
over-count one 
frame (@ 30fps) 

10 2.73 sec -0.2 MPH -0.1 MPH 

20 1.36 sec -0.8 MPH -0.4 MPH 

30 0.91 sec -1.6 MPH -0.9 MPH 

40 0.68 sec -2.8 MPH -1.5 MPH 

50 0.55 sec -4.3 MPH -2.3 MPH 

60 0.45 sec -5.9 MPH -3.3 MPH 

70 0.39 sec -7.9 MPH -4.4 MPH 

80 0.34 sec -10.0 MPH -5.6 MPH 
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 SENSITIVITY STUDY AND APPLICATIONS OF 
WORKZONE TRAFFIC SIMULATION USING EXTRACTED REAL-
WORLD DRIVING BEHAVIOR AND TRAFFIC INFORMATION  
 

6.1 Chapter Organization and Research Objectives 
This chapter presents a methodology for developing freeway work zone simulation models 
in PTV Vissim using data from the AI-based traffic and driving behavior extraction system 
(herein referred to as the “AI-based extraction system”) summarized in Chapters 3-5 of this 
report. The Vissim model development effort and analysis framework are detailed in 
Section 6.2. The outcomes of two subtasks are then presented in the sections that follow: 

o Task 1 – Sensitivity Analysis (Section 6.3). The purpose of this initial task is to determine 

the sensitivity of model outputs to changes in key input parameters. The outcomes of 

this task answer two critical questions. First, how can one translate data from the AI-

based extraction system to Vissim model inputs? The lane-changing observations 

collected as part of the case study in Chapter 4 and additional scenarios may be used to 

inform Vissim model inputs and validate model outputs but cannot be replicated 

without adjusting multiple parameters in the software. A full factorial experiment is 

conducted to identify an optimum parameter set for use in Task 2.  

Second, how do model outputs generated under typical default parameter values differ 
from those under the optimum parameter set selected previously? The results of this 
sensitivity analysis are used to evaluate the reliability and utility of the semi-
automatically extracted traffic data and provide recommendations for modelers.  

o Task 2 – Modeling Freeway Work Zone Traffic Operations at Sites With Varying 

Characteristics (Section 6.4). The purpose of this task is to determine how traffic 

measures of effectiveness (MOEs) of interest to agencies and practitioners (e.g., 

throughput, speed, travel time, and queue length) vary at three-to-two freeway lane 

closures with different prevailing characteristics. The outcomes of this task are used to 

provide recommendations supporting agency work zone scheduling and traffic control 

decisions and allude to opportunities for future research.  

Key findings are summarized in Section 6.5 at the conclusion of this chapter. 
Recommendations for further extending the simulation study and recommendations for 
the practitioners are presented in Chapter 7.  
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6.2 Vissim Model Development and Analysis Framework 
6.2.1 Background 
An abundance of microsimulation software packages are currently available to 
researchers and practitioners, each with strengths and weaknesses dependent on the 
purpose of a given analysis. In response to the increased use of microsimulation as an 
analysis tool for transportation projects, many state departments of transportation 
(DOTs) have published guidelines in recent years. Though some DOTs maintain a 
broader set of traffic analysis and microsimulation guidelines—such as those published 
by the Florida (FDOT, 2014), Colorado (CDOT, 2018), Virginia (VDOT, 2020), and 
Wisconsin (WISDOT, 2019) DOTs—others provide guidance specific to PTV Vissim (Iowa 
DOT, 2017; MDOT, 2016; WSDOT, 2016). Based on a review of agency guidelines, 
familiarity with pertinent literature, and experience among project team members, PTV 
Vissim was selected as the preferred analysis tool for use in this research. Given its 
widespread use in practice, the Vissim-specific freeway work zone simulation guidance 
produced as part of this research is expected to serve the largest audience of modelers. 

PTV Vissim is a stochastic, behavior-based microsimulation software package with wide-
ranging applications. Given its ability to model the acceleration, deceleration, car-
following, and lane-changing behavior of individual vehicles under nearly unlimited 
combinations of input parameters, Vissim is well-suited for use in analyzing the 
complexity traffic flow at freeway work zones. However, developing and calibrating a 
model capable of producing robust outputs is often an arduous task. Previous sensitivity 
analyses in the literature have attempted to simplify this process and found the Vissim 
input parameters summarized in Table 6-1 to be most critical to modeling traffic 
conditions at freeway work zones (Jehn and Turochy, 2019). 

Table 6-1: Key Vissim Calibration Parameters for Modeling Freeway Work Zones 

Category Parameter Description Default Value 
Literature-Recommended 

Range1 

Car-
Following 

CC0 Standstill distance (ft) 4.92 ft 4.92 – 20 ft 

CC1 Desired following headway (s) 0.9 s 0.9 – 2.7 s 

CC2 Following Distance Oscillation (ft) 13.12 ft 13.12 – 55 ft 

Lane-
Changing 

SDRF Safety Distance Reduction Factor 0.6 0.1 – 0.6 

Lane Change 
Distance 

Lane Change Distance (ft) 656.2 ft ≥ 25   ft 

1Ranges represent the minimum and maximum values explored in freeway work zone-specific 
literature  

The importance of other input parameters to modeling freeway work zones—such as 
the maximum deceleration for cooperative braking (ft/s2), desired acceleration for 
heavy trucks (ft/s2), and deceleration per distance for necessary lane changes (-1 ft/s2)—
have also been explored in the literature and will be discussed further in subsequent 
sections of this chapter. The reader may refer to the PTV Vissim User Manual for 
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additional detail regarding the full set of car-following and lane-changing parameters 
included in the software (PTV Group, 2020). However, the following brief descriptions 
are offered here: 

Car-Following Parameters 
CCO (Standstill Distance, ft) – The CC0 parameter is the first of 10 parameters that 
comprise the Wiedemann 99 car-following model used in Vissim. This parameter has no 
variation and defines the desired distance between a trailing and lead vehicle when 
both are stopped. 

CC1 (Gap Time Distribution, s) – The multiplicative component of the desired safety 
distance between a trailing and lead vehicle is defined by the CC1 parameter. This 
desired safety distance is calculated at each simulation time step as: 

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑆𝑎𝑓𝑒𝑡𝑦 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐶𝐶1 ∗ 𝑠𝑝𝑒𝑒𝑑 + 𝐶𝐶0     (6-1) 

The desired safety distance directly influences the time gap (i.e., front bumper to rear 
bumper) between vehicles in a following pair. As a result, the CC1 parameter has been 
found to have the greatest influence on simulated capacity (Lownes and Machemehl, 
2006). As of the release of PTV Vissim 9 in 2016, CC1 may be coded as a static value or 
as a vehicle class-specific distribution. 

CC2 (Following Distance Oscillation) – The CC2 parameter defines the maximum 
additional distance beyond the desired safety distance that a trailing vehicle will allow 
before intentionally moving closer to the lead vehicle. 

Lane-Changing Parameters 
SDRF (Safety Distance Reduction Factor) – This unitless parameter is used to calculate 
the maximum reduction in the desired safety distance allowed by a vehicle when 
selecting an acceptable gap for changing lanes. At the default value of 0.6, a vehicle will 
accept a gap in the adjacent lane equivalent to 60% of its desired safety distance. 

LCD (Lane Change Distance, ft) – For each connector in a Vissim network, the lane 
change distance defines the distance upstream of a necessary lane change (e.g., turn 
bay, off-ramp, or lane closure) at which a vehicle will begin to look for opportunities to 
merge. As of PTV Vissim 2020, this parameter can be coded as a static value or as a 
vehicle class-specific distribution. 

The purpose of calibration is to establish confidence in a model’s ability to replicate a 
known base condition, thereby maximizing the validity of model outputs under a 
theoretical condition (e.g., existing versus future conditions on a given roadway 
segment of interest). Recent study of typical practice highlights the need to limit 
ambiguity in the model calibration process to improve model robustness and 
transferability (VDOT, 2020). If a modeler were to test just three levels of each of the 
five parameters listed in Table 6-1 as part of the calibration process, the result would be 
a total of 243 unique simulation runs. When additional parameters are considered, the 
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size of a given calibration experiment quickly balloons, and any number of parameter 
sets may produce a reasonable match to the base condition. Consequently, there is still 
an evident need to limit the number of “unknowns” in calibrating freeway work zone 
simulation models to increase consistency in methods and resultant outputs.  

Past research has aimed to address this need by providing recommended default values 
or regression equations for estimating specific parameter values based on expected lane 
utilization, capacity, and queue length at a given freeway lane closure (Chatterjee et al., 
2009; Edara and Chatterjee, 2010; Yeom et al., 2016). However, none of these studies 
considered differences in driving behavior by vehicle class, and each were conducted in 
legacy versions of Vissim not equipped with features included in more recent releases of 
the software. Specifically, past literature has demonstrated the value of modeling the 
CC1 parameter as a distribution (Jehn and Turochy, 2020) in producing robust outputs 
when modeling freeway lane closures. Similarly, the use of vehicle class-specific lane 
change distance distributions—defined by the data summarized in Chapters 3-5 of this 
report—is expected to have a noteworthy influence on the capability of freeway work 
zone simulation models to capture differences in traffic operations at sites with varying 
geometric and traffic stream characteristics.  

The remainder of this section is organized as follows. First, the critical components of 
base Vissim model development are described in detail. Next, a methodology is offered 
for translating data collected from the AI-based extraction system to Vissim model 
inputs. Where applicable, publicly available traffic data and pertinent literature are 
referenced as supplemental data sources used in model development. Finally, a 
framework for the sensitivity analysis and factorial experiment conducted as part of 
Task 1 and Task 2 is presented.  

6.2.2 Base Model Development and Data Collection 
6.2.2.1 Base Vissim Model Geometry and Network Objects 
Vissim 2021 (Build 2021.00-03) was selected for use in this study, as this version of the 
software was the latest released by PTV at the time of this writing and includes each of 
the advantageous features highlighted in Section 6.2.1. A core purpose of this research 
is to develop generalized recommendations for modelers and agencies. Accordingly, key 
model inputs were carefully selected to be representative of typical rural and urban six-
lane freeways across the southeastern United States. While a baseline model was 
developed and outputs were validated against the field data from the AI-based 
extraction system described earlier in this report, model development and calibration 
were primarily informed by other data sources. These sources included 
recommendations from the literature, data from previous work by the research team, 
and publicly available traffic data from continuous count stations (CCSs) maintained by 
the Georgia Department of Transportation (GDOT). This broad-based modeling 
approach was intended to minimize the risk of “over-calibrating” to site-specific data 
while allowing for a wide range of traffic conditions to be captured. 



Quantitatively Evaluate Work Zone Driver Behavior using 2D Imaging,  
3D LiDAR, & Artificial Intelligence in Support of Congestion Mitigation 

 Model Calibration & Validation (Project G2) 
  

  
82 

Two freeway work zones on I-95 near Savannah, GA, were used for calibrating the 
Vissim model. Characteristics of each site are summarized below: 

• Northbound I- 5 milepost    in Richmond Hill, GA (herein referred to as “Site A”) 

o 2019 Annual Average Daily Traffic (AADT) = 57,900 vehicles per day (GDOT 

Count Station 029-0194) 

o 2019 Daily Truck Percentage = 23% (GDOT Count Station 191-0187) 

o Six-lane Cross Section 

o Curved roadway geometry upstream of the lane closure taper 

• Northbound I-95 milepost 97 in Pooler, GA (herein referred to as “Site B”) 

o 2019 AADT = 85,300 vehicles per day (GDOT Count Station 051-0381) 

o 2019 Daily Truck Percentage = 14% (GDOT Count Station 051-0383) 

o Six-lane Cross Section 

o Straight roadway geometry upstream of the lane closure taper 

In each case above, three northbound through lanes were reduced to two open lanes 
through the work zone (herein referred to as a “ -2 lane closure”). The base Vissim 
model included the following elements, as depicted in Figure 6-1. 

Network Geometry 
A total of five three-lane links and one two-lane link were coded upstream and 
downstream of the modeled lane closures, respectively. The portion of the network 
upstream of the modeled lane closure was extended to six miles to allow adequate 
distance for queues to propagate and dissipate during the simulation period and for 
discretionary lane changes to occur prior to the advance warning area. This six-mile 
segment was subdivided to represent each of five zones: 

• Zone 1: Transition Area 

• Zone 2: 0-500 feet upstream of the Transition Area 

• Zone 3: 500-1000 feet upstream of the Transition Area 

• Zone 4: 1000-5280 feet upstream of the Transition Area 

• Zone 5: 0-5 miles upstream of the Advance Warning Area 

Zones 1-4 were coded based on the field data collection effort detailed in Chapter 4 of 
this report and informed by the work zone traffic control guidance prescribed in Part 6 
of the Manual on Uniform Traffic Control Devices (MUTCD; FHWA, 2012). At a posted 
speed limit of 70 miles per hour (mph) and lane width of 12 feet, the MUTCD 
recommends a minimum merging taper length of 840 feet. As such, Zone 1 was coded 
to extend 840 feet, with approximately one-half of this distance assumed wide enough 
to accommodate a typical passenger vehicle. To capture partial use of the merging taper 
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as a travel lane in Vissim, the emergency stop distance associated with the two-lane 
connector joining the three- and two-lane links was set to 420 feet. The emergency stop 
distance parameter defines the distance upstream of a necessary lane change that a 
simulated vehicle will come to a complete stop and wait for an acceptable gap to merge. 
Visual observations of the simulation confirmed that this setting functioned as intended. 

 

FIGURE 6-1: DIAGRAM OF BASE VISSIM MODEL (NOT TO SCALE) 

Network Objects 
Network objects in Vissim are comprised of lines and polygons coded to control vehicle 
behavior and collect data during the simulation. Given the simplicity of the modeled 
network, only desired speed decisions, reduced speed areas, data collection points, and 
travel time measurements were necessary in this case. For further background 
regarding the mechanics of each of these network objects, the reader is referred to the 
PTV Vissim User Manual (PTV Group, 2020). 
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Desired Speed Decisions and Reduced Speed Areas 
Desired free flow speed within Zones 2-4 and upstream of the advance warning area 
was governed by a set of lane-wise desired speed decisions placed at the entry point to 
the Vissim network. Typical mean free flow speed by lane and vehicle class was 
extracted from GDOT CCS data at Site A and Site B from September 2019. However, 
speed data was only available as an average for a given lane and vehicle class 
aggregated in one-hour intervals. Consequently, prior study of freeway work zones by 
Jehn and Turochy (2019) was referenced to develop full desired speed distributions for 
use as inputs in Vissim. Free flow speed data from this study exhibited a standard 
deviation of 9 mph (passenger cars) and 7 mph (heavy trucks) upstream of the advance 
warning area. These values were combined with known mean free flow speeds from 
GDOT CCS data to form the desired speed distributions summarized in Table 6-2. 

Table 6-2: Vissim Desired Speed Distributions (Upstream of Work Zone) 

Lane 
Observed Average 

Speed1 

Desired Speed Distribution (Percentile)2 

10th 25th 50th 75th 90th 

All Vehicles 

Right 69 57 63 69 75 81 

Center 77 65 71 77 83 88 

Left 79 67 73 79 85 91 

Passenger Cars 

Right 70 58 64 70 76 81 

Center 78 66 72 78 84 89 

Left 80 68 74 80 86 92 

Heavy Trucks 

Right 65 53 58 65 71 76 

Center 72 60 66 72 78 83 

Left 74 62 68 74 80 85 

1Observed average speed from GDOT CCS 191-0187 in September 2019 
2Estimated desired speed distributions used as Vissim inputs  

Similarly, free flow speeds within and downstream of the transition area were defined 
based on a combination of guidance from HCM6 and the literature (TRB, 2016; Jehn and 
Turochy, 2019). Speed data within the transition area at Site B was available from 
trajectory data collected through the AI-based extraction system during the one-hour 
period from 2:30PM – 3:30PM on April 6, 2011. However, since free flow conditions 
were not observed during these periods, this data could not be utilized to develop 
Vissim desired speed distributions. Furthermore, additional components of the work 
zones studied as part of this research were unknown, including the posted speed limit 
during construction. Part 6 of the MUTCD states that the posted speed limit within a 
freeway work zone should represent a reduction of no more than 10 mph from the 
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typical posted speed limit. Therefore, since the studied segments of I-95 have a normal 
posted speed limit of 70 mph, it was assumed that the speed limit was posted at 60 mph 
during construction.  

Mean free flow speed through the work zone was then estimated based on Equation 10-
10 in HCM6 Volume 2: 

𝐹𝐹𝑆𝑊𝑍 = 9.95 + 33.49 × 𝑓𝑆𝑟 + 0.53 × 𝑆𝐿𝑊𝑍 − 5.60 × 𝐿𝐶𝑆𝐼 − 3.84 × 𝑓𝐵𝑟 − 1.71 × 𝑓𝐷𝑁 − 8.7 × 𝑇𝑅𝐷 (6-2) 

Where: 

𝐹𝐹𝑆𝑊𝑍 = work zone free flow speed (mph) 

𝑓𝑆𝑟  = ratio of non-work zone speed limit (mph) to work zone speed limit (mph) 

𝑆𝐿𝑤𝑧 = work zone speed limit (mph) 

𝐿𝐶𝑆𝐼 = lane closure severity index 

𝑓𝐵𝑟 = indicator variable for barrier type (0 for rigid barrier, 1 for soft barrier) 

𝑓𝐷𝑁 = indicator variable for daylight or night (0 for daylight, 1 for night) 

𝑇𝑅𝐷 = total ramp density along the facility (ramps/mile) 

The reader is referred to Chapter 10 in HCM6 for the full definition of each of the 
variables listed in the equation above. When each variable is defined based on the 
characteristics of the studied 3-2 lane closures, a work zone free flow speed of 61 mph is 
calculated. Since this free flow speed only represents a mean for all lanes and vehicle 
classes, full desired speed distributions were constructed based on data from prior work 
by Jehn and Turochy (2019). Free flow speed data from this study exhibited a standard 
deviation of 7 mph (passenger cars) and 5 mph (heavy trucks) within and downstream of 
the transition area. These values were combined with the mean free flow speed 
estimated from HCM6 methodology to form the desired speed distributions 
summarized in Table 6-3 for a right-side lane closure. For the left-side lane closure to be 
studied as part of Task 2, data for the “Center” and “Left” lane below was used to define 
free flow speeds for the “Right” and “Center” lane, respectively. Desired speed 
distributions were coded by vehicle class and lane by way of reduced speed areas, as 
shown in Figure 6-1. Reduced speed areas were used in lieu of desired speed decisions 
so that simulated vehicles would begin to decelerate upstream of the transition area. 
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Table 6-3: Vissim Desired Speed Distributions (Work Zone) 

Lane 
Calculated Average 

Speed1 

Desired Speed Distribution (Percentile)2 

10th 25th 50th 75th 90th 

All Vehicles 

Center 56 47 51 56 61 65 

Left 65 56 60 65 70 74 

Passenger Cars 

Center 58 49 54 58 63 67 

Left 68 59 63 68 72 77 

Heavy Trucks 

Center 54 47 50 54 57 60 

Left 62 56 59 62 66 69 

1Estimated average speed from HCM6 Equation 10-10 
2Estimated desired speed distributions used as Vissim inputs  

Data Collection Points and Travel Time Measurements 
A total of 44 data collection points were coded in the base Vissim model to measure 
lane utilization, volume, speed, and queue propagation at each of the locations noted in 
Figure 6-1 and Table 6-4. The purpose of each of these data collection points falls into 
one of three categories. First, two data collection points were placed 200 feet 
downstream of the emergency stop distance location in Vissim to extract measures of 
capacity (i.e., speed and flow rate versus time in each lane). Next, four sets of data 
collection points were placed in each lane at the beginning of Zones 1-4 to measure 
speed, flow, and lane utilization for the purposes of model validation against lane 
change observations from the AI-based extraction system. Finally, data collection points 
were spaced at one-half mile upstream of the advance warning area to monitor average 
speed throughout the simulated period as a means for estimating queue length. 

Table 6-4: Data Collection Point Summary 
Data Collection 

Point IDs 
Location Purpose 

1-2 200 feet downstream of full lane closure Capacity Measurement 

3-5 Beginning of Zone 1 (Transition Area) 

Speed, Flow, and Lane 
Utilization Measurement 

6-8 Beginning of Zone 2 (500 feet upstream of Transition Area) 

9-11 Beginning of Zone 3 (1000 feet upstream of Transition Area) 

12-14 Beginning of Zone 4 (1 mile upstream of Transition Area) 

15-44 1/2 mile intervals upstream of Advance Warning Area Queue Length Estimation 

 

While understanding capacity and mitigating queue length at freeway work zones may 
be of particular interest to agencies and practitioners, driver frustration and road user 
costs are primarily driven by travel delay. Therefore, travel time measurements were 
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coded at the entry point to the Vissim network and at the end of the transition area to 
estimate average travel time through the simulated six-mile work zone corridor.   

6.2.2.2 Vissim Input Volume Distributions 
As emphasized previously, a critical objective of Task 1 is the development of 
generalized recommendations for modeling freeway lane closures across the 
southeastern United States. These recommendations are applied in Task 2 to draw 
conclusions on the impact of various geometric, traffic stream, environmental, and work 
zone-specific characteristics on MOEs of interest to agencies and practitioners. To 
maximize the transferability and validity of the findings associated with each task, 
volume inputs were coded based on a thorough data collection effort conducted via 
three primary sources: (1) publicly available traffic data from GDOT CCSs; (2) semi-
automatically extracted traffic data from the AI-based system featured in Chapters 3-5 
of this report; and (3) literature review. Given the broad purposes of Task 1 and Task 2, 
a range of model inputs were selected that capture the specific conditions observed at 
the study sites while producing sufficient variability in model outputs for drawing wide-
ranging conclusions. 

For the purposes of this research, Site A (summarized in Section 6.2.2) was assumed to 
be representative of rural, six-lane freeway facilities, which are likely to exhibit lower 
overall traffic volumes than their urban counterparts but a substantially higher 
proportion of heavy trucks. On the contrary, Site B (summarized in Section 6.2.2) was 
assumed to be representative of a typical urban, six-lane freeway in southeastern 
United States. As mentioned previously, trajectory data collected as part of this case 
study was limited to 12 five-minute intervals that comprise a single one-hour period at 
Site B on Wednesday, April 6, 2011. Since traffic flow is congested for all but three of the 
five-minute intervals that comprise the one-hour period, measured traffic volumes are 
not indicative of true demand. 

The Traffic Analysis and Data Application maintained by GDOT (GDOT, 2021) includes 
data collected from thousands of short-term, weigh-in-motion, and CCSs throughout the 
state of Georgia and is publicly available through a dynamic web mapping interface. 
Given the limitations of the field data noted previously, two CCSs located near the study 
work zones were leveraged to develop Vissim model inputs, as each station provides 
vehicle count and classification by lane in one-hour intervals. Data from these two CCSs 
was assumed to be generally representative of Site A and Site B for the purposes of this 
research. Summary statistics from each location are provided below: 

• Site A (GDOT CCS 191-0187, September 2019) – I-95 approximately 3.5 miles north 

of SR-57 in Townsend, GA 

o Average Northbound Peak Hour Volume (Weekday) = 1,480 vehicles/hour 

o Average Truck % (Weekday, 9AM – 9PM) = 30% 

o Average Northbound Peak Hour Volume (Weekend) = 1,739 vehicles/hour 
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o Average Truck % (Weekend, 9AM – 9PM) = 14% 

• Site B (GDOT CCS 051-0383, September 2016) – I-95 approximately 1.5 miles north 

of I-16 in Pooler, GA 

o Average Northbound Peak Hour Volume (Weekday) = 2,706 vehicles/hour 

o Average Truck % (Weekday, 9AM – 9PM) = 16% 

o Average Northbound Peak Hour Volume (Weekend) = 2,842 vehicles/hour 

o Average Truck % (Weekend, 9AM – 9PM) = 8% 

Figure 6-2 shows the distribution of traffic volumes at each CCS by time of day and day 
of week. 

 

FIGURE 6-2: NORTHBOUND I-95 GDOT CCS TRAFFIC VOLUME SUMMARY 

Based on the bulleted summary above and the traffic volume distributions illustrated in 
Figure 6-2, it was concluded that (1) the weekday data at Site B is suitable for use in 
developing Vissim model inputs for the sensitivity analysis conducted in Task 1, and (2) 
both weekday and weekend conditions should be analyzed as part of Task 2 to capture 
the full range of traffic characteristics that might be observed at rural and urban six-lane 
freeways across the southeastern United States.  

Task 1 – Sensitivity Analysis Volume Inputs 
Lane-based vehicle count and classification data from Site B collected during each 
weekday (excluding Labor Day) in September 2016 was used to develop the volume 
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inputs and vehicle compositions coded in Vissim for Task 1, as summarized in Table 6-5. 
To aid in the interpretation of Table 6-5, the following should be noted: 

o Each Vissim model was coded to run for 43,200 simulation seconds (12 hours) to 

replicate the full rise and fall of traffic volumes from 9AM to 9PM, thereby allowing 

the opportunity for queues to form and dissipate upstream of the lane closure. 

o A one hour seeding period (i.e., ‘‘warm-up’’ time, during which no outputs are 

collected from the model) was included in each model run. 

o Three vehicle classes were modeled and deemed sufficient for capturing the range 

of vehicles included in the real-world traffic stream: passenger cars (average length 

= 18.5 feet), single-unit trucks (average length = 32.5 feet), and heavy trucks 

(average length = 73.5 feet). 

o A single vehicle composition was coded for the entire simulation period, as the 

percentage of each vehicle class in the traffic stream did not vary substantially 

between 9AM and 9PM in the GDOT CCS data.  

TABLE 6-5: TASK 1 VISSIM VOLUME INPUTS AND VEHICLE COMPOSITIONS BY TIME 
PERIOD1,2 

Time of 
Day 

Vissim Time  
Interval (s) 

Volume (vph) % Single Unit Trucks % Heavy Trucks 

Lane 1 Lane 2 Lane 3 Lane 1 Lane 2 Lane 3 Lane 1 Lane 2 Lane 3 

9:00AM 0-3600 660 760 470 

4% 3% 2% 24% 18% 0% 

10:00AM 3600-7200 760 860 540 

11:00AM 7200-10800 850 970 610 

12:00PM 10800-14400 850 970 610 

1:00PM 14400-18000 850 970 610 

2:00PM 18000-21600 900 1030 640 

3:00PM 21600-25200 950 1080 670 

4:00PM 25200-28800 900 1030 640 

5:00PM 28800-32400 850 970 610 

6:00PM 32400-36000 760 860 540 

7:00PM 36000-39600 570 650 400 

8:00PM 39600-43200 470 540 340 

1Traffic volume and vehicle class percentages drawn directly from GDOT CCS data 
2Lanes are numbered from right to left (i.e., “Lane 1” = right lane) 

The input volume distribution summarized in Table 6-5 was assumed representative of 
the overall rise and fall of traffic volumes that may have been observed at the study site 
the day the video data was collected. This relationship with the field data collected from 
the AI-based extraction system was critical to forming a basis for the model calibration 
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and validation effort described in Section 6.3. The use of CCS data from April 6, 2011 
was explored, but only partial data was available in the GDOT TADA system for this date. 

Task 2 – Factorial Experiment Volume Inputs 
The traffic volumes used in support of Task 1 were meant to provide a reasonable match 
to those that may have been observed on the day field data was collected at Site B. On 
the contrary, those developed as part of Task 2 were intended to be coarser in nature, 
thereby capturing the full range of conditions that might be observed at typical rural 
and urban six-lane freeways in the southeastern United States. The range of typical 
conditions at Site A and Site B summarized in Section 6.2.2.2 were adapted to form the 
following three general scenarios: 

o Scenario 1—Site A (Rural), Typical Weekday, 30% Trucks 

o Scenario 2—Site B (Urban), Typical Weekday, 15% Trucks 

o Scenario 3—Site B (Urban), Typical Weekend, 5% Trucks 

Though initially considered as a fourth scenario, it was determined that typical weekend 
traffic volumes at Site A (Rural) were unlikely to produce congestion in Vissim or in the 
field. Furthermore, a similar proportion of heavy trucks was observed in the traffic 
stream under this scenario as that on a typical weekday at Site B (Urban). Therefore, the 
traffic volumes and truck percentages represented by the three scenarios listed above 
were considered sufficient for capturing the range of likely conditions observed on 
freeway facilities at a regional scale. 

The full set of input volume distributions used as part of Task 2 were developed from 
raw field data through the following multi-step process: 

1. The distribution of traffic volumes by hour of the day was tabulated as a percentage 

of the maximum observed hourly volume for Scenario 1, Scenario 2, and Scenario 3. 

2. The pre-breakdown capacity (vehicles per hour) of Site B under Scenario 2 was 

determined during Task 1 (see Section 6.3). 

3. Three input volume distributions were developed for Scenario 2 

a. Low (Maximum Hourly Volume = Theoretical Capacity - 200 vehicles / hour) 

b. Medium (Maximum Hourly Volume = Theoretical Capacity) 

c. High (Maximum Hourly Volume = Theoretical Capacity + 200 vehicles / hour) 

4. A passenger car equivalent (PCE) of 2.5 was assumed for heavy trucks based on past 

research (Sarasua et al., 2006) and used to convert each of these three maximum 

hourly volumes to units of passenger cars per hour. 

5. The maximum hourly volumes applicable to the “Low”, “Medium”, and “High” cases 

for Scenario 1 and Scenario 3 (in vehicles per hour) were calculated from the 

passenger car equivalent flow rates calculated in Step 4. 
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The full input volume distributions coded for each of the 12 cases referenced above are 
omitted here for brevity. Maximum hourly volumes modeled as part of Task 2 are 
summarized in Table 6-6. 

TABLE 6-6: TASK 2 MAXIMUM HOURLY VISSIM INPUT VOLUME BY SCENARIO 
Scenario ID % Trucks Max Volume (vph) Max Volume (pcph) 

1 (Low) 30% 2,028 2,940 

1 (Med) 30% 2,197 3,185 

1 (High) 30% 2,366 3,430 

2 (Low) 15% 2,400 2,940 

2 (Med) 15% 2,600 3,185 

2 (High) 15% 2,800 3,430 

3 (Low) 5% 2,735 2,940 

3 (Med) 5% 2,963 3,185 

3 (High) 5% 3,191 3,430 

Further discussion regarding the application of the input volume distributions 
summarized above is provided in Section 6.4. 

6.2.3 Analysis Framework 
As indicated previously, the traffic data obtained from the AI-based extraction system 
focused on too narrow a time period to justify its use in developing macroscopic model 
inputs such as traffic volume, vehicle compositions, and desired speed. However, the 
vehicle trajectory data obtained from even one hour of video provided enough insight 
into site traffic operations to establish a framework for model calibration and analysis 
conducted during Task 1 and Task 2. Most critically, detailed lane-changing observations 
under a variety of geometric and traffic conditions allowed for the development of 
scenario- and vehicle class-specific lane change distance distributions. To the authors’ 
knowledge, this is the first study to apply this type of data in Vissim. 

6.2.3.1 Model Calibration Data and Car-Following Parameters 
The video data described in Chapter 4 was used to measure flow rate, speed, and time 
gap at Site B (northbound I-95 in Pooler, GA) in 5-minute intervals during the one-hour 
period from 2:30PM – 3:30PM on April 6, 2011. While congestion persists throughout 
most of this one-hour period, the data summarized in Table 6-7 shows that queues 
begin to dissipate from 3:00 – 3:30PM. As such, the calibration effort described in the 
next section was focused in part on replicating this pattern of congestion; however, 
simulated speed and flow rate were only qualitatively compared to that in the video 
data, as input demand flow rates were acquired from other sources. 

TABLE 6-7: SEMI-AUTOMATICALLY EXTRACTED TRAFFIC DATA SUMMARY 

Time Mean Speed (mph) Median Time Gap (s) 

Oversaturated Conditions 
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2:30 PM 16.9 1.94 

2:35 PM 17.7 1.84 

2:40 PM 31.8 1.69 

2:45 PM 32.6 1.97 

2:50 PM 34.1 1.67 

2:55 PM 37.9 1.79 

Average 29.2 1.80 

Undersaturated Conditions 

3:00 PM 20.9 1.86 

3:05 PM 23.7 1.71 

3:10 PM 46.7 1.46 

3:15 PM 55.0 1.47 

3:20 PM 53.3 1.40 

3:25 PM 55.1 1.53 

Average 42.1 1.58 

Given the lack of temporal breadth in the semi-automatically extracted traffic data and 
inherent error in vehicle counts obtained from the AI-based system during congested 
conditions, estimated equivalent hourly flow rates were not considered for use as a 
calibration metric. Furthermore, the traffic volumes developed from GDOT CCS data are 
intended to be representative of the study site but likely differ from those that would 
have been observed on the day the video was captured. In this way, modeling a broader 
range of input volumes was expected to minimize the chances of “over-calibrating” to a 
site-specific condition. 

On the contrary, while not used as a direct input, time gap measurements motivated the 
range of values for the CC1 (gap time distribution) parameter coded in Vissim. The 
median values summarized in Table 6-7 were obtained after screening trajectory data 
such that records for vehicle following pairs with a time headway greater than 4.0 
seconds were excluded (Dong et al., 2015). Additionally, records collected under 
oversaturated conditions were deemed unrepresentative of the true desired time gap 
that defines car-following behavior in Vissim. Past literature indicates that vehicle 
acceleration and deceleration associated with late lane change maneuvers—particularly 
those of heavy vehicles—at locations upstream of the full lane closure may inflate time 
gap measurements (Jehn and Turochy, 2019). Therefore, a median time gap of 
approximately 1.6 seconds measured during undersaturated conditions was considered 
as a baseline input for the CC1 parameter in Vissim.  

Recalling from earlier discussion that the CC0 (standstill distance) parameter is a 
component of the desired safety distance (i.e., desired time gap) in Vissim, the 
contribution of CC0 was subtracted from the median time gap calculation. Assuming a 
CC0 value of 10 feet per recommendations in the literature (Dong et al., 2015), this 
calculation becomes: 
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𝐶𝐶1 (𝑠) = 𝑀𝑒𝑑𝑖𝑎𝑛 𝑇𝑖𝑚𝑒 𝐺𝑎𝑝 (𝑓𝑡) −  
𝐶𝐶0 (𝑓𝑡)

𝑀𝑒𝑑𝑖𝑎𝑛 𝑆𝑝𝑒𝑒𝑑 (𝑚𝑝ℎ) ∗ 1.47 (

𝑓𝑡
𝑠

𝑚𝑝ℎ
)

 

𝐶𝐶1 = 1.6 −
10

42.1 ∗ 1.47
= 1.4𝑠 

A range of candidate values for the CC1 parameter between 1.0s and 1.8s were 
ultimately selected for use in the subject sensitivity analysis to bracket the expected 
calibrated value. This range coincides with that prescribed by Yeom et al. in a 2016 study 
completed in support of NCHRP Project 03-107, which provided generalized simulation 
guidance based on nationwide field data (Yeom et al., 2016). Remaining car-following 
and lane-changing parameter ranges were selected based on the comprehensive 
literature search noted in Section 6.2 and are summarized in Table 6-8. Where multiple 
selected parameter values are listed, further discussion is provided later in this chapter. 

TABLE 6-8: CAR-FOLLOWING AND LANE CHANGING PARAMETER RANGE SUMMARY 

Parameter Default Value Selected Value(s) 

Car-Following 

CC0 (ft) 4.92 10 

CC1 (s) 0.9 1.0, 1.2, 1.4, 1.6, 1.8 

CC2 (ft) 13.12 26.24 

Other Car-Following Parameters Default 

Lane-Changing 

Safety Distance Reduction Factor 0.6 0.3, 0.45, 0.6 

-1 ft/s^2 per distance 200 100 

Maximum deceleration (own/trailing), 
Maximum Deceleration for Cooperative Braking 

-9.84 ft/s^2 -15 ft/s^2 

Cooperative Lane Change Unchecked Checked within 1/2 mile of transition area 

Lane Change Distance 656.2 ft Field data-based distribution 

Other Lane-Changing Parameters Default 

Though not included in Table 6-8, the desired acceleration distribution for heavy trucks 
was also modified from its default based on past findings in the literature. Specifically, 
default Vissim parameters assume a mean standstill acceleration of 8.2 ft/s2 for heavy 
trucks, whereas recent research suggests that a mean value of 2.2 ft/s2 is more 
representative of the actual performance capabilities of Interstate semitrailers (Yang et 
al., 2016). This stark difference between the default and adjusted values for desired 
truck acceleration produces substantial variation in model outputs when the percentage 
of trucks in the traffic stream is not negligible (i.e., 5% or greater). Since the scenarios 
analyzed as part of this research consider up to 30% trucks in the traffic stream, this 
adjustment was deemed critical to the study outcomes. 
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Lane Change Distance Distributions 
Based on the lane change study presented in Chapter 4, lane change positions were 
extracted for the two sites, Site A and B, including set of lane-changing observations 
that vary by type of lane closure, upstream geometry, and traffic stream characteristics. 
A total of eight unique, vehicle class-specific lane change distance distributions—four 
each for passenger cars and heavy trucks—were developed for use in Vissim based on 
the extracted data. These distributions are summarized in Table 6-9 and Table 6-10. 

TABLE 6-9: LANE CHANGE DISTANCE DISTRIBUTION SUMMARY (PASSENGER CARS) 

Distance Upstream of  
Full Lane Closure (ft) 

Curved Upstream 
Geometry, Right-

Side Closure 

Straight Upstream 
Geometry, Right-

Side Closure 

Curved Upstream 
Geometry, Left-

Side Closure 

Straight Upstream 
Geometry, Left-

Side Closure 

Cumulative % Merging After Distance 

840 5% 5% 15% 0% 

1,340 25% 10% 30% 10% 

1,840 65% 30% 50% 60% 

6,120 100% 100% 100% 100% 

 

TABLE 6-10: LANE CHANGE DISTANCE DISTRIBUTION SUMMARY (HEAVY TRUCKS) 

Distance Upstream of  
Full Lane Closure (ft) 

Curved Upstream 
Geometry, Right-

Side Closure 

Straight Upstream 
Geometry, Right-

Side Closure 

Curved Upstream 
Geometry, Left-

Side Closure 

Straight Upstream 
Geometry, Left-

Side Closure 

Cumulative % Merging After Distance 

840 0% 0% 0% 0% 

1,340 15% 20% 0% 10% 

1,840 45% 40% 0% 25% 

6,120 100% 100% 100% 100% 

In each case above, the “distance” column represents the distance upstream of the full 
lane closure that vehicles in Vissim will begin to look for opportunities to merge from 
the closed lane to one of two remaining open lanes. The trajectory data used to develop 
the lane change distance distributions only included observations at up to 
approximately 1,840 feet upstream of the lane closure (i.e., 1,000 feet upstream of the 
beginning of the lane closure taper). Based on the typical applications presented in Part 
6 of the Manual on Uniform Traffic Control Devices (MUTCD), a “Road Work Ahead” sign 
should be placed at 5,140 feet upstream of the lane closure taper on freeway facilities. 
The MUTCD also prescribes a taper length of approximately 840 feet for a freeway 
facility with a speed limit of 70 mph and 12-foot travel lanes. As such, it was assumed 
that drivers are unlikely to begin searching for opportunities to merge (except for 
purposes of discretionary lane changes) further upstream than one mile from the 
beginning of the lane closure taper. Accordingly, a maximum lane change distance of 
6,120 feet (840 feet + 5,280 feet) was coded in Vissim. 
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Lastly, lane changing observations were acquired under both undersaturated and 
oversaturated conditions as part of the case study detailed in Chapter 4. Since lane 
changes occurring under congested conditions are constrained by the cooperativeness 
of vehicles in adjacent lanes and available gaps under tighter vehicle spacing, only 
observations associated with undersaturated conditions were considered when 
developing the lane change distance distributions presented in Table 6-9 and Table 6-
10. That said, observations under oversaturated conditions were considered as a 
primary calibration metric, since the point at which lane changes are executed is 
influenced by the location where drivers first look for acceptable gaps to merge. Further 
discussion on this topic is provided in the next section. 

6.3 Task 1 – Sensitivity Analysis 
6.3.1 Introduction 
As introduced in Section 6.1.2, the purpose of this initial task was twofold. First, the 
Vissim models developed as part of this study were calibrated using the lane change 
distance distributions obtained from the AI-based extraction system by exploring 
various combinations of the driving behavior parameter ranges identified earlier in the 
chapter. The methodologies and outcomes described herein may be used to inform 
future modeling efforts that make use of vehicle class-specific lane change distance 
distributions in Vissim. Second, the calibrated Vissim models were run with a literature-
recommended static value for the lane change distance to highlight the disparity in 
resultant macroscopic model outputs. The reliability and utility of semi-automatically 
extracted traffic data and the potential future value of utilizing lane change distance 
distributions in Vissim are assessed based on the results of this exercise. 

6.3.2 Sensitivity Analysis Experiment Design 
Base Vissim model geometry, network objects, and input traffic volumes used as part of 
the subject sensitivity analysis were detailed earlier in the chapter. A six-mile freeway 
work zone corridor with a simulated 3-2 lane closure was coded in Vissim to run for a 
total of 12 hours (43,200 seconds) per random seed. The spatial and temporal extents of 
the model were intended to capture the propagation and dissipation of queues 
upstream of the simulated lane closure. Since data from the AI-based extraction system 
was unable to provide sufficient detail to motivate the development of input demand 
volumes, GDOT CCS data near Site B (Northbound I-95 milepost 97 in Pooler, GA) on a 
typical weekday in September 2016 was deemed sufficiently representative of study site 
conditions. Traffic characteristics at this CCS site were provided in detail in Table 6-5. 
Finally, baseline driving behavior parameters were selected based on recommendations 
in the literature, as summarized in Table 6-8 in Section 6.2.3.1. 

As alluded to throughout this chapter, the structure of the subject sensitivity analysis 
was formed by exploring various levels of the following parameters, each redefined here 
for clarity: 



Quantitatively Evaluate Work Zone Driver Behavior using 2D Imaging,  
3D LiDAR, & Artificial Intelligence in Support of Congestion Mitigation 

 Model Calibration & Validation (Project G2) 
  

  
96 

• CC1 (Gap Time Distribution, s) – This parameter represents the multiplicative 

component of the desired safety distance in Vissim. At higher speeds, this parameter 

has the greatest influence on the desired following headway between a lead and 

trailing vehicle. Consequently, literature has found this parameter to have the 

greatest influence on simulated throughput. In the context of 3-2 freeway lane 

closures, research conducted as part of NCHRP Project 03-107 recommended a 

minimum value of 1.0s and maximum value of 1.8s (Yeom et al., 2016). 

• SDRF (Safety Distance Reduction Factor) – The SDRF parameter is unitless and 

defines the maximum reduction in the calculated safety distance that a vehicle will 

allow when searching for an acceptable gap to merge into an adjacent lane. The 

default value is 0.6, though the literature has indicated that smaller values may be 

necessary at merge, diverge, weaving, and work zone segments on freeways (FDOT, 

2014). 

• LCD (Lane Change Distance, ft) – For required lane changes (e.g., merges ahead of an 

off-ramp, turn bay, or lane closure), this parameter defines the distance upstream at 

which a driver will begin to look for acceptable gaps to merge. In legacy versions of 

PTV Vissim and in past literature, this parameter is modeled as a static value. This 

study is believed to be one of the first to leverage the capability of recent versions of 

Vissim (i.e., beginning with PTV Vissim 2020) to model the lane change distance as a 

vehicle class-specific distribution. 

Though additional input parameters impact simulation outputs to varying degrees, 
these three parameters were deemed most influential in replicating the lane-changing 
behavior studied as part of the case study presented in Chapter 4 of this report.  

Several key items are worth noting with regard to the specific ranges selected for each 
of these parameters. First, the CC1 parameter was varied between a mean value of 1.0s 
and 1.8s, but modeled based on a normal distribution with a standard deviation of 0.20s 
in each case. The standard deviation value was selected based on that required (to the 
nearest 0.1s) to yield a maximum possible gap time of 4.0s in Vissim when coding a 
mean gap time of 1.8s. Second, the SDRF parameter was varied at three levels—0.60 
(default), 0.45 (75% of default) and 0.30 (50% of default). Based on recent guidance 
from PTV (VDOT, 2020), the need for substantial deviation from the default value of the 
SDRF parameter was not expected. As such, these three values of the SDRF parameter 
were deemed sufficient, and each fall within the literature-recommended range for 
freeway lane closures. Finally, the lane change distance distributions summarized in 
Table 6-9 and Table 6-10 required modification before application in Vissim. A 2007 
study by Toledo and Zohar modeled the duration of lane changes on a freeway segment 
in California and observed a mean lane-changing duration of 4.6s (Toledo and Zohar, 
2007). At an average speed of 70 mph, a vehicle will travel nearly 500 feet over this 
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period. Since the lane change distance parameter in Vissim defines the point upstream 
of a required lane change that a vehicle will begin to look for opportunities to merge, 
each of the distances that form the distributions summarized previously were increased 
by 300, 500, and 700 feet. These three values were intended to bracket the expected 
distance traveled by vehicles in Vissim prior to successfully completing a lane change 
under low-density conditions. 

The full factorial sensitivity experiment conducted as part of Task 1 is outlined in Table 
6-11. In the table, the term ‘‘RFD’’ refers to ‘‘raw field data’’, and the three-character 
coding system (X-X-X) used to denote specific cases was developed as follows: 

First Character (CC1 Parameter Value):  

• A – mean = 1.0s, standard deviation = 0.2s 

• B – mean = 1.2s, standard deviation = 0.2s 

• C – mean = 1.4s, standard deviation = 0.2s 

• D – mean = 1.6s, standard deviation = 0.2s 

• E – mean = 1.8s, standard deviation = 0.2s 

Second Character (Lane Change Distance Modifications) 

• 1 – RFD 

• 2 – RFD + 300 feet 

• 3 – RFD + 500 feet 

• 4 – RFD + 700 feet 

Third Character (SDRF Parameter Value): 

• A – Default (0.60) 

• B – 75% of Default (0.45) 

• C – 50% of Default (0.30) 

In total, 45 unique cases were developed and run using the same 10 random seeds. The 
additional 15 cases that comprise combinations of scenarios using the RFD lane change 
distance distributions (i.e., ‘‘1’’ for the second character in the scenario ID) were 
eliminated from the experiment after initial simulation runs indicated these scenarios 
were unnecessary. The outputs from these initial runs deviated substantially from field-
observed lane change distance distributions, so the size of the experiment was reduced 
accordingly. 
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TABLE 6-11: SENSITIVITY ANALYSIS EXPERIMENT SCENARIOS 

Scenario 
Mean 
CC1 (s) 

Lane Change Distance Distribution Safety Distance Reduction Factor 

 A-2-A 1 RFD + 300 feet Default 

 A-3-A 1 RFD + 500 feet Default 

 A-4-A 1 RFD + 700 feet Default 

 B-2-A 1.2 RFD + 300 feet Default 

 B-3-A 1.2 RFD + 500 feet Default 

 B-4-A 1.2 RFD + 700 feet Default 

 C-2-A 1.4 RFD + 300 feet Default 

 C-3-A 1.4 RFD + 500 feet Default 

 C-4-A 1.4 RFD + 700 feet Default 

 D-2-A 1.6 RFD + 300 feet Default 

 D-3-A 1.6 RFD + 500 feet Default 

 D-4-A 1.6 RFD + 700 feet Default 

 E-2-A 1.8 RFD + 300 feet Default 

 E-3-A 1.8 RFD + 500 feet Default 

 E-4-A 1.8 RFD + 700 feet Default 

    

 A-2-B 1 RFD + 300 feet 0.45 

 A-3-B 1 RFD + 500 feet 0.45 

 A-4-B 1 RFD + 700 feet 0.45 

 B-2-B 1.2 RFD + 300 feet 0.45 

 B-3-B 1.2 RFD + 500 feet 0.45 

 B-4-B 1.2 RFD + 700 feet 0.45 

 C-2-B 1.4 RFD + 300 feet 0.45 

 C-3-B 1.4 RFD + 500 feet 0.45 

 C-4-B 1.4 RFD + 700 feet 0.45 

 D-2-B 1.6 RFD + 300 feet 0.45 

 D-3-B 1.6 RFD + 500 feet 0.45 

 D-4-B 1.6 RFD + 700 feet 0.45 

 E-2-B 1.8 RFD + 300 feet 0.45 

 E-3-B 1.8 RFD + 500 feet 0.45 

 E-4-B 1.8 RFD + 700 feet 0.45 

    

 A-2-C 1 RFD + 300 feet 0.30 

 A-3-C 1 RFD + 500 feet 0.30 

 A-4-C 1 RFD + 700 feet 0.30 

 B-2-C 1.2 RFD + 300 feet 0.30 

 B-3-C 1.2 RFD + 500 feet 0.30 

 B-4-C 1.2 RFD + 700 feet 0.30 

 C-2-C 1.4 RFD + 300 feet 0.30 
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Scenario 
Mean 
CC1 (s) 

Lane Change Distance Distribution Safety Distance Reduction Factor 

 C-3-C 1.4 RFD + 500 feet 0.30 

 C-4-C 1.4 RFD + 700 feet 0.30 

 D-2-C 1.6 RFD + 300 feet 0.30 

 D-3-C 1.6 RFD + 500 feet 0.30 

 D-4-C 1.6 RFD + 700 feet 0.30 

 E-2-C 1.8 RFD + 300 feet 0.30 

 E-3-C 1.8 RFD + 500 feet 0.30 

 E-4-C 1.8 RFD + 700 feet 0.30 

      
The lane change distance modifications applied in Vissim relative to the RFD scenario 
are summarized in Table 6-12. Users should be aware that Vissim currently requires 
distance distributions to be entered in metric units (i.e., meters), even if imperial units 
are selected as the universal default preference. 

Table 6-12: Lane Change Distance Modification Summary 

RFD RFD + 500 feet 

Distance (ft) Distance (m) Distance (ft) Distance (m) 

840 256 1,340 408 

1,340 408 1,840 561 

1,840 561 2,340 713 

6,120 1,865 6,620 2,018 

RFD + 300 feet RFD + 700 feet 

1,140 347 1,540 469 

1,640 500 2,040 622 

2,140 652 2,540 774 

6,420 1,957 6,820 2,079 

 

6.3.3 Sensitivity Analysis Results 
This subsection demonstrates the sensitivity of simulation outputs under a single set of 
input traffic volumes and vehicle compositions to changes in the parameters 
summarized in Table 6-11. The form and outcomes of this experiment are consistent 
with those of a traditional model calibration effort. First, the parameters expected to 
have the greatest influence on simulation outputs of interest were varied to identify the 
parameter set that generates the best match to field conditions observed at the study 
freeway work zone. For traditional measures of effectiveness such as speed, travel time, 
and flow rate, this comparison was performed qualitatively due to the limitations in the 
field data discussed previously. However, this sensitivity analysis is unique in that the 
lane change distance distribution—a key input to the simulation—was validated against 
model outputs. Goodness-of-fit statistics were calculated to evaluate the relative match 
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of simulation lane changing outputs to field-observed lane changing behavior and select 
a preferred scenario for subsequent use in Task 2. Finally, model outputs under the 
calibrated parameter set were compared to those generated when using a literature-
based default value for the lane change distance in Vissim. The results of this sensitivity 
analysis provide guidance for future modeling efforts and opportunities for further 
research. 

Qualitative Evaluation of Traffic Measures of Effectiveness 
Simulated average speed by time of day under each of the 45 studied scenarios is 
presented in Figure 6-3, Figure 6-4, and Figure 6-5 as a series of speed “heat maps”. 
These heat maps use a green-to-red color scale coded based on the volume-weighted 
average speed across all travel lanes during each 15-minute interval from 10:00AM to 
8:00PM. Since the video camera used to collect trajectory data at the study freeway 
work zone was mounted at the lane closure taper, the graphics focus on modeled 
conditions within the transition area. Beneath the speed heat maps, each figure also 
summarizes the maximum pre-breakdown flow rate, average queue discharge rate, and 
maximum corridor travel time observed in the model as an average of the 10 random 
seed runs conducted for each case. Based on guidance in the literature (Kondyli et al., 
2013), the onset of breakdown is typically defined by a sudden drop in speed at the 
bottleneck in question that persists for multiple time periods and is accompanied by 
upstream queue formation. A breakdown identification algorithm was developed for 
classifying each time interval in Vissim as follows: 

• The simulated free flow speed through the work zone was calculated as 59 mph 

based on model outputs from time periods with low flow rates 

• Breakdown events were identified based on a sudden, sustained drop in speed of at 

least 25% below free flow speed (59 mph x 75% = 44 mph), measured at the data 

collection point just downstream of the bottleneck location 

o A sudden drop in speed was defined as a decrease in average speed of at 

least 10% of the observed speed from the previous interval 

o A sustained drop in speed was defined as three consecutive five-minute 

intervals with observed speeds below the threshold 

o Data collection points placed one-quarter mile upstream of the lane closure 

were examined during each time interval to confirm queue propagation 

This breakdown identification algorithm was also used to classify 15-minute intervals as 
congested or uncongested for the purposes of calculating measures of capacity and 
categorizing lane changing observations, as discussed later in this section. 

As shown in Figure 6-3, Figure 6-4, and Figure 6-5, a wide range of traffic conditions 
were observed between scenarios—all of which utilized the same traffic volume inputs 
and vehicle compositions. At a value of 1.0s for the CC1 parameter (i.e., the nine 
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scenarios with an “A” as the first character in their respective ID), little to no congestion 
was observed throughout the simulation during any of the 10 random seed runs 
conducted. Conversely, congestion persisted throughout nearly the entire simulation 
period under scenarios coded with a value of 1.8s for the CC1 parameter (i.e., the nine 
scenarios with an “ ” as the first character in their respective ID). Though the maximum 
pre-breakdown flow rate and average queue discharge rate associated with these 
relative decreases in capacity vary by only 100-200 vehicles per hour per open lane 
through the simulated work zone, corridor-wide impacts are more substantial. The 
trends shown in the figures foreshadow those discussed later as part of Task 2 and 
demonstrate that large increases in travel time and queue length may be observed as a 
result of seemingly slight changes in flow-based measures of capacity. Under scenarios 
A-2-A through A-4-A, maximum travel time through the simulated six-mile corridor is 
between seven and nine minutes per vehicle, on average. Under scenarios E-2-A 
through E-4-A, the maximum corridor travel time extends to nearly 40 minutes per 
vehicle, representing up to a 400% increase relative to that under scenarios A-2-A 
through A-4-A, despite only a 20% decrease in the maximum pre-breakdown flow rate 
and average queue discharge rates observed in model outputs. This underscores the 
outsized role that small changes in headway play in resulting travel time (and therefore 
congestion) and the value of field data for selecting a headway distribution.
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FIGURE 6-3: SENSITIVITY ANALYSIS OUTPUTS SUMMARY AND ZONE 1/TRANSITION AREA SPEED HEAT MAP (SDRF = 0.60) 
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FIGURE 6-4: SENSITIVITY ANALYSIS OUTPUTS SUMMARY AND ZONE 1/TRANSITION AREA SPEED HEAT MAP (SDRF = 0.45) 



Quantitatively Evaluate Work Zone Driver Behavior using 2D Imaging,  
3D LiDAR, & Artificial Intelligence in Support of Congestion Mitigation 

 Model Calibration & Validation (Project G2) 
  

  
105 

FIGURE 6-5: SENSITIVITY ANALYSIS OUTPUTS SUMMARY AND ZONE 1/TRANSITION AREA SPEED HEAT MAP (SDRF = 0.30) 



 

 

Comparing Figures 6-3, 6-4, and 6-5, the amount of congestion observed in the 10 
random seed runs conducted for each case diminishes markedly as the safety distance 
reduction factor is reduced below its default value of 0.60. From Case C-2-A (SDRF = 
0.60) to Case C-2-C (SDRF = 0.30), the maximum corridor travel time decreases from 
over 26 minutes per vehicle to just over 16 minutes per vehicle. This 38% decrease in 
travel time occurs despite modest increases in measures of capacity; when averaged 
across the 10 random seed runs conducted for each scenario, the maximum pre-
breakdown flow rate and average queue discharge rate increase by just 4% and 3%, 
respectively, under scenario C-2-C relative to scenario C-2-A.  

Regardless, given that congestion was only observed over a short period in the field 
data, scenarios B-2-A through B-4-A, B-2-B through B-4-B, and B-2-C through B-4-C were 
deemed most capable of replicating the lane changing behavior observed in the field 
data. As such, these nine scenarios were carried forward for validation of Vissim lane 
change outputs against field observations.  

Quantitative Evaluation of Lane Change Distance Distributions 
The full set of 45 unique cases was narrowed to each of the nine scenarios coded with a 
CC1 value of 1.2s (i.e., scenarios with a “B” as the first character in their respective ID), 
as these scenarios best replicated field data collected as part of this study. Detailed lane 
changing observations were then extracted from Vissim and compared to the field 
distributions summarized earlier in the chapter.  This exercise was completed through 
the use of two methodologies. First, given the ubiquity of discretionary lane changes 
occurring during undersaturated conditions—especially within Zone 4—mandatory lane 
changes occurring prior to the onset of congestion were evaluated using the Direct 
Output feature in Vissim. This feature allows the user to collect data from individual 
events (e.g., lane changes, signal changes, or signal detector records) or track vehicle 
trajectories throughout the simulation period and is infrequently used in practice due to 
the large output file sizes generated. In this case, individual lane change events were 
extracted from Vissim and filtered to only include mandatory lane changes occurring 
within one mile of the simulated lane closure. To limit run time and output file size while 
ensuring that only undersaturated conditions were modeled, the same 10 random seed 
runs conducted previously for cases B-2-A through B-4-A, B-2-B through B-4-B, and B-2-C 
through B-4-C were coded to terminate after two simulation hours (i.e., 7,200 seconds). 
Over the course of these two simulation hours, the following data was collected for 
each scenario: 

Lane Changes (file extension “.spw”) 

• Vehicle ID 

• Time of Lane Change (simulation seconds) 

• Location of Lane Change 

o Link Number 

o Original Lane 

o New Lane 



 

 

Vehicle Record (file extension “.fzp”) 

• Vehicle ID 

• Time of Record (simulation seconds) 

• Vehicle Class 

Records within the .spw files were filtered to ensure that each represented a mandatory 
lane change associated with the modeled lane closure. An algorithm was coded in 
Microsoft  xcel to classify a record as “eligible” for lane change distance distribution 
calculations only if the following conditions were met: 

• The lane change represented the last lane change recorded for a given Vehicle ID 

upstream of the lane closure connector 

• The lane change involved a merge from the rightmost lane to the adjacent center 

lane 

 ach “eligible” record was binned based on location (Zone 1, Zone 2, Zone  , or Zone 4) 
and vehicle class (passenger car, heavy truck). The results of this exercise are presented 
in Table 6-13 for a lane closure with straight upstream geometry and low traffic density. 

TABLE 6-13: OUTPUT LANE CHANGE DISTANCE DISTRIBUTION SUMMARY1 

Lane Change Distance Distribution (Straight Upstream Section, Passenger Cars)  

Scenario B-2-A B-3-A B-4-A B-2-B B-3-B B-4-B B-2-C B-3-C B-4-C 
Field 
Data 

Zone 4 70% 75% 78% 72% 77% 80% 63% 69% 76% 70% 

Zone 3 11% 9% 8% 13% 10% 8% 18% 18% 15% 20% 

Zone 2 9% 7% 7% 8% 7% 6% 15% 8% 5% 5% 

Zone 1 9% 8% 8% 8% 7% 7% 4% 5% 4% 5% 

Lane Change Distance Distribution (Straight Upstream Section, Heavy Trucks)  

Scenario B-2-A B-3-A B-4-A B-2-B B-3-B B-4-B B-2-C B-3-C B-4-C 
Field 
Data 

Zone 4 60% 65% 70% 62% 69% 74% 73% 79% 81% 60% 

Zone 3 15% 17% 15% 17% 18% 15% 13% 9% 8% 20% 

Zone 2 17% 13% 9% 15% 9% 6% 8% 6% 5% 20% 

Zone 1 8% 5% 5% 7% 5% 4% 7% 7% 6% 0% 

1All observations taken prior to the onset of breakdown to ensure lane changes were not constrained by 
oversaturated conditions 

The results shown in Table 6-13 highlight a few noteworthy trends. First, the number of 
vehicles completing mandatory lane changes within Zone 1 is overstated under all 
analyzed scenarios. This finding is especially evident for heavy trucks. Even under 
scenario B-4-C—which minimizes the likelihood of late merges occurring based on input 
parameter values (because this scenario employs the maximum lane change distance 
and minimum SDRF) —approximately 6% of all lane changes occur within Zone 1, 
despite the fact that no trucks were observed in the rightmost lane within Zone 1 in the 
field data. On the contrary, the proportion of vehicles changing lanes within Zone 4 was 



 

 

generally greater in Vissim than in the field data. These findings underscore the 
challenges of calibrating a Vissim model to lane changing behavior. As mentioned earlier 
in this chapter, a vehicle traveling at 70 mph will traverse the 500-foot distance that 
comprises Zone 2 and Zone 3 within approximately five seconds. As a result, field-
observed lane changing behavior may be more replicable at coarser levels (e.g., distance 
bins greater than 500 feet in length). Even so, Table 6-13 suggests a fairly reasonable 
match to field-observed lane changing behavior across most of the nine scenarios 
considered. 

The second of two methodologies utilized to evaluate modeled lane changing behavior 
focused on mandatory lane changes occurring after the onset of congestion. Though not 
all scenarios were presented in Table 6-13 previously, the methodology for assessing 
lane changes occurring prior to the onset of congestion is biased towards cases with 
more agressive driving behavior parameters. In other words, the cases with the smallest 
value for the CC1 and SDRF parameters are likely to produce the best fit to lane changes 
occurring under non-congested conditions, assuming that the lane change distance 
distribution itself is held constant. On the other hand, post-breakdown lane changing 
behavior is a more convoluted function of the variables studied as part of this sensitivity 
analysis. As such, calibration to lane changing behavior observed under congested 
conditions was deemed to contribute to the predictive robustness of the models carried 
forward to Task 2.  

Accordingly, the proportion of lane changes occuring within each zone after the onset of 
breakdown was estimated and compared to the field data. This comparison is provided 
in Figure 6-6, where the goodness-of-fit of the model data to the field data was assessed 
using the root mean square normalized error (RMSNE). The RMSNE was not computed 
through direct comparison of the observed and expected lane change proportions for 
each zone. Rather, the total number of lane changes observed in Vissim across the 10 
random seed runs conducted for each scenario (e.g., 5,647 lane changes by passenger 
cars under scenario B-3) was multiplied by the field-observed percentages associated 
with each zone in the field data. The resultant number of lane changes was then 
compared with the raw number of lane changes observed within each zone in Vissim to 
compute the RMSNE. As shown in the figure, the largest relative errors occur under 
scenarios coded with more aggressive lane changing behavior (e.g., smaller values of 
SDRF), particularly within Zone 4. Overall, scenario B-3-A minimized the RMSNE (at a 
value of 0.049, as shown in Figure 6-6). Therefore, the lane change distance 
distributions (RFD + 500 feet) and values of CC1 (1.2s) and SDRF (0.60) considered under 
case B-3-A were selected as the preferred parameter set for use during Task 2. 



 

 

 

 
FIGURE 6-6: OUTPUT LANE CHANGE DISTANCE EVALUATION (OVERSATURATED CONDITIONS)



 

 

 

Comparisons to Default Lane Change Distance 
Finally, a copy of the scenario B-3 Vissim model was coded to run with the connector 
lane change distance set to a typical “default” value for freeway work zones. Based on 
guidance in the literature (Yeom et al., 2016; Jehn and Turochy, 2019), a static value of 
3,000 feet was selected and applied in Vissim. Outputs under the calibrated and typical 
“default” lane change distances are compared in Figure 6-7 and Figure 6-8.  

 

FIGURE 6-7: CORRIDOR SPEED HEAT MAP (SCENARIO B-3—CALIBRATED LANE CHANGE 
DISTANCE DISTRIBUTION) 



 

 

 

FIGURE 6-8: CORRIDOR SPEED HEAT MAP (SCENARIO B-3—DEFAULT LANE CHANGE 
DISTANCE) 

The qualitative differences in modeled speeds demonstrated in the figures is backed 
quantitatively by output measures of effectiveness. Under the calibrated parameter set, 
a maximum pre-breakdown flow rate of 1,330 vehicles per hour per open lane through 
the work zone was observed, with a maximum corridor travel time of approximately 9.3 
minutes. On the contrary, no breakdown events were observed under the typical 
“default” lane change distance, and the maximum corridor travel time during a given 
random seed run was 6.4 minutes (-31%), on average. Given that the weighted average 
lane change distance represented by the distribution coded in Vissim under the 
calibrated scenario is approximately 4,000 feet for passenger cars and 3,800 feet for 
trucks, this finding is somewhat counterintuitive. In other words, larger values of the 



 

 

lane change distance are generally associated with “smoother” operations in practice 
and are less likely to produce congestion in Vissim (VDOT, 2020). These results highlight 
the disruptions to traffic operations possible when even a small number of vehicles 
initiate lane changes near or downstream of the beginning of the transition area.  

Moreover, the results of Task 1 expose a gap in the existing body of research relative to 
freeway work zone simulation model calibration in Vissim. Specifically, if one desired to 
replicate the congestion pattern shown in Figure 6-7 while assuming a static value for 
the lane change distance, other parameters—such as CC1 and SDRF—would require 
further modification. As noted in Section 6.2.1, model calibration is a cumbersome 
process often handled differently from modeler to modeler. These differences lead to 
inconsistencies in practice, and more importantly, differences in the results and 
conclusions associated with a given analysis. Consequently, there exists a critical need to 
continue to narrow the number of “unknowns” in calibrating Vissim models, especially 
those used to study freeway work zones. The lane change distance distributions 
collected at the study 3-2 lane closures serve as a starting point for future modeling 
efforts, at a minimum. Future research should extend application of these distributions 
or consider additional field data collected at other lane closure configurations (e.g., 2-1 
freeway lane closures) to build upon the findings presented here. 

6.4 Task 2 – Modeling Freeway Work Zone Traffic Operations at Sites 
With Varying Characteristics 

6.4.1 Introduction 
The calibrated model developed as part of Task 1 was intended to be representative of 
conditions observed under a single case captured by the field data summarized in 
Section 6.2.3. The purpose of this second task was to extend the preferred parameter 
set identified during Task 1 to theoretical three-to-two freeway lane closures exhibiting 
the remaining geometric and traffic stream characteristics represented by the field data. 
A full factorial experiment was conducted to determine how traffic measures of 
effectiveness vary as a function of demand-to-capacity ratio, truck percentage, 
upstream geometry, and lane closure side. The outcomes of this task support agency 
work zone scheduling and traffic control decisions by demonstrating the sensitivity of 
critical variables such as travel time and queue length to seemingly minor changes in 
measures of capacity. The findings of this work allude to opportunities for future 
research utilizing freeway work zone lane changing behavior data to further current 
understanding of the range of conditions possible under various geometric 
configurations and traffic stream characteristics.  

6.4.2 Experiment Design and Refinement 
Vissim input geometry, network objects, and driving behavior parameters coded in the 
calibrated scenario B-3 model were used as the basis for generating a total of 36 
additional cases to be studied. Each of these cases are listed in Table 6-14, where the 
“low”, “medium”, and “high” traffic volume input categories were developed as 
summarized in Section 6.2.2.   



 

 

As was done for Task 1, a three-character coding system (X-X-X) was used to denote the 
specific cases that comprise the full factorial experiment conducted here. This coding 
system was developed as follows: 

First Character (Upstream Geometry):  

• C – Curved Upstream Geometry 

• S – Straight Upstream Geometry 

Second Character (Maximum Input Volume/Truck Percentage) 

• 1 – 2,940 pcph/5% 

• 2 – 3,185 pcph/5% 

• 3 – 3,430 pcph/5% 

• 4 – 2,940 pcph/15% 

• 5 – 3,185 pcph/15% 

• 6 – 3,430 pcph/15% 

• 7 – 2,940 pcph/30% 

• 8 – 3,185 pcph/30% 

• 9 – 3,430 pcph/30% 

Third Character (Lane Closure Side): 

• R – Right-Side Closure 

• L – Left-Side Closure 

The following should be noted relative to the list of scenarios described above and in 
Table 6-14. First, the curved and straight upstream geometry scenarios were coded with 
different lane change distance distributions based on the observed field data; all other 
components of the model were left identical to the baseline calibrated scenario 
identified as part of Task 1. This calibrated scenario included a lane change distance 
coded with a distance offset of 500 feet relative to the raw field data, a CC1 value of 
1.2s, and the default value of the SDRF. Second, the range of input volume distributions 
selected was intended to account for the influence of demand-to-capacity ratio (d/c) on 
pre- and post-breakdown operations through the simulated work zone. As noted in 
Section 6.2.2, these input volume distributions were selected to bracket the theoretical 
pre-breakdown capacity of the simulated work zone, as measured through pilot 
simulation runs. When using a passenger car equivalent of 2.5 for heavy trucks, 
variation in the input volume distributions from the “low” to “high” scenarios results in 
a d/c ratio between 0.92 and 1.08. Finally, right-side and left-side lane closures were 
coded in Vissim by varying the orientation of the lane closure connector and replicating 
the lane change distance distributions observed in the field data.  



 

 

TABLE 6-14: FACTORIAL EXPERIMENT ANALYSIS SCENARIOS 

Scenario % Trucks Upstream Geometry Lane Closure Side Input Volume Distribution 

C-1-R 5% Curved Right Low 

C-2-R 5% Curved Right Medium 

C-3-R 5% Curved Right High 

C-4-R 15% Curved Right Low 

C-5-R 15% Curved Right Medium 

C-6-R 15% Curved Right High 

C-7-R 30% Curved Right Low 

C-8-R 30% Curved Right Medium 

C-9-R 30% Curved Right High 

C-1-L 5% Curved Left Low 

C-2-L 5% Curved Left Medium 

C-3-L 5% Curved Left High 

C-4-L 15% Curved Left Low 

C-5-L 15% Curved Left Medium 

C-6-L 15% Curved Left High 

C-7-L 30% Curved Left Low 

C-8-L 30% Curved Left Medium 

C-9-L 30% Curved Left High 

     

S-1-R 5% Straight Right Low 

S-2-R 5% Straight Right Medium 

S-3-R 5% Straight Right High 

S-4-R 15% Straight Right Low 

S-5-R 15% Straight Right Medium 

S-6-R 15% Straight Right High 

S-7-R 30% Straight Right Low 

S-8-R 30% Straight Right Medium 

S-9-R 30% Straight Right High 

S-1-L 5% Straight Left Low 

S-2-L 5% Straight Left Medium 

S-3-L 5% Straight Left High 

S-4-L 15% Straight Left Low 

S-5-L 15% Straight Left Medium 

S-6-L 15% Straight Left High 

S-7-L 30% Straight Left Low 

S-8-L 30% Straight Left Medium 

S-9-L 30% Straight Left High 

 



 

 

6.4.3 Factorial Experiment Results 
The findings of Task 1 validate the utility of semi-automatically extracted traffic data in 
mitigating the complexity of the calibration process and providing a basis for future 
modeling efforts utilizing lane change distance distributions in Vissim. One practical 
application of these field-measured lane change distance distributions to developing 
robust Vissim models is presented as part of Task 2. The results summarized in this 
subsection first explore traditional output measures of capacity at freeway lane 
closures, such as the maximum pre-breakdown flow rate and average queue discharge 
flow rate, as a function of independent variables listed in Table 6-14. These trends are 
then compared against measures of corridor performance typically analyzed by 
practitioners and of critical importance to agencies and road users, such as speed, travel 
time, and queue length. The outcomes of this exercise support those from past studies 
of freeway bottlenecks but add to the body of freeway work zone simulation literature 
by supporting a methodology for replicating real-world driving behavior and traffic flow 
in microsimulation models. 

Prior to assessing model outputs, the minimum number of runs required for establishing 
statistical confidence in the results was computed. Corridor travel time exhibited the 
greatest standard deviation when comparing the 10 random seed runs conducted for 
scenario B-3 as part of Task 1. As such, the following equation was evaluated for the 
maximum corridor travel time assuming a tolerable error of 15%, 95% confidence level, 
and 10 random seed runs. 

𝑛 = (
𝑠 ∗ 𝑡𝛼

2

𝜇 ∗ 𝜀
)

2

 

Where: 

n = required number of simulation runs 

s = standard deviation of the maximum corridor travel time, in minutes 

𝑡𝛼

2
= critical value of a two-sided t-statistic at a confidence level of α and n-1 degrees of 

freedom 

The results of this computation are shown in Table 6-15 and yield a minimum 
requirement of five simulation runs. As such, 10 random seed runs were deemed 
sufficient for conducting the remainder of the experiment.  

  



 

 

TABLE 6-15: DETERMINATION OF REQUIRED NUMBER OF SIMULATION RUNS 

Random Seed Run Maximum Corridor Travel Time (minutes) 

1 8.9 

2 11.8 

3 7.3 

4 9.6 

5 8.7 

6 9.9 

7 8.1 

8 8.2 

9 9.1 

10 11.3 

Maximum (minutes) 11.8 

Minimum (minutes) 7.3 

Standard Deviation (minutes) 1.4 

Average (minutes) 9.3 

Tolerable Error (minutes) 1.4 

Required Number of Runs1 4.9 

1Calculation for required number of runs assumes n – 1 = 9 degrees of freedom 

Freeway Capacity Measurements 
The maximum pre-breakdown flow rate, average queue discharge flow rate, and 
demand-to-capacity ratio associated with each of the modeled scenarios are 
summarized in Table 6-16 and Table 6-17 for right- and left-side closures, respectively. 
As shown in the tables, only 23 scenarios yielded a breakdown event during at least one 
random seed run.  For scenarios modeled with 5% trucks in the traffic stream (i.e., those 
with a “1”, “2”, or “ ” as the second character in their respective ID), neither the “low” 
nor “medium” input volume distributions led to congestion during any of the 1  random 
seed runs conducted for those cases. For consistency with the original experiment 
design—that is, to ensure that the modeled input volume distributions bracket 
theoretical capacity and capture an adequate range of demand-to-capacity ratios—two 
additional scenarios were developed. Denoted as scenario “C-33-L” and “C-33-R”, these 
scenarios were coded with an input volume distribution approximately 100 vehicles per 
hour greater than that coded for scenarios “C-3-L” and “C-3-R”.  



 

 

TABLE 6-16: SUMMARY OF CAPACITY MEASUREMENTS (RIGHT-SIDE LANE CLOSURE) 

Measure of Effectiveness 
Scenario ID 

C-1-R C-2-R C-3-R C-33-R C-4-R C-5-R C-6-R C-7-R C-8-R C-9-R 

Maximum Pre-Breakdown Flow Rate (vphpl)1,2 - - 1,517 1,582 - 1,317 1,291 - 1,107 1,080 

Average Queue Discharge Rate (vphpl)1,2 - - 1,558 1,586 - 1,219 1,238 - 955 985 

Maximum Input Volume (vphpl)2 1,368 1,482 1,596 1,710 1,200 1,300 1,400 1,014 1,099 1,183 

Estimated Demand-to-Capacity Ratio (D/C)3 - - 1.05 1.08 - 0.99 1.08 - 0.99 1.10 

Measure of Effectiveness 
Scenario ID 

S-1-R S-2-R S-3-R S-33-R S-4-R S-5-R S-6-R S-7-R S-8-R S-9-R 

Maximum Pre-Breakdown Flow Rate (vphpl)1,2 - - 1,566 1,582 - 1,325 1,330 - 1,100 1,088 

Average Queue Discharge Rate (vphpl)1,2 - - 1,572 1,602 - 1,222 1,253 - 955 975 

Maximum Input Volume (vphpl)2 1,368 1,482 1,596 1,710 1,200 1,300 1,400 1,014 1,099 1,183 

Estimated Demand-to-Capacity Ratio (D/C)3 - - 1.02 1.08 - 0.98 1.05 - 1.00 1.09 

1Capacity measurements shown represent an average of the 10 random seed runs conducted for a given scenario 
2Vissim input volume distributions were coded in one-hour intervals; capacity measurements are shown as 15-minute equivalent hourly flow rates 
3Demand-to-capacity ratio calculated by comparing the maximum pre-breakdown flow rate to the maximum input volume 

   

 

 



 

 

TABLE 6-17: SUMMARY OF CAPACITY MEASUREMENTS (LEFT-SIDE LANE CLOSURE) 

Measure of Effectiveness 
Scenario ID 

C-1-L C-2-L C-3-L C-33-L C-4-L C-5-L C-6-L C-7-L C-8-L C-9-L 

Maximum Pre-Breakdown Flow Rate (vphpl)1,2 - - 1,492 1,553 - 1,290 1,291 - 1,121 1,117 

Average Queue Discharge Rate (vphpl)1,2 - - 1,506 1,548 - 1,191 1,266 - 965 1,021 

Maximum Input Volume (vphpl)2 1,368 1,482 1,596 1,710 1,200 1,300 1,400 1,014 1,099 1,183 

Estimated Demand-to-Capacity Ratio (D/C)3 - - 1.07 1.10 - 1.01 1.08 - 0.98 1.06 

Measure of Effectiveness 
Scenario ID 

S-1-L S-2-L S-3-L S-33-L S-4-L S-5-L S-6-L S-7-L S-8-L S-9-L 

Maximum Pre-Breakdown Flow Rate (vphpl)1,2 - - 1,530 1,551 - - 1,311 - 1,139 1,102 

Average Queue Discharge Rate (vphpl)1,2 - - 1,541 1,606 - - 1,283 - 958 1,004 

Maximum Input Volume (vphpl)2 1,368 1,482 1,596 1,710 1,200 1,300 1,400 1,014 1,099 1,183 

Estimated Demand-to-Capacity Ratio (D/C)3 - - 1.04 1.10 - - 1.07 - 0.96 1.07 

1Capacity measurements shown represent an average of the 10 random seed runs conducted for a given scenario 
2Vissim input volume distributions were coded in one-hour intervals; capacity measurements are shown as 15-minute equivalent hourly flow rates 
3Demand-to-capacity ratio calculated by comparing the maximum pre-breakdown flow rate to the maximum input volume 

 

 



 

 

The results summarized in Table 6-16 and Table 6-17 should be interpreted with the 
following in mind. First, though the Highway Capacity Manual recommends default 
passenger car equivalent flow rates for heavy trucks and suggested values for freeway 
work zones are provided in the literature (TRB, 2016; Sarasua et al., 2006; Jehn and 
Turochy, 2020), capacity measurements are presented in units of vehicles per hour per 
lane to provide for easier interpretation across input truck percentages. Second, 
demand-to-capacity ratios were calculated by comparing one-hour input volume 
distributions to 15-minute equivalent hourly flow rates at capacity in Vissim. As such, 
the maximum of the 15-minute equivalent hourly input flow rates at the entry point to 
the Vissim network are likely higher than that shown. Lastly, the maximum pre-
breakdown flow rates and average queue discharge flow rates shown in the tables 
represent an average over the individual breakdown events observed during each of the 
10 random seed runs conducted for a given scenario. Though the queue discharge rate 
did not vary substantially from run-to-run, the maximum pre-breakdown flow rate 
differed by up to 140 vehicles per hour per lane between random seed runs for a given 
scenario. Therefore, the demand-to-capacity ratio shown is intended to represent the 
“average” case, but higher or lower values may be calculated when considering 
individual runs or by converting input flow rates to their 15-minute equivalents. 

Regardless, the results highlight that capacity measurements do not vary substantially at 
the same input truck percentage when comparing right- and left-side lane closures or 
those with curved and straight upstream geometry. Considering the results under right-
side lane closures versus those under left-side lane closures, the maximum observed 
difference in the pre-breakdown capacity occurred between scenarios S-8-L and S-8-R, 
where scenario S-8-L exhibited a maximum pre-breakdown flow rate 39 vehicles per 
hour per lane greater than that under scenario S-8-R (+4%). Similarly, when considering 
the results under curved upstream geometry versus those under straight upstream 
geometry, the maximum observed difference in pre-breakdown capacity occurred 
between scenarios C-3-R and S-3-R. Under scenario S-3-R, the average of the maximum 
pre-breakdown flow rate was 48 vehicles per hour per lane greater than that under 
scenario C-3-R (+3%). When the input truck percentage is held constant, no pair of 
scenarios yielded differences in the maximum pre-breakdown flow rate or average 
queue discharge rate of greater than 4%.  

On the contrary, the capacity measurements in the tables underscore the noteworthy 
impact that heavy trucks have on traffic flow, particularly at freeway lane closures. The 
best-performing scenario (S-33-R) from a capacity standpoint exhibited a maximum pre-
breakdown flow rate of 1,582 vehicles per hour per lane, approximately 500 vehicles per 
hour per lane greater than the worst-performing scenario (C-9-R). Likewise, the best-
performing scenario (S-33-L) produced an average queue discharge rate approximately 
650 vehicles per hour per lane greater than the worst-performing scenario (S-8-R). The 
larger spread in the queue discharge rate data supports findings from past literature 
(Sarasua et al., 2006; Jehn and Turochy, 2020) that the impact of heavy trucks is 
magnified after the onset of congestion due to differences in vehicle size and 
performance capabilities. To provide a tangible measure of the impact of heavy trucks 



 

 

on capacity measurements for comparative purposes, a passenger car equivalent (PCE) 
factor was calculated based on the methodology applied by Jehn and Turochy (2020). 
The average of the maximum pre-breakdown flow rates observed under each truck 
percentage were converted to units of passenger cars per hour per lane by varying the 
PCE factor until the standard deviation of the calculated PCE flow rates was minimized. 
Using an Excel-based optimization tool, an optimum PCE of 2.7 was calculated, resulting 
in an average flow rate of approximately 1,660 passenger cars per hour per lane. 

Corridor Performance Measures 
Taken at face value, the differences among capacity measurements between lane 
closure side and upstream segment geometry presented in the previous subsection 
have little practical significance. However, as alluded to earlier in this chapter and 
discussed in this subsection, even minor fluctuations in capacity can have a substantial 
impact on corridor performance. The minimum, maximum, and average travel time 
through the six-mile simulated work zone corridor is summarized in Table 6-18 and 
Table 6-19 for each of the 40 analyzed scenarios.  

TABLE 6-18: SUMMARY OF CORRIDOR TRAVEL TIME MEASUREMENTS (RIGHT-SIDE 
LANE CLOSURE) 

Maximum Corridor 
Travel Time Statistics1 

Scenario ID 

C-1-R C-2-R C-3-R C-33-R C-4-R C-5-R C-6-R C-7-R C-8-R C-9-R 

Minimum (min) 5.2 5.3 6.7 13.8 5.3 5.4 13.0 5.3 5.5 37.9 

Maximum (min) 5.4 5.9 7.9 17.9 5.4 9.3 22.6 11.2 35.7 39.0 

Average (min) 5.3 5.5 7.2 16.1 5.3 7.3 17.1 6.1 20.8 38.3 

Maximum Corridor 
Travel Time Statistics1 

Scenario ID 

S-1-R S-2-R S-3-R S-33-R S-4-R S-5-R S-6-R S-7-R S-8-R S-9-R 

Minimum (min) 5.2 5.3 6.4 12.9 5.3 5.4 11.6 5.3 5.4 38.5 

Maximum (min) 5.5 6.2 7.9 16.6 5.9 7.7 15.5 14.2 39.2 39.8 

Average (min) 5.3 5.5 7.0 14.5 5.4 6.3 13.2 6.7 23.1 39.1 

1Values displayed in the table are all relative to the maximum travel time observed during a given random seed run 

  



 

 

TABLE 6-19: SUMMARY OF CORRIDOR TRAVEL TIME MEASUREMENTS (LEFT-SIDE 
LANE CLOSURE) 

Maximum Corridor 
Travel Time Statistics1 

Scenario ID 

C-1-L C-2-L C-3-L C-33-L C-4-L C-5-L C-6-L C-7-L C-8-L C-9-L 

Minimum (min) 5.2 5.2 6.9 15.7 5.3 5.4 10.5 5.3 5.6 29.7 

Maximum (min) 5.3 5.4 8.6 18.8 5.7 8.1 12.8 5.5 19.2 36.1 

Average (min) 5.3 5.3 7.5 17.6 5.4 6.3 11.3 5.4 10.2 34.0 

Maximum Corridor 
Travel Time Statistics1 

Scenario ID 

S-1-L S-2-L S-3-L S-33-L S-4-L S-5-L S-6-L S-7-L S-8-L S-9-L 

Minimum (min) 5.2 5.2 6.3 10.8 5.3 5.4 8.5 5.4 5.9 36.2 

Maximum (min) 5.5 5.5 6.9 15.3 6.1 7.2 12.3 12.3 28.1 38.3 

Average (min) 5.3 5.3 6.6 12.2 5.4 6.1 9.9 6.4 15.0 37.3 

1Values displayed in the table are all relative to the maximum travel time observed during a given random seed run 

The results presented in the tables support previous findings in the literature by 
demonstrating that maximum corridor travel time—and by association, maximum 
queue length—increases rapidly as the gap between pre- and post-breakdown capacity 
increases. A 2 12 study by Hu, Schroeder, and Rouphail explored the “two-capacity” 
phenomenon documented by numerous others (Hu et al., 2012). Through a 
comprehensive literature search and theoretical experiment conducted using FREEVAL 
software, the authors compared output measures of effectiveness for a six-mile, three-
lane freeway section coded with a single lane closure under two scenarios. Under the 
first scenario, the capacity of the freeway facility in question was assumed the same 
before and after the onset of congestion, whereas a 5% “capacity drop” after the onset 
of breakdown was assumed under the second scenario. The results of this experiment 
showed that a 5% decrease in the queue discharge rate relative to the pre-breakdown 
flow rate at capacity yielded a 41% increase in corridor travel time and 78% increase in 
maximum queue length. These findings were used as rationale for incorporating queue 
discharge flow in the Freeway Facilities methodology in the Highway Capacity Manual. 
Moreover, the authors of this study concluded that corridor performance measures of 
effectiveness were most sensitive to slight deviations in this capacity drop at demand-
to-capacity ratios near 1.0.  

As noted previously, Vissim input traffic volumes developed for the current experiment 
were coded to yield demand-to-capacity ratios no greater than 1.1. In this way, the 
results of the experiment are most useful for understanding traffic operations at three-
to-two freeway lane closures where scheduling decisions are most difficult for agencies. 
That is, when typical freeway demand is well in excess of theoretical capacity (e.g., on a 
major urban freeway corridor between 7:00AM and 7:00PM), lane closures are likely to 
be restricted during these periods of the day. However, when expected freeway 

demand is near capacity (e.g., d/c ≤ 1.1), such decisions become more difficult and 



 

 

impactful. A few key trends highlighted in the tables are discussed in the subsections 
that follow. 

Left- vs. Right-Side Lane Closures 
When input truck percentage and upstream geometry (e.g., curved vs. straight 
horizontal alignment) are held constant, the results summarized in Table 6-17 and Table 
6-18 generally indicate that the simulated work zone corridor exhibits less delay under 
left-side lane closures than right-side lane closures. At an input truck percentage of 5%, 
the difference in maximum corridor travel time is less striking, increasing or decreasing 
by an average of no more than 1.5 minutes per vehicle. However, it is worth noting that 
the maximum corridor travel time increases by nearly 10% under scenario C-33-L 
relative to scenario C-33-R. A similar trend is not observed under scenarios S-33-L and S-
33-R, suggesting that a slight increase in corridor travel time is possible under low truck 
traffic volumes when curved geometry exists upstream of the lane closure. This finding 
may be attributable to the increase in late lane changes observed in the field data and 
coded in Vissim under curved upstream geometry relative to that under straight 
upstream geometry.  

However, as the percentage of trucks increases in the traffic stream, this trend is 
reversed. Given that most heavy trucks utilize the right two lanes on six-lane freeway 
facilities, it is intuitive that corridor travel time and queue length increase under right-
side lane closures relative to left-side lane closures, with the largest differences 
observed under scenarios with 30% trucks in the traffic stream. As depicted visually in 
Figure 6-9, maximum corridor travel time increases by upwards of 50% under scenario 
S-8-R relative to scenario S-8-L, from an average of 15 minutes per vehicle to more than 
23 minutes per vehicle. Queues persist for approximately 1.5 hours longer and reduced 
speeds extend nearly two miles farther upstream of the modeled lane closure under 
scenario S-8-R than under scenario S-8-L. These findings align with the discussion in the 
previous subsection; despite substantial differences in corridor measures of 
effectiveness, the maximum pre-breakdown flow rate, average queue discharge rate, 
and corresponding “capacity” drop observed after breakdown differed by no more than 
4% between scenarios in each case. 

A more subtle trend in the data also highlights the sensitivity of corridor operations to 
stochastic variation in the simulation outputs when a greater percentage of trucks are 
included in the traffic stream. Namely, the range of the maximum corridor travel time in 
the 10 random seed runs conducted for scenarios S-8-L and S-8-R included 
measurements as low as 5.4 minutes per vehicle and as high as 39.2 minutes per 
vehicle. Given that the only differences among these simulation runs are the random 
seeds (all traffic and geometric characteristics are constant among them), this finding 
underscores both how variable traffic conditions are as demand nears capacity and the 
appropriateness of characterizing the appearance of breakdown conditions (as a 
measure of capacity) as probabilistic, rather than deterministic.  Informed agency 
scheduling and traffic control layout decisions are especially impactful in such cases. 

  



 

 

 

FIGURE 6-9: CORRIDOR SPEED HEAT MAP (SCENARIO S-8-R VS. SCENARIO S-8-L) 
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Curved vs. Straight Upstream Geometry 
With input truck percentage and lane closure side held constant, the results summarized 
in Table 6-17 and Table 6-18 are mixed relative to the comparisons presented for left- 
and right-side lane closures previously. Specifically, when fewer trucks are present in the 
traffic stream, the results generally indicate that the simulated work zone corridor 
exhibits less delay under straight upstream geometry than curved upstream geometry. 
At an input truck percentage of 5%, the maximum corridor travel time increases by 5.4 
minutes for a left-side closure (+44%) and 1.6 minutes for a right-side closure (+11%) 
under curved upstream geometry relative to that under straight upstream geometry. As 
described in the previous subsection, this finding may be attributable to the increased 
number of lane changes observed within Zone 1 and Zone 2 (i.e., closest to the 
transition area) in the field data and coded in the Vissim models under curved upstream 
geometry. When drivers have less time to visualize a downstream lane closure, late lane 
changes become more likely and required braking maneuvers become more aggressive. 
These trends are depicted visually in Figure 6-10.  

Conversely, as the percentage of trucks in the traffic stream increases, corridor 
performance generally improves under curved upstream geometry relative to that 
under straight upstream geometry. Under scenario C-8-L, maximum corridor travel time 
is 4.8 minutes less (-32%) than that under scenario S-8-L. Though an increase in the lane 
change distance coded in Vissim has typically been associated with an increase in 
modeled capacity and related measures of corridor performance, this finding may 
attributable to less efficient use of available lane capacity in the closed lane when lane 
changes occur farther upstream of the transition area. Differences in maximum corridor 
travel time are less pronounced or inverted when drawing the same comparisons under 
right-side lane closures. A 10% decrease in maximum corridor travel time was observed 
under scenario C-8-R relative to scenario S-8-R; however, under scenario C-6-R, 
maximum corridor travel time and queue duration are 3.9 minutes and 2.4 hours longer, 
respectively, than those under scenario S-6-R.  

These mixed results highlight caveats in the field data and Vissim models and allude to 
opportunities for further research. First, no trucks were observed in the leftmost lane in 
the field data under curved upstream geometry. The number of trucks observed in the 
leftmost lane on a six-lane, suburban freeway is likely practically insignificant in any 
context, and the Vissim models run as part of this experiment were coded such that 
more than 90% of all heavy trucks enter the network in the right two lanes. However, 
the results suggest that Vissim model outputs are sensitive to coding the lane change 
distance distributions to allow for mandatory lane changes by heavy trucks to occur 
within ½ mile of the transition area under a left-side closure. As discussed in the next 
section, future field data collection and Vissim modeling efforts should examine truck 
lane changing behavior further given the apparent sensitivity of model outputs to 
related input parameters. 

  



 

 

 

FIGURE 6-10: CORRIDOR SPEED HEAT MAP (SCENARIO C-33-L VS. SCENARIO S-33-L) 
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6.5 Summary  
As emphasized at the beginning of this chapter, freeway work zones have a profound 
impact on the safety and mobility of the traveling public. Recent surveys of state 
departments of transportation have revealed inconsistencies in work zone scheduling 
and traffic control decisions (Ramadan and Sisiopiku, 2016). Similarly, there exists a 
need to limit ambiguity and maximize consistency in microsimulation model 
development and calibration (VDOT, 2020), particularly when analyzing freeway work 
zones. Recent advances in technology because of the AI-based semi-automatic traffic 
data extraction system summarized in this report facilitate initiatives that address these 
issues but also necessitate advances in supporting research efforts.  

This chapter represents a significant contribution to the body of literature and 
summarizes two primary tasks. First, Task 1 explored the sensitivity of Vissim model 
outputs to changes in key input parameters. Of the parameters found to have the 
greatest influence on simulated capacity and most critical to calibrating freeway work 
zone simulation models, the lane change distance has been least studied. As such, this is 
believed to be the first study of its kind to leverage lane change distance distributions 
built from field data as inputs in Vissim. The outcomes of this task validated the utility of 
semi-automatically extracted traffic data by demonstrating the disparity in model 
outputs under the field data-based lane change distance distributions studied here and 
the typical ‘‘default’’ value found in the literature. A calibrated parameter set was 
vetted and carried forward as part of this project but may also be used as a starting 
point for future modeling efforts. 

Second, Task 2 applied the calibrated parameter set developed as part of Task 1 to a full 
factorial experiment examining the impact of various geometric and traffic stream 
characteristics on traffic measures of effectiveness such as flow rate, speed, travel time, 
and queue length. The results of this effort suggest that typical measures of pre- and 
post-breakdown freeway capacity are not sensitive to changes in lane closure side or 
upstream geometry at three-to-two lane closures but vary substantially based on the 
percentage of trucks in the traffic stream. More critically, substantial deterioration in 
corridor performance measures such as travel time and queue length are possible even 
under fluctuations in pre- and post-breakdown capacity of less than 5%. The findings 
presented in this chapter generally suggest that maximum corridor travel time and 
queue length are greater under right-side lane closures and curved upstream geometry. 
Additionally, for some specific combinations of input traffic volume distribution and 
truck percentage when demand approaches capacity, the model output corridor travel 
time varied by as much as 30 minutes per vehicle under a single scenario, underscoring 
the sensitivity of freeway work zone traffic operations—and the fragility of traffic flow 
stability—at demand-to-capacity ratios near 1.0.  

The methodologies and findings presented in this chapter fill existing gaps in the body of 
freeway work zone capacity and simulation literature and allude to significant 
opportunities for future research. Subsequent studies should focus on reducing 
ambiguity in Vissim model development and calibration and facilitating understanding 



 

 

of the sensitivity of corridor measures of effectiveness—those of most concern to 
agencies and road users—to changes in the prevailing characteristics at a given freeway 
work zone. 

  



 

 

 CONCLUSIONS AND RECOMMENDATIONS 
This chapter presents conclusions and recommendations. In this research project, a preliminary 
version of an AI-based work zone traffic and driver behavior information extraction system 
using widely available 2D camera images, machine learning, and computer vision has been 
proposed and developed to extract real-world traffic and driver behavior information, including 
vehicle count, vehicle classification, vehicle speed, time headway, and lane change location.   

A case study involving two 30-minute work zone videos collected on an I-95 work zone near 
Savannah, Georgia, was used to 1) demonstrate the use of the proposed AI-system to extract 
traffic and driver behavior information, 2) present the benefits of analyzing the extracted 
information to obtain accurate and refined traffic and driver behavior information (called 
analyzed information) including traffic counts, traffic speeds, traffic headway, and work zone 
driver merge behaviors. This research focuses on studying the feasibility of using AI technology 
to extract traffic information to enhance traffic simulation. A separate effort with a pilot study 
with a large diverse data set is recommended in the future to further validate, refine and 
implement the proposed method.  The preliminary findings of analyzing the extracted 
information are as follows:  

1) For the traffic speed study, in low traffic speed conditions (high traffic density), the average 
traffic speed was 22MPH with a standard deviation of 7 MPH. An average traffic speed of 53 
MPH with a standard deviation of 10 MPH in high traffic speed conditions (low traffic 
density).  

2) For aggregation time interval study, in uniform traffic speed conditions (low speed or high-
speed traffic), it was found that the variability/standard deviation of aggregated traffic 
speed distribution does not vary significantly based on different aggregation time intervals. 
Therefore, using 15-minute time intervals is acceptable to support subsequent traffic 
simulation. However, to provide the simulation model with more accurate/consistent speed 
distribution inputs, it is recommended that a small aggregation interval, such as 5-minutes, 
be used during the speed transition periods with significant speed changes, like from free 
flow to saturated flow (such as from 7AM – 8AM or 4PM to 5PM), so insight behaviors could 
be observed.  

3) For driver following behavior study, the measurement of the time-gap between vehicles in 
the inner traffic lane was found to be shorter in high traffic speed conditions than in low 
traffic speed conditions, while the time-gap between vehicles in the outer traffic lane did 
not show a noticeable difference in different traffic speeds. The average time-gap in high 
traffic speed conditions was 1.5 seconds compared to 1.9 seconds in low traffic speed 
conditions. The standard deviation of the time-gap was also found to be slightly larger in 
high traffic speed conditions. The standard deviation of time headway in high traffic speed 
conditions is 0.95 seconds compared to 0.8 seconds in low traffic speed conditions.  

4) For the work zone driver merge behavior study that analyzed the lane change locations, the 
following are the preliminary findings:   

a. A majority of cars (53%) merge late (close to the work zone taper) in low traffic 
speed conditions (high traffic density), compared to only 12% in high traffic speed 
conditions (low traffic density).  



 

 

b. Among the 53% late merges in high traffic density conditions, 28% of the cars merge 
dangerously late inside the work zone transition areas. 

c. A majority of truck drivers typically merge earlier than car drivers (more than 50% of 
trucks merge 1000 feet in front of the work zone taper).  

An error analysis was performed to assess the accuracy of the proposed AI-system and identify 
the factors contributing to the errors. The following is the summary of the error analysis and 
findings. 

1) An error analysis methodology is established by comparing the extracted data with 
manually collected ground reference data (real-world data), and it involved:  

a. Analyzing the outliers of aggregated speed distribution in different time intervals, 
and  

b. Identifying the factors impacting the accuracy based on three categories of error 
sources, including a) sensor-related factors, b) traffic and environment-related 
factors, c) algorithm-related factors. 

2) The findings from the error analysis reveal that, 
a. In traffic count error analysis, 

i. Traffic count results show overcounting of the vehicles under high traffic 
speed conditions. Errors in the short-term vehicle tracking and re-
identification algorithm were identified as possibly contributing to 
overcounting, which is an algorithm-related error factor. 

ii. Traffic count results show undercounting of the vehicles under low traffic 
speed conditions. The occlusion of vehicles (vehicles in the lane closer to the 
camera blocking the view of vehicles in the lane further from the camera) 
was identified as a factor potentially contributing to undercounting the 
traffic, which is a combined impact of both traffic and environment-related 
and sensor-related error factors. 

b. In traffic speed error analysis, 
i. The traffic speed was underestimated (by 6 MPH) at higher traffic speeds 

(greater than 85 km/h). The low video frame rate, an algorithm-related error 
factor, contributed to the traffic speed underestimation. 

Based on the error analysis findings, it is recommended that the camera be set at a high 
location (over 50 ft) so that vehicles in all lanes can be captured without occlusion. It is also 
recommended that a high video frame rate be used, and that the vehicle detection and re-
identification algorithm be refined to improve the vehicle count and traffic speed accuracy in 
the preliminary version of the proposed AI-system.  

A case study was conducted using the real-world data collected on I-95 and it demonstrated the 
preliminary version of AI-based work zone traffic and driver information extraction system 
(using widely available 2D camera images) is promising for the study of real-world work zone 
traffic and driver data. It can provide valuable input that has previously not existed, and it can 
greatly help develop accurate and reliable traffic simulation models.  



 

 

A work zone simulation model was developed to perform a study that explored the sensitivity 
of Vissim model outputs to changes in key input parameters, especially lane change distance 
leveraging the extracted real-world traffic and driver behavior information instead of using 
typical ‘‘default’’ value found in the literature. The outcomes of this study highlighted the 
disparity in model outputs under the field data-based lane change distance distributions 
extracted from the AI-system and the typical ‘‘default’’ value, thereby confirming the utility of 
the extracted real-world traffic and driver behavior information. The applications using the 
enhanced work zone traffic simulation models are also presented to provide guidance for 
transportation agencies for improving their work zone traffic management.  

Further, the calibrated parameter set developed using the real-world traffic data was applied to 
a full factorial experiment examining the impact of various geometric and traffic stream 
characteristics on traffic measures of effectiveness such as flow rate, speed, travel time, and 
queue length. The results of this effort suggest that typical measures of pre- and post-
breakdown freeway capacity are not sensitive to changes in lane closure side or upstream 
geometry at three-to-two lane closures but vary substantially based on the percentage of trucks 
in the traffic stream. However, substantial deterioration in corridor performance measures such 
as travel time and queue length are possible even under fluctuations in pre- and post-
breakdown capacity of less than 5%. The findings presented in this chapter generally suggest 
that maximum corridor travel time and queue length are greater under right-side lane closures 
and curved upstream geometry. Additionally, for some specific combinations of input traffic 
volume distribution and truck percentage when demand approaches capacity, the model 
output corridor travel time varied by as much as 30 minutes per vehicle indicating significant 
delays and queues are possible at a given freeway lane closure, even when typical freeway 

demand is near capacity (i.e., d/c ≤ 1.1). 

The following are the recommendations for future research to refine the AI-based work zone 
traffic and driver information extraction system for full-scale implementation:  

1) A large dataset with diverse conditions (including different traffic saturation levels, lighting, 

weather conditions, and different roadway geometries, such as curved roadways, camera 

viewing angles, etc.) and longer duration is recommended to further validate and improve 

the preliminary version of the AI-based work zone traffic and driver behavior data 

extraction system. 

2) Develop a method to further enhance the accuracy of the vehicle count and speed 

computation method to remove outliers and noises by applying enhanced data analysis 

(including multi-interval data aggregation and statistical analysis, etc.). 

3) Perform assessment of the camera image quality (including resolution, distance- to-camera 

position, lighting conditions, blurriness in various conditions (such as in fog, cases of 

occlusion, etc.) and its impact on vehicle detection and classification. 

4) Implement camera calibration based on real-world vehicle positions along with current 

vehicle tracking and re-identification methods to enhance the current vehicle count and 

speed computation.  



 

 

The following are the recommendations for further enhancing the driver behavior study using 

the widely available read-world camera images: 

1) Study real-world work zone traffic and driver merge behaviors in diverse conditions 

(including different traffic saturation levels, lighting, and weather conditions, and different 

roadway geometries, such as curved roadways, camera angles, etc.). 

2) Establish a performance measure to determine the adequate time interval for traffic 

information and driver behavior analysis. This performance measure could be the 

variability, like the standard deviation, in a one-time interval. A finer time interval would be 

needed if the variability is too large so we could produce accurate simulation outcomes. 

3) Develop a quantitative method with a confidence level indicator to differentiate the 

extracted traffic and driver behavior information with good and bad quality. The 

transportation agencies' willingness to adopt automatically and semi-automatically 

extracted vehicle count and speed information using widely available camera images has 

been significantly hindered by the lack of a viable method to separate the extracted traffic 

and driver behavior data, such as vehicle counts and speed information, with good and bad 

data quality. Developing this quantitative method must enable transportation agencies to 

use the extracted information with good quality and have a confidence level for taking full 

advantage of their widely available cameras (such as the 5000 cameras in Metro Atlanta, 

Georgia). This method should include but not be limited to issues such as a) image quality 

from camera sensors, b) traffic and environment conditions, c) AI and computer vision 

computation methods, and d) multi-interval data aggregation and its statistical analysis to 

remove the outliers and noises. 

 

The following are the recommendations for further extending the Vissim traffic simulation 
study performed in Chapter 6:  

1) Extend the calibrated parameter set developed as part of the simulation study presented in 

this report to future study of three-to-two lane closures in lieu of typical default values 

found in the literature and consider the calibrated parameter set developed when modeling 

other lane closure configurations (e.g., two-to-one) in the absence of site-specific data. 

2) Collect more field data related to truck lane changing behavior and perform detailed 

analysis on truck lane change phenomenon, as Vissim model outputs were found to be 

highly sensitive to slight changes in related inputs. The field data collected as part of this 

study indicated that truck lane changing behavior differs before and after the onset of 

breakdown (i.e., trucks begin to change lanes further upstream of the transition area after 

queues have formed and propagated upstream).  

 

The following are the recommendations for improving the work zone safety and mobility based 

on the outcomes of the traffic simulation study: 



 

 

1) Schedule lane closures when demand is less than 90% of theoretical capacity, when 

possible. This is because significant delays and queues are possible at a given freeway lane 

closure, even when typical freeway demand is near capacity (i.e., d/c ≤ 1.1). 

2) Do not configure work zone traffic control such that the transition area begins within ½ mile 

downstream of a horizontal curve. Field data collected as part of this project suggests that 

drivers will wait longer to change lanes without visual confirmation of the downstream lane 

closure.  
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	ABSTRACT 
	Roadway work zones reduce road capacity, increase traffic delays, and create dangerous situations for drivers and construction workers. It is important to study real-world work zone traffic and driver behavior, including vehicle count, vehicle classification, driving speed, headway, lane changing, etc. to understand and analyze how they impact safety and mobility under different work zone scenarios (e.g., time periods, traffic conditions, roadway geometry, traffic control configurations, etc.). Work zone tr
	However, there is 1) a lack of a system to process raw traffic footage obtained from work zones to extract traffic and driver behavior information, especially systems that leverage recent advances in computer vision and artificial intelligence (machine learning), 2) a lack of understanding of the factors impacting the accuracy of the data extracted using an AI-system, and 3) a lack of quantitative analysis that presents the potential benefits of using the extracted real-world traffic and driver behavior inf
	 
	Keywords: Automatic Workzone traffic and driver behavior information extraction, artificial intelligence, camera images, traffic simulation, congestion mitigation  
	  
	EXECUTIVE SUMMARY 
	Roadway work zones reduce road capacity, increase traffic delays, and create dangerous situations for drivers and construction workers. There is a need to study real-world work zone traffic and driver behavior in response to different work zone scenarios using widely available 2D camera footages a) to understand a work zone’s impacts on traffic and driver behavior, and b) to develop appropriate traffic control strategies to manage and/or mitigate these impacts. Work zone traffic simulation models have been 
	In this report, a case study involving two 30-minute work zone videos was used to 1) demonstrate the use of the proposed AI-system, 2) present the benefits of analyzing the extracted information to obtain accurate and refined traffic and driver behavior information. The results show that the data extracted from 2D cameras can capture different traffic and driver behaviors in different traffic conditions. An error analysis was also performed to assess the accuracy of the proposed AI-system and identify the f
	Moreover, a work zone simulation model was developed to perform a study that explored the sensitivity of Vissim model outputs to changes in key input parameters, especially lane change distance, leveraging the extracted real-world traffic and driver behavior information instead of using typical ‘‘default’’ value found in the literature. The outcomes of this simulation study confirmed the utility of the extracted real-world traffic and driver behavior information. Therefore, when developing a more reliable w
	This research focuses on studying the feasibility of using AI technology to extract traffic information to enhance traffic simulation. A separate effort with a pilot study with a large diverse data set is recommended in the future to further validate, refine and implement the proposed method.  Recommendations in this report include 1) further validating and refining 
	the AI-based work zone traffic and driver information extraction system with a large data set for implementation of the developed system, 2) enhancing the driver behavior study using the widely available read-world camera images, 3) extending the Vissim traffic simulation study presented in this report, and 4) scheduling work zone lane closures and designing work zone configuration to enhance safety and mobility.  
	 Introduction 
	The presence of a work zone reduces road capacity and increases traffic delays, which causes twenty-four percent of non-recurring congestion (Chin et al., 2004). In addition, work zones also create dangerous situations for drivers and construction workers and have been involved in close to 800 fatalities (FARS, 2018) annually in the U.S. There is a need to study the real-world traffic (traffic volume, traffic speed, etc.) and driver behavior information (e.g., vehicle count, vehicle classification, driving 
	Work zone traffic simulation models have been developed to quantitatively evaluate work zone impacts by considering driving behavior (e.g., vehicle headway, speed profile, merging location and time, vehicle lateral offset, etc.) and work zone scenarios. Microcosmic traffic simulation for work zones has been predominantly performed using VISSIM or CORSIM (Jehn & Turochy, 2019; Sun & Elefteriadou, 2010). Ideally, field data measured in a work zone would be used to calibrate VISSIM and CORSIM by providing actu
	Work zone traffic camera footage, together with artificial intelligence, provide a promising alternative that can cost-effectively acquire detailed real-world traffic information (e.g., traffic count, density, etc.) and driver behavior information (e.g., vehicle type, vehicle speed, merging location and time, vehicle lateral offset, vehicle headway, etc.). Previously, researchers have used video-based processing techniques to obtain detailed driver behavior data with a focus on collecting speed data (Boora 
	extraction system (AI-system) using camera footage to obtain real-world work zone driver behavior and traffic information. 
	After developing such an AI-system, it is important to understand the performance of the system, including its accuracy and factors contributing to errors so that we are aware of the limitations of the data extracted by the system and can further refine the AI-system. Limited research, including Sil and Maji (2014) and Alkherret et al. (2017) studied the accuracy of vehicle speed extracted using traditional image-processing techniques and identified a) frame rate, b) camera resolution, c) camera angle of vi
	 Due to the lack of real-world work zone traffic and driver behavior information, default values are often used for the input parameters for the development of work zone traffic simulation models. Although the real-world work zone traffic and driver behaviors (such as merge location, driving speeds, etc.) vary in different time periods, different geometrical locations, and different traffic (saturation) conditions, the default values do not account for this variation. Therefore, the use of default values si
	In summary, the following are the research needs that must be addressed: 
	There is a need to develop an AI-based work zone traffic and driver behavior information extraction system using the camera footage widely available to obtain real-world driver behavior and traffic information.  
	There is also a need to assess the accuracy of the data extracted using the AI-based work zone traffic and driver behavior information extraction system and identify the factors contributing to the errors. 
	Finally, there is a need to quantitatively assess the potential benefits of using the extracted real-world traffic and driver behavior information in the work zone traffic simulation models in comparison to default values.  
	 
	The following are the objectives of this research: 
	To develop an AI-based work zone traffic and driver behavior information extraction system using work zone camera footage to extract real-world traffic and driver behavior information, including vehicle count, vehicle classification, vehicle speed, time headway, and lane change location;  
	To assess the accuracy of the traffic and driver behavior information extracted (traffic count, vehicle classification, vehicle speed) using the AI-based system and identifying the factors contributing to the errors;  
	To develop a work zone simulation model and perform a sensitivity study to quantitatively assess the potential benefits of using the extracted real-world traffic and driver behavior information for comparison to default values in work zone traffic simulation models.  
	 
	This report is organized as follows:  
	Chapter 1 introduces the background of the problem, research needs, and objectives.  
	Chapter 2 presents a four-part literature review studies related to work zone driver merge behavior analysis, techniques for driver behavior and traffic information extraction using camera footages and AI, the errors associated with these techniques, and microcosmic traffic simulation and parameters.  
	Chapter 3 presents a preliminary version of an AI-based traffic and driver behavior extraction system (AI-system) using widely available 2D camera footages and AI (Yolo3).  
	Chapter 4 presents a case study involving two 30-minute work zone videos collected on an I-95 work zone near Savannah, Georgia, to 1) demonstrate the use of the proposed AI-system to extract traffic and driver behavior information, and 2) present the benefits of analyzing the extracted information to obtain accurate and refined traffic and driver behavior information (called analyzed information), including traffic counts, traffic speeds, traffic headway, work zone driver merge behavior.  
	Chapter 5 presents an error analysis methodology, identifies and categorizes the factors impacting the performance of the proposed AI-system, and recommends the possible methods to remove bias and outliers for improving the accuracy and reliability of the extracted information.  
	Chapter 6 presents a work zone traffic simulation model developed using the extracted real-world work zone traffic and driver behavior information and quantitatively assesses the sensitivity of traffic simulation outcomes by comparing default values with the extracted real-world driver behavior and traffic information. The applications of the enhanced work zone traffic simulation models using the extracted real-world work zone traffic and driver behavior 
	information to improve transportation agencies’ work zone traffic management are also presented.  
	Chapter 7 presents conclusions and recommendations.   
	 Literature Review 
	This chapter reviews 1) studies related to work zone driver merge behavior, 2) techniques for vehicle detection and classification from camera footage and the use of AI to extract traffic and driver behavior (vehicle classification, count, speed), 3) error analysis in vehicle classification, count, speed estimation, and lane change, including the identification of error-causing factors, and 4) microscopic traffic simulation applications in freeway work zones. Finally, this chapter presents a summary of the 
	2.1 Work Zone Driver Merge Behavior Analysis 
	Unlike regular roadway conditions, work zones are associated with more frequent lane changing and merging due to mandatory and discretionary lane closures (He et al., 2016). Such lane closures increase the number of traffic conflicts and push drivers to change their behavior patterns, which lead to the potential risk for both driver safety and traffic mobility (Zhu & Saccomanno, 2004; Edara & Cottrell, 2007). Work zone statistics suggest that 26% of fatalities are caused by late merges (defined as changing 
	2.1.1 Factors impacting work zone driver merge behavior 
	According to Hang et al. (2018), lane change behaviors during the merge at a work zone is a continuous process and can be impacted by the highway design elements, surrounding traffic conditions, and driver characteristics. The following is a list of comprehensive factors that can impact driver merge decisions, including 1) vehicle type (Li & Bai, 2009); 2) roadway geometries (Tsai et al., 2011); 3) environmental conditions, such as weather (Li & Bai, 2009), and lighting conditions (Ghasemzadeh & Ahmed, 2019
	2.1.2 Work zone driver merge behavior analysis applications and challenges 
	In summary, several studies have investigated the impacts of different factors on work zone driver behaviors through simulated studies, surveys, and crash data analysis; however, study of the actual driver merge behaviors using real-world camera footage under different scenarios involving (but not restricted to) different roadway geometries, traffic densities, type of lane closed, etc., is still very limited, although there are many potential applications of the real-world driver merge behavior analysis, in
	accurately, 2) optimization of work zone configurations and traffic control strategies to reduce conflicts (near-crashes and actual crashes) and improve work zone mobility, 3) enablement of transportation agencies to develop work zone hazard awareness systems to ensure the safety of workers in the work zone, 4) assistance to autonomous/connected vehicles so they can safely navigate through work zone areas, and 5) prediction of dangerous situations (actual crashes and near-crashes) in different roadway and t
	The major challenge faced by researchers studying work zone driver merge behaviors is the lack of a) a system to extract real-world traffic and driver behavior information (vehicle classification, count, speed, and lane change) using widely available camera footages, and b) a methodology to analyze the extracted data. The following section (Section 2.2) reviews the traffic and driver behavior (vehicle classification, count, speed, and lane change) extraction techniques using camera footages and AI.  
	2.2 Review of Traffic and Driver Behavior (vehicle classification, count, speed, and lane change) Extraction Techniques Using Camera Images and AI  
	Conventional traffic detection technologies have the capabilities to detect basic traffic flow characteristics, such as the number of vehicles passing a detection site, the height of vehicles, and the speed of vehicles. Examples of such technology include inductive loops (Burnos et al., 2007; Hall, 1992; Ramachandran et al., 2002), microwave (Hall, 1992; Ho & Chung, 2016; Steux et al., 2002), infrared (Hall, 1992), etc. These technologies have been widely applied worldwide; however, they have been rarely us
	In this research project, we focus on reviewing the technologies and methods using widely available 2D camera footages to automatically detect and classify vehicles in support of subsequent traffic information extraction (e.g., vehicle counts, vehicle classification, speed, and lane change). 
	2.2.1. Vehicle Detection Using Computer Vision, Image Processing, and Traditional Machine Learning 
	This section presents algorithms and methods using computer vision, image processing, and machine learning to process single camera footage for automatic vehicle detection and classification. Recent major advances in monocular vision-based vehicle detection have mirrored advances in computer vision, machine learning, and pattern recognition. There have been immense improvements from template matching to sophisticated feature extraction and classification. Please note that a major portion of this review is 
	based on the paper by Sivaraman and Trivedi (2013). The vehicle detection algorithms and methods are categorized based on 1) feature-based vehicle detection and 2) vehicle detection using classifiers, including conventional machine learning and deep learning. They are presented below. 
	Feature-Based Vehicle Detection 
	In computer vision and image processing, a feature is a piece of information that helps solve a computational task. Features may be low-level representations, such as points, edges, or objects. Features may also be the result of a general neighborhood operation, such as convolution operations or feature detection algorithms, such as SIFT, SURF, etc., applied to the image. The idea of a feature is generic, but we might need to choose very specific types of features to solve the problem at hand. 
	A variety of appearance features have been used in the field to detect vehicles. Many prior studies used the principle of symmetry to identify vehicles. They created a vertical axis over image patches and checked for symmetry. The symmetry was often checked for after finding the edges of vehicles; this principle can be used to detect the rear and front of vehicles (Hoffmann, 2006; Hilario et al., 2005; Arrospide et al., 2008). Identifying edges helps detect the sides and shadows of vehicles based on the rel
	Over the past two decades, work in this field has advanced to using a more robust set of features that have properties such as invariance to scale, angle, brightness, etc. These feature sets create vector-based representations of objects and can be used to train machine learning models to classify objects. Histograms of oriented gradient (HOG) features and Haar-like features are two very popular features that we will discuss in the next section. 
	Histogram of Gradients 
	HOG features (Dalal & Triggs, 2005) are extracted by running an edge detector, such as the Sobel Filter, over the image. This filter allows us to calculate the horizontal and vertical gradients; then, the magnitude and orientation of the gradients are computed and the values are discretized (ie., divided into intervals and binned to form a histogram). The histogram is then used as a feature vector. HOG features have proven to be very good descriptors and have been used in such things as pedestrian and vehic
	Haar Features 
	Haar-like features are sums and differences in intensities of rectangular regions in an image (Viola & Jones, 2001). In general, the intensities inside each rectangular region are summed, and the sums between adjacent regions are subtracted. They are computationally inexpensive and are sensitive to vertical and horizontal edges and to symmetry, making them ideal for vehicle detection. In the work by Liu et al. (2007), the front faces of vehicles following the vehicle with a rear-facing camera were detected 
	Other Features 
	Negri et al. (2008) combined HOG and Haar-like features to detect vehicles. Scale invariant feature transform (SIFT) features (Lowe, 1999) were used (Zhang et al., 2011) to find the rear faces of vehicles despite the presence of partial occlusions. Lin et al. (2012) used SURF (Bay et al., 2008) and edges to detect vehicles in the blind spot. Zhang et al. (2006) used Gabor and Haar features for vehicle detection. Principal component analysis and independent component analysis was used by Wang and Lien (2008)
	The major issue with feature-based detections is their limitation of what can be expressed; each type of feature, such as SIFT or ORB, has unique characteristics, but by using just one of them, the levels of expression are limited. Deep learning feature extraction is an inherent part of the algorithm that is learned through backpropagation, allowing the model to learn the features that best represent the object. Another issue is that pure, feature-based matching without using any classification model will n
	Vehicle Detection Using Classifiers 
	Classification is the process of assigning a discrete label to an entity. In machine learning, certain algorithms, such as SVM’s, Decision Trees, etc., are trained based on feature vectors to correctly identify the class of a data point. Computer vision makes use of these classifiers that are trained on feature vectors, such as the ones mentioned in the previous section, to predict the class of an object in an image. 
	Classification models/algorithms can be broadly split into two categories: discriminative and generative. Discriminative classifiers model the posterior probability of a class given a label, whereas generative models model the joint probability of the data and label. Discriminative models have been used more widely than generative models for vehicle detection. In classifier-based techniques, it is common for features of the chosen kind to be extracted for each patch in an image, and the classifier would cla
	Support Vector Machines 
	Support Vector Machines are binary classifiers that learn to draw a hyperplane that maintains the maximum margin between the two classes. An example of the boundary that an SVM can learn is shown in 
	Support Vector Machines are binary classifiers that learn to draw a hyperplane that maintains the maximum margin between the two classes. An example of the boundary that an SVM can learn is shown in 
	Figure 2-1
	Figure 2-1

	. As can be observed, the boundary is placed so that the distance between the two classes is maximized. SVM’s were very popular due to the fact that they were non-parametric and can learn non- linear decision boundaries using the “kernel trick.” SVMs can be used for multi-class classification using the “one-versus-all” training paradigm. In this concept, if there are n different classes, we train each specialized SVM to predict whether the instance belongs to the class it is trained to recognize or not. The

	 
	Figure
	FIGURE 2-1: DECISION BOUNDARY OF AN SVM 
	SVMs have been widely used for vehicle detection. In the work done by Liu et al. (2007), Haar wavelet coefficients were used to train an SVM to detect vehicles. SVM classification trained on HOG features has been used in Teoh and Brunl (2012), Sivaraman and Trivedi (2011), and Sun and Bebis (2006). The HOG-SVM formulation was extended to detect and calculate vehicle orientation using multiplicative kernels in Yuan et al. (2010). SVMs trained on edge features were used in Blanc et al. (2007) and Kim (2006) t
	Boosting 
	Boosting is the concept of creating an ensemble of multiple weak classifiers that can form an extremely well-performing classifier when combined together. 
	AdaBoost (Freund & Schapire, 1999) has been also widely used for classification. Liu et al. (2005) used AdaBoost classification to detect vehicles based on symmetry feature scores. In Khammari et al. (2005), edge features were classified using AdaBoost. Haar-like feature extraction and AdaBoost classification were used to detect the rear faces of vehicles in Cui et al. (2010), Withopf and Jahne (2006), Kallenbach et al. (2006), Son and Mita (2009), and Acunzo et al. (2007). Chang and Cho (2008) detected the
	Identifying objects as a combination of their parts was one technique that has been extensively used for vehicle detection. This approach helps because we can exploit the spatial properties between parts to localize the entire object, as well as weed out false positives if objects do not contain all the required parts. In Blanc et al. (2007), a combination of SURF and edge features was used to detect vehicles with vehicle parts identified by key point detection. Zhang et al. (2006) used SIFT features and hi
	Robert (2009) proposed a method that detects vehicles based on a hierarchy of features detection and fusion. The first layer of the hierarchy extracts image features. The next layer fuses image features to detect vehicle features, such as headlights, windshields, and vehicle appearance. The last layer fuses the vehicle features to train a classifier. From vehicle standards, the authors find the average size of a headlight and its average height (in meters ). A headlight is modeled by a disk and is projected
	they extract features from the patch containing the headlights and windshield and use an SVM/ANN classifier to classify the patch. 
	The problem with parts-based detections lies with the fact that we have to customize/choose features that best identify the part; for example, in the paper mentioned above, the features methodology to identify headlights was different from that of the windshield. In case we need to identify more than one class of objects, such as vehicles and humans, we would need to customize parts-based models to detect humans. It is an idea that does not scale very well.  
	Deep learning modules have proven to learn lower-level features, such as edges, texture, etc. and gradually learn higher features, such as shapes; they also eventually learn to represent individual parts if they are distinct enough. This can be observed in the studies on scene recognition. All of these features/representations are learned automatically by the network through backpropagation if there are enough training examples. Therefore, using deep learning for multi-class detection would be much easier. 
	2.2.2. Vehicle Detection and Classification Using Deep Learning (Yolo3) 
	In recent years, increasing computer power has made it possible to build neural networks with a large number of hidden layers. Object recognition and detection have become an increasingly trivial task. There are 2 main kinds of deep learning architectures that are used to identify and detect vehicles/objects in images or videos:  
	1. Networks that use region proposal networks that predict if an object is present in a particular region of the image, such as the RCNN and Faster RCNN. 
	1. Networks that use region proposal networks that predict if an object is present in a particular region of the image, such as the RCNN and Faster RCNN. 
	1. Networks that use region proposal networks that predict if an object is present in a particular region of the image, such as the RCNN and Faster RCNN. 

	2. Networks that divide the entire image into segments/zones and predict if an object is present in those zones, such as SSD and YOLO. 
	2. Networks that divide the entire image into segments/zones and predict if an object is present in those zones, such as SSD and YOLO. 


	Yolo (You Only Look Once) (Redmon, 2016) is an object detection model. This is a one-stage detection model, meaning all the outputs ([object-class-probabilities] [xcenter][ycenter] [width] [height] [confidence]) are computed at the same time.  
	Yolo (like other deep neural network-based object detection techniques) basically adapts historical detection algorithm ideas to a regression model using a deep neural network and vectorized computation. The YOLO object detection process is shown in 
	Yolo (like other deep neural network-based object detection techniques) basically adapts historical detection algorithm ideas to a regression model using a deep neural network and vectorized computation. The YOLO object detection process is shown in 
	Figure 2-2
	Figure 2-2

	; the network first extracts features like we would first extract Haar features in Viola and Jones (2004), which are then used by the last layers of the network to regress bounding boxes’ locations, dimensions, and class probabilities. Like in a classical sliding window algorithm, the image is divided into an SxS grid in which each cell contains B anchor boxes generating SxSxB bounding boxes. However, unlike a sliding window, the YOLO deep neural network processes all the image cells at the same time. Final

	 
	Figure
	FIGURE 2-2: YOLO OBJECT DETECTION PROCESS (REDMON, 2016) 
	2.3 Error Analysis and Identification of Factors Causing Errors in Traffic and Driver Behavior Information Extraction Using a Camera  
	The purpose of this review is to 1) identify the errors, summarize the factors that impact the accuracy of driving behavior data extracted using AI-based image processing techniques at various stages of processing (image down sampling, resizing, vehicle detection, classification, tracking, count, and speed computation, etc.), and 2) identify the potential methods to reduce/manage the errors when extracting the traffic and driver behavior information. Although there are several image processing techniques to
	The outcomes of this review recommend best practices to 1) collect (e.g., camera setup (e.g., height, distance, angle, etc.), lighting, video resolution, and frequency), 2) process (vehicle detection, classification, and tracking technique, count computation, speed computation, etc.), and 3) manage the errors to reduce and/or manage their impact on the extracted traffic and driver behavior information using AI-based image processing techniques.  
	2.3.1. Review of Error-Causing Factors in Traffic and Driver Behavior Information Extraction 
	In this section, a review of error-causing factors in traffic and driver behavior information extraction is presented. The review focuses on errors that could occur in different stages of traffic and driver behavior information extraction and categorizes the errors based on the error-causing factors. A typical traffic and driver behavior information extraction using AI-based image processing techniques consists of the following stages: 
	Stage 1: Preprocessing the acquired camera video (images resized to the same size, extraction, and segmentation of the road surface before using it in the YOLO algorithm (Song et al., 2019); camera calibration to compute lane-mark equations (Liu et al., 2020) 
	Stage 2: Vehicle detection (computation of a bounding box) 
	Stage 3: Vehicle classification 
	Stage 4: Vehicle tracking 
	Stage 5: Vehicle count estimation (traffic density can then be deduced)  
	Stage 6: Vehicle speed estimation 
	Stage 7: Lane change location determination 
	The review showed three major categories of error-causing factors impacting the accuracy of the extracted traffic and driver behavior information. Error! Reference source not found. summarizes the methods developed to address the factors impacting the accuracy of extracted traffic information, and there are detailed factors under each of the three categories. As shown in Error! Reference source not found., the factors related to camera height and angle, camera resolution, viewing location, camera speed, and
	TABLE 2-1: METHODS TO ADDRESS FACTORS IMPACTING VEHICLE COUNT AND SPEED COMPUTATION ACCURACY 
	 
	 
	 
	 

	Methods 
	Methods 


	TR
	High position and definition camera 
	High position and definition camera 

	RSCH method 
	RSCH method 

	GMM 
	GMM 

	YOLO 
	YOLO 

	Faster R-CNN 
	Faster R-CNN 

	Pretraining data 
	Pretraining data 

	Kalman filter 
	Kalman filter 

	ORB algorithm 
	ORB algorithm 

	Virtual loops (15m) 
	Virtual loops (15m) 

	UAV method 
	UAV method 


	Factors 
	Factors 
	Factors 

	Sensor 
	Sensor 

	Camera height and angle 
	Camera height and angle 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


	TR
	Camera resolution 
	Camera resolution 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


	TR
	Viewing location 
	Viewing location 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


	TR
	Camera movements 
	Camera movements 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


	TR
	Camera speed 
	Camera speed 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


	TR
	Traffic and environment 
	Traffic and environment 

	Traffic density 
	Traffic density 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


	TR
	Vehicle type 
	Vehicle type 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


	TR
	Lightning and shadows 
	Lightning and shadows 

	 
	 

	 
	 

	illumination 
	illumination 

	 
	 

	 
	 

	 
	 

	illumination  
	illumination  

	 
	 

	 
	 

	 
	 



	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Table
	TR
	Driver behavior 
	Driver behavior 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


	TR
	Road shape 
	Road shape 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


	TR
	AI-system algorithm factors 
	AI-system algorithm factors 

	Tracking algorithm 
	Tracking algorithm 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


	TR
	Training data 
	Training data 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 



	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Sensor factors: 
	Five major sensor factors impact the accuracy of the extracted traffic and driver behavior information at various stages of the processing: 1) camera height and angle, 2) camera resolution, 3) viewing distance, 4) camera movements and 5) camera speed/frame rate. 
	1. Camera height and angle: 
	1. Camera height and angle: 
	1. Camera height and angle: 


	When the camera height is low and the camera angle is weak relative to the horizontal, the chances of getting multiple vehicle occlusion situations increase (Buch et al., 2011). Therefore, vehicles cannot be detected accurately (i.e. the bounding box cannot be drawn correctly, or the vehicle detection is completely missed) and misclassification occurs. Even though solutions exist to tackle occlusions, it can lead to important estimation errors in case of total occlusion: the vehicle that is completely hidde
	2. Camera resolution (Song et al., 2019; Liu et al., 2020; Maji, 2017; Buch et al., 2011)  
	2. Camera resolution (Song et al., 2019; Liu et al., 2020; Maji, 2017; Buch et al., 2011)  
	2. Camera resolution (Song et al., 2019; Liu et al., 2020; Maji, 2017; Buch et al., 2011)  


	A poor resolution video contains fewer vehicle feature points and, therefore, detection and classification using YOLO is affected because the algorithm extracts features from images to detect and classify vehicles. If detection is performed on a preprocessed image computed using foreground segmentation techniques, a poor camera resolution can reduce the accuracy of the segmentation because there are not sufficient pixels to segment a vehicle properly or because poor resolution adds noise to the video.  
	3. Viewing distance (Song et al., 2019; Liu et al., 2020; Jamzad, 2005): 
	3. Viewing distance (Song et al., 2019; Liu et al., 2020; Jamzad, 2005): 
	3. Viewing distance (Song et al., 2019; Liu et al., 2020; Jamzad, 2005): 


	When vehicles are farther away, they have fewer pixels to be detected. This impacts classification, as well. Assuming the vehicle is correctly detected and classified at a longer distance from the camera, the speed computation at that location may be inaccurate because the actual distance travelled by the vehicle between two-time stamps is difficult to estimate because of the pixel vs. distance error. For example, 100 pixels may represent 1 m close to the camera, but only 10 pixels may represent 1 m farther
	4. Camera movements (Ke et al., 2016; Lam et al., 2004): 
	4. Camera movements (Ke et al., 2016; Lam et al., 2004): 
	4. Camera movements (Ke et al., 2016; Lam et al., 2004): 


	Since the camera is moving, it is difficult to estimate the distance a vehicle travels between frames; all methods using a reference line do not work because 
	the position of the reference line changes; therefore, counting and speed computation are impacted. NOTE: This is an issue if the camera is on a drone flying above the roads, but it can also be an issue if the camera is only mounted on a pole and is shaking. Detection techniques relying on foreground segmentation need the background to be stationary and fixed. Since both foreground and background are moving, detection is impacted.  
	5. Camera speed/frame rate (Maji, 2017): 
	5. Camera speed/frame rate (Maji, 2017): 
	5. Camera speed/frame rate (Maji, 2017): 


	When the camera’s speed/frame rate is low, it is challenging to track a vehicle position because the time between two frames is too high. In that case, two consecutive bounding boxes do not overlap, or non-corresponding bounding boxes are detected as being the same. It also impacts counting and speed computation because if the time between frames is too high, it is possible that no frame containing the vehicle crossing the virtual line is recorded; on one frame, the vehicle bounding box is situated before t
	Traffic and environmental factors 
	Five major traffic and environmental factors impact the accuracy of the extracted traffic and driver behavior information at various stages of the processing: 1) traffic density, 2) vehicle type, 3) lighting and shadows, 4) driver behavior, and 5) road shape. 
	1. Traffic density: 
	1. Traffic density: 
	1. Traffic density: 


	In heavy traffic, vehicle occlusions happen frequently (Bharadwaj et al., 2016; Li et al., 2014; Buch et al., 2011; Sohn, 2018; Pang et al., 2004; Pang et al., 2007; Jamzad, 2005; Zhang et al., 2008). The impact is more important when the occlusion is severe; this can happen when many vehicles are involved or when vehicles are almost completely hidden, etc. Heavy traffic is often slow, which impacts preprocessing foreground segmentation; some vehicles are considered to belong to the background because their
	2. Vehicle type: Vehicle type can impact counting methods that use several virtual detection loops for each lane; some vehicles are very large and occupy almost two lanes and, therefore, are counted twice (Li et al., 2014). If a particular vehicle type is not represented enough in the training data, the classification of that vehicle type will be inaccurate. This point is also mentioned in AI-system algorithm factors below. A vehicle with a color similar to the background color cannot be segmented fully or 
	2. Vehicle type: Vehicle type can impact counting methods that use several virtual detection loops for each lane; some vehicles are very large and occupy almost two lanes and, therefore, are counted twice (Li et al., 2014). If a particular vehicle type is not represented enough in the training data, the classification of that vehicle type will be inaccurate. This point is also mentioned in AI-system algorithm factors below. A vehicle with a color similar to the background color cannot be segmented fully or 
	2. Vehicle type: Vehicle type can impact counting methods that use several virtual detection loops for each lane; some vehicles are very large and occupy almost two lanes and, therefore, are counted twice (Li et al., 2014). If a particular vehicle type is not represented enough in the training data, the classification of that vehicle type will be inaccurate. This point is also mentioned in AI-system algorithm factors below. A vehicle with a color similar to the background color cannot be segmented fully or 


	based on vehicle length (Liu et al., 2020; Jamzad, 2005). Vehicle type impacts vehicle length-based classification because some large car dimensions are close to the dimensions of a bus or a truck (Song et al., 2019).  
	based on vehicle length (Liu et al., 2020; Jamzad, 2005). Vehicle type impacts vehicle length-based classification because some large car dimensions are close to the dimensions of a bus or a truck (Song et al., 2019).  
	based on vehicle length (Liu et al., 2020; Jamzad, 2005). Vehicle type impacts vehicle length-based classification because some large car dimensions are close to the dimensions of a bus or a truck (Song et al., 2019).  

	3. Lighting and shadows (Song et al., 2019; Liu et al., 2020; Bharadwaj et al., 2016; Li et al., 2014; Buch et al., 2011; Chang et al., 2018; Mousa et al., 2014; Pang et al., 2007; Jamzad, 2005; Ke et al., 2016; Lam et al., 2004):  
	3. Lighting and shadows (Song et al., 2019; Liu et al., 2020; Bharadwaj et al., 2016; Li et al., 2014; Buch et al., 2011; Chang et al., 2018; Mousa et al., 2014; Pang et al., 2007; Jamzad, 2005; Ke et al., 2016; Lam et al., 2004):  


	For methods using interest points (a point with rich information around it, robust to perturbations such as those caused by various illuminations), more interest points are detected during the day than at night. Some of these points are inaccurate, leading to wrong detections and wrong tracking. At night, only accurate feature points are detected (such as vehicle lights), leading to accurate vehicle tracking (Ke et al., 2016). This means that at night, when using the interest point method (Ke et al., 2016) 
	4. Driver behavior:  
	4. Driver behavior:  
	4. Driver behavior:  


	Non-lane-based movements of vehicles impact detection accuracy mostly because they  lead to occlusion situations (Bharadwaj et al., 2016; Li et al., 2014; Mousa et al., 2014). Tracking accuracy is impacted because vehicles change lanes between two frames.  Therefore, predictive trajectory algorithms can lose a vehicle. When the vehicle is detected again, it can be counted twice (Bharadwaj et al., 2016; Li et al., 2014; Buch et al., 2011; Pang et al., 2004; Jamzad, 2005). Speed computation is impacted becaus
	5. Roadway geometry: 
	5. Roadway geometry: 
	5. Roadway geometry: 


	The virtual loop is placed on a slight slope, which is difficult to detect. Therefore, between the two lines of the loop, the road is not flat, and the estimated distance between the two reference lines is slightly wrong, which leads to speed computation errors (Liu et al., 2020).  
	AI-system algorithm factors 
	There are two major AI-system algorithm factors impacting the accuracy of vehicle count and speed estimation at various stages of the processing: 1) the tracking algorithm and 2) the training data. 
	1. Tracking algorithm: 
	1. Tracking algorithm: 
	1. Tracking algorithm: 


	Algorithms tracking a particular vehicle feature, such as a vehicle’s head (front) may lead to tracking failure when there are two consecutive vehicles and one vehicle’s feature point is hidden by the other vehicle; both vehicles are, consequently, considered to be one single vehicle (Jamzad, 2005). Tracking errors impact the algorithms that use tracking positions to count and compute speed (Bharadwaj et al., 2016; Jamzad, 2005). Tracking failures (i.e. vehicle tracking is lost and then recovered) lead to o
	2. Training data: 
	2. Training data: 
	2. Training data: 


	When there is not sufficient training labelled data for a vehicle class, the class is poorly detected and classified (Buch et al., 2011; Chang et al., 2018; Sohn, 2018). If there is not sufficient data, including complicated situations containing shadows, varying illumination conditions, poor lightning, etc., vehicles will be poorly detected and classified.   
	2.3.2. Review of Methods to Improve Accuracy in Traffic and Driver Behavior Information Extraction and Needs to Further Improve Accuracy 
	The following presents the methods adopted by the researchers to reduce and manage errors when detecting, classifying, tracking, and counting vehicles and when computing vehicles’ speeds. They are categorized based on the different stages of a typical traffic and driver behavior information extracted using AI-based image processing techniques. 
	Detection 
	Many of the errors mentioned above are due to vehicle occlusions. Many documents propose methods to solve this problem. The methods giving the best results are presented below. They are classified as sensor-based solutions or algorithm-based solutions.  
	In sensor-based solutions, to reduce the number of occlusions, it is recommended to place a high-definition camera in a high position, close to the road and pointing to the 
	road to get a better viewing angle, which limits the occlusion (Buch et al. 2011). The camera should speed should not be too low. 
	In algorithm-based solutions, there are two major algorithm-based solutions: 1) recursive segmentation and the convex hull method, and 2) YOLO and deep learning methods. 
	The method presented in Chang et al. (2018) seems to provide excellent results. It proposes a real-time video processing algorithm to segment multiple vehicles involved in an occlusion by analyzing the closure and convex hull of vehicles (recursive segmentation and convex hull methods). 
	To detect vehicles, as done in many papers, this method extracts the moving foreground. Many documents use the modified Gaussian mixture model (GMM) for this purpose instead of other less robust models. This model is robust to illumination changes but has a slightly higher computational complexity than other methods (Buch et al. 2011). Using the convex hull of the occluded vehicle region, occlusions are detected, and vehicles are segmented using recursive segmentation. If there is no occlusion, the vehicle 
	Other efficient methods use the YOLO3 algorithm to detect vehicles (Song et al. 2019; Liu et al. 2020). These methods use convolutional neural networks to extract the features of the input image. These algorithms are able to robustly detect vehicles and are immune to rainy conditions, night time, and complicated illumination conditions if correctly trained (Song et al. 2019; Liu et al. 2020). When the traffic is busy where vehicles occlude each other, the detector is still robust enough to get accurate boun
	To reduce computation time, the method from Song et al. (2019) extracts and divides the road surface using a GMM-based model. Then, the YOLO3 algorithm is used only on the road, which achieves better detection results and reduces computation time because only the road zone containing vehicles is processed instead of the entire image. It is also possible to reduce the frame rate and, preferably, to use a GPU to train a deep CNN (Song et al., 2019; Sohn, 2018) to reduce computation time. However, a frame rate
	Classification 
	Classification can be improved by training the classification algorithm with more diverse data, including different sizes and class objects (Song et al., 2019), occlusion situations (Sohn, 2018), rainy conditions, night times, and complicated illumination conditions (Liu et al., 2020)). However, such diverse labeled data is rare, and labeling its own data is 
	really time-consuming. To tackle this problem, documents (Sohn, 2018; Chang et al., 2018) propose pretraining strategies to improve classification performance when labeled data is limited and unlabeled data is used instead; for example, using unsupervised methods to pre-train the CNN before using supervised methods (Chang et al., 2018) using more or less accurate data (which is easily obtained) to pre-train the CNN in (Liu et al., 2020). 
	Tracking 
	For tracking, most methods use bounding boxes computed from vehicle feature points. Many methods use a Kalman filter to predict the position of a vehicle bounding box on the next frame, which limits the loss of vehicles (Liu et al., 2020; Buch et al., 2011; Jamzad, 2005). 
	The ORB algorithm in Song et al. (2019) seems to provide accurate results. It uses the Features From Accelerated Segment Test (FAST) to detect feature points inside a predicted bounding box and to check if an object matches the feature points or not (Song et al., 2019). Detection of feature points is performed only in the bounding box instead of on the entire road surface, which improves computing time (Liu et al., 2020; Buch et al., 2011; Jamzad, 2005). 
	Traffic and Driver Behavior Information Extraction 
	For traffic and driver behavior information extraction using 2D camera footage, two scenarios can be improved: one case occurs when the camera is stationary (not moving) and the second case occurs when the camera is moving.  
	When the camera is not moving, methods to count vehicles and compute speeds rely on accurate detection and tracking. If tracking is accurate, tracked vehicles can be counted. Methods using reference lines on images are accurate if the camera is not moving. In a similar way, if tracking is accurate and if the video has good resolution, consecutive vehicle tracked positions can be used to compute speeds. If the camera is not moving, using a virtual speed loop is accurate; Maji documents (2017) show that error
	When the camera is moving (for example, in unmanned aerial vehicles with mounted cameras), different methods have to be used because both background and foreground are moving. Ke et al. (2016) provide a robust method to detect vehicles using Shi-Tomasi interest point tracking and motion-vector clustering (vehicles are detected and tracked thanks to their feature points’ similar motion criteria and compared to the background feature points. Furthermore, interest points on the same vehicle share the same moti
	inaccurate, large errors occur when the image frames contain very few vehicles, it works well in both day and night settings (tracking is particularly efficient at night), and it is not sensitive to UAV movements. Furthermore, this type of system is not impacted by occlusions, since its camera flies (via a drone) right over the road; it can also deal with static backgrounds and has a high processing speed (real-time).  
	2.4 Review of Microscopic Traffic Simulation Applications in Freeway Work Zones  
	As highlighted in Chapter 1, the ever-increasing presence of work zones on our nation’s highways has a profound impact on the mobility and safety of the traveling public. The Texas A&M Transportation Institute (TTI) estimates that drivers incurred 8.8 billion hours of delay in 2017, approximately 10% of which is attributable to work zones (Texas A&M Transportation Institute, 2019; FHWA, 2020). While the 762 fatal work zone crashes reported by the National Highway Traffic Safety Administration (NHTSA) in 201
	To counteract these trends, researchers and practitioners have spent several decades studying the various factors that influence freeway work zone capacity in support of agency work zone scheduling and traffic control practices. A comprehensive literature search conducted in a 2013 study summarized these efforts, underscoring that a myriad of geometric, traffic stream, environmental, and work zone-specific characteristics have been found to influence work zone capacity (Weng and Meng, 2013). More recently, 
	A more recent synthesis of work zone capacity models presents the factors considered as inputs to those models (Masshadi et al., 2021). That meta-analysis found that heavy vehicle percentage, number of open and closed lanes, and work zone intensity are the most commonly considered parameters among 40 selected studies. The next most frequently applied inputs to 
	capacity models were lane closure side and work zone length, found in almost half of the models reviewed. 
	Though the Highway Capacity Manual, 6th Edition includes a methodology for estimating freeway work zone capacity based on data from 90 archival literature sources and 12 field-collected datasets, the ability of this deterministic model to capture the full range of characteristics unique to specific sites across the southeastern United States is limited (TRB, 2016; Yeom et al., 2016). Furthermore, large-scale field data collection efforts are time and resource intensive. As a result, microsimulation has rece
	 
	Recent applications of microsimulation to freeway work zones have varied in scope and purpose, from the development of analytical models for estimating capacity (Heaslip et al., 2009) to site-specific calibration and validation recommendations (Edara and Chatterjee, 2010; Kan et al., 2014; Yeom et al., 2016). Others have focused on guiding agency decision-making practices by assessing merge control strategies (Ramadan and Sisiopiku, 2016; Ren et al., 2021) or producing stochastic capacity estimates for use 
	2.5 Summary 
	Review of methods for the use of AI in extracting traffic and driver behavior information:  
	- AI-based vehicle detection and classification is promising among the different techniques; Yolo is the most suitable algorithm for vehicle detection and classification. 
	- AI-based vehicle detection and classification is promising among the different techniques; Yolo is the most suitable algorithm for vehicle detection and classification. 
	- AI-based vehicle detection and classification is promising among the different techniques; Yolo is the most suitable algorithm for vehicle detection and classification. 

	- A virtual speed loop and a reference line are commonly used methods to compute speed and count in absence of robust tracking, and camera calibration and will be adopted in the AI-based traffic and driver behavior extraction system. 
	- A virtual speed loop and a reference line are commonly used methods to compute speed and count in absence of robust tracking, and camera calibration and will be adopted in the AI-based traffic and driver behavior extraction system. 


	Review of error causing factors in traffic and driver behavior information extraction:  
	- Several factors, including sensors, traffic, environment, and the AI-system algorithm factors impact the accuracy of the AI and image-based vehicle count, classification, and speed computation.  
	- Several factors, including sensors, traffic, environment, and the AI-system algorithm factors impact the accuracy of the AI and image-based vehicle count, classification, and speed computation.  
	- Several factors, including sensors, traffic, environment, and the AI-system algorithm factors impact the accuracy of the AI and image-based vehicle count, classification, and speed computation.  

	- There is a lack of detailed (vehicle level, time interval) and comprehensive evaluation (different stages of data extraction) studies to identify the various factors (such as algorithm used, frame rate, traffic speed, traffic volume, lightning conditions, viewing location) that can have an impact on the accuracy of vehicle detection, classification, tracking, count, and speed computation, especially in work zones. The quantitative analysis of the impact of different factors (such as the impact of traffic 
	- There is a lack of detailed (vehicle level, time interval) and comprehensive evaluation (different stages of data extraction) studies to identify the various factors (such as algorithm used, frame rate, traffic speed, traffic volume, lightning conditions, viewing location) that can have an impact on the accuracy of vehicle detection, classification, tracking, count, and speed computation, especially in work zones. The quantitative analysis of the impact of different factors (such as the impact of traffic 


	Review of microscopic traffic simulation applications in freeway work zones showed that prior studies have lacked the field data necessary for informing the selection of input parameters capable of replicating the complexity of real-world traffic operations. 
	 
	  
	 TRAFFIC AND DRIVER BEHAVIOR EXTRACTION SYSTEM USING 2D IMAGES AND AI (Yolo3)  
	An AI-based traffic and driver behavior information extraction system is developed to study real-world traffic and driver behavior information. This chapter presents the development of a traffic and driver behavior information extraction system that uses 2D images and AI. The extracted information focuses on vehicle classification, vehicle count, and vehicle speed. This chapter is organized into the following three parts: 
	Part 1: Development of AI system for Traffic and Driver Behavior Information Extraction  
	Part 2: Vehicle Detection and Classification Using 2D Images and AI (Yolo3)  
	Part 3: Vehicle Count and Speed Computation Methodology Using the Outcomes of AI-based Vehicle Detections and Classification 
	3.1 Development of an AI system for Traffic and Driver Behavior Information Extraction  
	In this section, the outline of the data extraction procedure is presented. We designed an AI-based system to extract vehicle type, vehicle speed, lane change counts and location, and the traffic volume and flow using widely available camera footages. We combined the different steps involved in driver behavior and traffic information extraction into six operating modules as follows:  
	1. Pre-processing module that involves preparation of video data for downstream processing;  
	1. Pre-processing module that involves preparation of video data for downstream processing;  
	1. Pre-processing module that involves preparation of video data for downstream processing;  

	2. Camera calibration module that involves extraction of camera parameters for converting the image pixel coordinates to real-world coordinates; 
	2. Camera calibration module that involves extraction of camera parameters for converting the image pixel coordinates to real-world coordinates; 

	3. Vehicle detection, classification, and re-identification module that involves detection and classification of vehicles by type (trucks, cars, etc.) and extraction of vehicle trajectories from the image sequences; 
	3. Vehicle detection, classification, and re-identification module that involves detection and classification of vehicles by type (trucks, cars, etc.) and extraction of vehicle trajectories from the image sequences; 

	4. Data extraction module that involves computation of vehicle speed, count, and lane change based on the data extraction inputs, camera parameters, and trajectories; 
	4. Data extraction module that involves computation of vehicle speed, count, and lane change based on the data extraction inputs, camera parameters, and trajectories; 

	5. Data aggregation module that involves post-processing data and infers useful information, such as time series, statistical distribution, etc., from raw measurements;  
	5. Data aggregation module that involves post-processing data and infers useful information, such as time series, statistical distribution, etc., from raw measurements;  

	6. Data storage module that corresponds to the memory system where the collected data is stored.  
	6. Data storage module that corresponds to the memory system where the collected data is stored.  


	Figure 3-1
	Figure 3-1
	Figure 3-1

	 illustrates the architecture of the AI-based system and the inputs that are associated with each module. In the next section, we discuss the three system inputs and details of the six modules, including the purposes, subcomponents, inputs, and outputs.  

	 
	Figure
	FIGURE 3-1: ARCHITECTURE OF AI-BASED DRIVER BEHAVIOR AND TRAFFIC INFORMATION EXTRACTION SYSTEM 
	System inputs 
	System inputs can be divided into 2 different types: data inputs and user inputs. Data input is the traffic video the user wishes to extract and analyze. User inputs include labeling required by the modules of the system, such as the data extraction module and the camera calibration module. Some of the examples of user inputs include lane marking labeling to perform lane-based data aggregation, zone labeling to perform zones-based data aggregation, virtual speed loop labeling to compute speed and count vehi
	Lane Marking Labelling 
	To aggregate traffic and driver behavior information in each lane, the system requires information about where the lanes are located. Therefore, the lane markings need to be labelled on the image to demarcate the lanes. The lane markings may be labelled either manually or automatically. 
	To aggregate traffic and driver behavior information in each lane, the system requires information about where the lanes are located. Therefore, the lane markings need to be labelled on the image to demarcate the lanes. The lane markings may be labelled either manually or automatically. 
	Figure 3-2
	Figure 3-2

	 shows an example of lane marking labelling on a real image.  

	 
	Figure
	FIGURE 3-2: EXAMPLE OF LANE MARKING LABELLING ON A REAL IMAGE 
	Zone Labelling 
	To aggregate traffic and driver behavior information in each zone upstream of the camera, the system requires information about where the zones are located. Therefore, the zones need to be labelled on the image to demarcate the lanes. The following example illustrates the zone labelling in a work zone area. To aggregate the lane change counts in each zone within a work zone area, the upstream roadway is demarcated into four zones, as shown in 
	To aggregate traffic and driver behavior information in each zone upstream of the camera, the system requires information about where the zones are located. Therefore, the zones need to be labelled on the image to demarcate the lanes. The following example illustrates the zone labelling in a work zone area. To aggregate the lane change counts in each zone within a work zone area, the upstream roadway is demarcated into four zones, as shown in 
	Figure 3-3
	Figure 3-3

	. 
	Figure 3-4
	Figure 3-4

	 shows an example of zone labeling in a real image.  

	• Zone 1: Covers the transition area 
	• Zone 1: Covers the transition area 
	• Zone 1: Covers the transition area 

	• Zone 2: 500 ft. upstream from the beginning of transition area 
	• Zone 2: 500 ft. upstream from the beginning of transition area 

	• Zone 3: 500 ft. to 1000 ft. upstream from the beginning of transition area 
	• Zone 3: 500 ft. to 1000 ft. upstream from the beginning of transition area 

	• Zone 4: 1000 ft. and beyond upstream from the beginning of transition area 
	• Zone 4: 1000 ft. and beyond upstream from the beginning of transition area 


	 
	Figure
	FIGURE 3-3: ZONE DEMARCATION IN A WORK ZONE 
	 
	Figure
	FIGURE 3-4: EXAMPLE OF ZONE LABELLING ON A REAL IMAGE 
	Virtual Speed Loop Labelling 
	To compute speed and count vehicles at a specific location on the road using the system, it is required that users indicate the location of the vehicle whose speed needs 
	to be computed, and the vehicle count needs to be recorded. Like a loop detector used in the vehicle speed computation and counting the vehicles on the actual roadway, this system relies on a virtual loop detector to do the same. Therefore, the user needs to label the entry and exit points of the virtual speed loop on the image. An example of virtual speed loop labeling is shown in 
	to be computed, and the vehicle count needs to be recorded. Like a loop detector used in the vehicle speed computation and counting the vehicles on the actual roadway, this system relies on a virtual loop detector to do the same. Therefore, the user needs to label the entry and exit points of the virtual speed loop on the image. An example of virtual speed loop labeling is shown in 
	Figure 3-5
	Figure 3-5

	. Here, the virtual speed loop entry and exit are marked at 40 feet from each other, and this distance is based on the standard lane marking design.  

	 
	Figure
	FIGURE 3-5: EXAMPLE OF VIRTUAL SPEED LOOP LABELING ON REAL IMAGE 
	Camera calibration reference points 
	To obtain the camera intrinsic and extrinsic parameters to be able to back project 2D image points to the 3D real-world points and access the real-world physical distances from the image, a few calibration reference points (pairs of 2D image coordinates and real-world 3D coordinates) are required. These reference points help obtain the camera’s intrinsic and extrinsic parameters directly from the images. These reference point inputs can be avoided if the camera’s intrinsic and extrinsic parameters are alrea
	Finally, it is noted that the system is completely oblivious to the way these inputs are collected. Hence, some inputs, such as lane marking labels or camera calibration reference points, might be retrieved automatically via algorithms, while some others, like work zone labels, may require a user’s manual intervention. In the next few sections, the six system modules are presented. 
	Module 1. Pre-processing module 
	Pre-processing is required to down sample the number of images from the video camera and prepare the down-sampled images to run AI-based vehicle detection, classification, and re-identification algorithms. The input for this module is the raw video feed from the camera. This module involves two steps: image extraction and image resizing. 
	Image extraction 
	Most modern traffic video uses a 30-frame-per-second frame rate. Given the computation time required to run tracking, an AI-based vehicle detection algorithm, and the data extraction modules, processing 30 image frames will take an enormous amount of time. Therefore, we need to down sample the number of images and extract them. However, the down sampling frame rate must be chosen so that the traffic and driver behavior information can be efficiently extracted by the system without compromising the quality o
	Image resizing 
	In this step, the extracted images are resized to a smaller image size (e.g., 1080x1080 pixels to 700x700 pixels) to optimize the vehicle detection and classification algorithm’s computation time.  
	The down sampled and resized images are fed as inputs into the vehicle detection, classification, and re-identification module. One image, typically the first image, is fed as input to the camera calibration module.  
	Module 2. Camera calibration 
	The purpose of this module is to calibrate the camera that captures the input video; that is, we need to compute camera intrinsic and extrinsic parameters to be able to back project 2D points (point coordinates in the image plane) to the 3D world points (latitude, longitude) and access the physical measurements from the image. Intrinsic parameters correspond to parameters of the camera; extrinsic parameters are directly linked to camera orientation and location in the 3D world. 
	Calibrations of cameras usually use algorithms allowing the retrieval of the camera Matrix M, as defined in Equation 1 and 2, from the 2D coordinates and 3D coordinates of 6 known camera calibration points (Tsai, 1987). However, some methods (Criminisi, Reid, & Zisserman 2000; Sinha, Steedly, Szeliski et al., 2008) allow the use of geometrical properties of vanishing points along with several constraints on camera intrinsic parameters to retrieve several camera parameters. It is recommended to combine these
	 
	Figure
	Equation 1. Camera calibration equation with (𝑥,) point coordinates in the image plane, (𝑋𝑌𝑍) point coordinates in the 3D world and M as defined in Equation 2. 
	 
	Figure
	Equation 2. Calibration parameters: intrinsic and extrinsic parameters. 𝑅 and 𝑇 matrices correspond to the camera extrinsic parameters. 
	Therefore, our camera calibration module is primarily made of two main components, as shown in Figure 3-6: 
	1. A vanishing point detection module. This module will be used to retrieve vanishing points in the image. Once again, the system will be oblivious to the way these points are detected. Indeed, this task can typically be automated (Criminisi, 2002; Kong, 2013) or semi-automated (Tang, 2018). 
	1. A vanishing point detection module. This module will be used to retrieve vanishing points in the image. Once again, the system will be oblivious to the way these points are detected. Indeed, this task can typically be automated (Criminisi, 2002; Kong, 2013) or semi-automated (Tang, 2018). 
	1. A vanishing point detection module. This module will be used to retrieve vanishing points in the image. Once again, the system will be oblivious to the way these points are detected. Indeed, this task can typically be automated (Criminisi, 2002; Kong, 2013) or semi-automated (Tang, 2018). 

	2. An optimization problem solved using an algorithm like EDA (Larranaga et al., 2002) 
	2. An optimization problem solved using an algorithm like EDA (Larranaga et al., 2002) 


	The module is fed 2 types of inputs: 
	1. one of the video images. 
	1. one of the video images. 
	1. one of the video images. 

	2. a few calibration reference points (pairs of 3D world points and 2D image coordinates) were used to solve the optimization problem. 
	2. a few calibration reference points (pairs of 3D world points and 2D image coordinates) were used to solve the optimization problem. 


	 
	Figure
	FIGURE 3-6: CAMERA CALIBRATION COMPONENT DESIGN 
	Our investigation revealed that the vanishing-points-based methods, although theoretically possible, can be challenging when obtaining reliable results in certain cases. As the method requires two vanishing points using parallel lines from the scene and even though the pavement markings provide a very good reference to find parallel lines that are parallel to the travel lanes, it can be difficult to find accurate parallel lines that are perpendicular to the travel lanes in certain scenes. It is recommended 
	However, when reliable camera calibration can not be obtained, the virtual speed loop labeling can still be used as a fallback method for extracting traffic speed. Since not all videos used in this project were able to obtain reliable camera calibration results, to minimize the impact of unreliable camera calibration on some videos, the traffic speed results presented in this report were not obtained through camera calibration but virtual speed loops with a bounding box- based method. 
	Module 3. Vehicle detection, classification, and re-identification module 
	The purpose of this module is to detect, classify, and extract 2D trajectories of the vehicle crossing the camera’s field of view. These trajectories are needed to extract any traffic information or driver behavior from the video. The idea is to be able to detect and classify vehicles entering the camera’s field of view using a deep learning-based detection algorithm like Yolo (Redmon, 2016) or Faster RCNN (Ren, 2015), which have proven to achieve high performances in detection tasks (Everingham, 2015). The
	Our vehicle detection, classification, and re-identification module is composed of two algorithms: 1. An AI-based vehicle detection and classification algorithm allowing us to 
	detect vehicles appearing in the image, and 2. a tracking algorithm allowing re-identification of vehicles along several consecutive video images. 
	detect vehicles appearing in the image, and 2. a tracking algorithm allowing re-identification of vehicles along several consecutive video images. 
	Figure 3-7
	Figure 3-7

	 shows the design of this module along with its relationship to the pre-processing module. The input for this module is the down-sampled and resized images (about 18,000 images) from the video data (e.g., 30-minute video) that are sequentially indexed with an image number (1 to 18,000).  

	 
	Figure
	FIGURE 3-7: VEHICLE DETECTION, CLASSIFICATION AND RE-IDENTIFICATION MODULE ALONG WITH THE PRE-PROCESSING MODULE 
	These images are processed by the detection algorithm, which will output bounding box detections of the vehicles in every image. The tracking algorithm is then fed with these detections and the images. For each image, the tracking algorithm will track previously detected vehicles and match these vehicles with the bounding boxes provided by the detection model for the image. Unmatched tracked vehicles are considered "lost" and deleted when they are not matched with any detection for multiple consecutive imag
	1. vehicle bounding box coordinates: the locations and dimensions of boxes containing the vehicles in each image;  
	1. vehicle bounding box coordinates: the locations and dimensions of boxes containing the vehicles in each image;  
	1. vehicle bounding box coordinates: the locations and dimensions of boxes containing the vehicles in each image;  

	2. vehicle bounding boxes classification: every detected bounding box is categorized (truck or car) by the vehicle within it;  
	2. vehicle bounding boxes classification: every detected bounding box is categorized (truck or car) by the vehicle within it;  

	3. vehicle identifier: every vehicle detected in the video is given a unique identifier; this identifier is used to re-identify the vehicle along with the images it appears in. 
	3. vehicle identifier: every vehicle detected in the video is given a unique identifier; this identifier is used to re-identify the vehicle along with the images it appears in. 

	4. vehicle trajectory: the location of every uniquely identified vehicle is appended together to generate the vehicle trajectory. 
	4. vehicle trajectory: the location of every uniquely identified vehicle is appended together to generate the vehicle trajectory. 


	Module 4. Data extraction module 
	The purpose of this module is to compute traffic information, such as lane-based traffic volume, driver behavior measurements, vehicle speeds, zone-based lane change locations, and counts. The inputs for this module come from the trajectories extracted from the vehicle detection, classification, and re-identification module; camera parameters are obtained from the camera calibration module, and the user inputs, such as the virtual speed loop labels, lane marking labels, and the zone labels, are input. This 
	1. Lane-based vehicle count is a sub-module allowing extraction of the number of vehicles appearing in the camera’s field of view for each lane. 
	1. Lane-based vehicle count is a sub-module allowing extraction of the number of vehicles appearing in the camera’s field of view for each lane. 
	1. Lane-based vehicle count is a sub-module allowing extraction of the number of vehicles appearing in the camera’s field of view for each lane. 

	2. Vehicle speed computation is a sub-module allowing extraction of speed measurements for every detected vehicle. 
	2. Vehicle speed computation is a sub-module allowing extraction of speed measurements for every detected vehicle. 

	3. Zone-based lane change counting is a sub-module allowing detection and counting of the lane changes with their corresponding zone (as defined in the earlier “system inputs” section). 
	3. Zone-based lane change counting is a sub-module allowing detection and counting of the lane changes with their corresponding zone (as defined in the earlier “system inputs” section). 


	Module 5. Data aggregation module 
	The purpose of this module is to aggregate data collected from the data extraction module for representing the data in time series or computing traffic statistics so it can be used to study driver behavior and to plan traffic management strategies. For example, a time series for traffic flow at 5-minute intervals can be generated by aggregating lane-based vehicle counts into 5-minute bins. Another example is to aggregate the lane-based vehicle speeds into 5-minute bins and analyze the speed distribution sta
	The following sections will discuss specific methods to be used in Modules 3 and 4. Section 3.2 discusses the Vehicle Detection and Classification Using 2D Images and AI, and Section 3.3 describes the Vehicle Count and Speed Computation methodology using the outcomes of AI-based vehicle detections and classification. 
	3.2 Vehicle Detection and Classification Using 2D Images and AI (Yolo3) 
	This section presents the development of automatic vehicle detection and classification using a single camera. In this project, YoloV3 deep neural network (Joseph Redmon, 2018) with weights pre-trained on a COCO dataset was used. YOLOv3 was chosen because it processes frames in a reasonable amount of time and has very good performance in terms of mean average accuracy and precision. 
	As described in Chapter 2, YoloV3 is the third iteration of YOLO (You Only Look Once) (Redmon, 2016), an object detection model. This is a one-stage detection model, meaning all the detection and classification outputs, including the bounding box locations and dimensions on 
	the image, classification of the bounding box, and the classification confidence score, are computed at the same time. The output format from YOLOv3 is shown as the following: 
	<image-id>, <x-left>, <y-up>, <x-right>, <y-down>, <confidence>, <label> 
	Where: 
	• image-id corresponds to the image number 
	• image-id corresponds to the image number 
	• image-id corresponds to the image number 

	• x-left is the smallest horizontal coordinate of the bounding box  
	• x-left is the smallest horizontal coordinate of the bounding box  

	• x-right is the greatest horizontal coordinate of the bounding box  
	• x-right is the greatest horizontal coordinate of the bounding box  

	• y-up is the highest vertical coordinate of the bounding box 
	• y-up is the highest vertical coordinate of the bounding box 

	• y-down is the lowest vertical coordinate of the bounding box 
	• y-down is the lowest vertical coordinate of the bounding box 

	• confidence corresponds to the confidence of the model that the detection is a true positive 
	• confidence corresponds to the confidence of the model that the detection is a true positive 

	• label corresponds to the type of vehicle (car or truck) 
	• label corresponds to the type of vehicle (car or truck) 


	3.3 Vehicle Count and Speed Computation Methodology Using the Outcomes of AI-based Vehicle Detection and Classification  
	This section details the engineering approach of using the AI-based vehicle detection and classification results for determining traffic and driver behavior information. The extracted information includes traffic count, traffic speed, time headway between vehicles and lane change behavior. The proposed AI-system uses separate components for extracting the information. The following subsections detail the processing steps involved in each data extraction component. 
	3.3.1 Data Extraction Component: Count  
	 
	Figure
	FIGURE 3-8: TRAFFIC COUNT DATA EXTRACTION PROCESSING FLOWCHART 
	The objective of this component is to determine lane-wise traffic count using vehicle detection bounding boxes. The core of the proposed method is to use a reference location, and whenever a vehicle (bounding box) moves past the reference location, we will include that vehicle in the count.  
	1. Establish short-term vehicle tracking from bounding boxes of detected vehicles. 
	1. Establish short-term vehicle tracking from bounding boxes of detected vehicles. 
	1. Establish short-term vehicle tracking from bounding boxes of detected vehicles. 


	Vehicle tracking using bounding boxes is performed by comparing the bounding boxes in two consecutive frames and linking the bounding boxes with the largest IOU as the bounding boxes from the same vehicle. 
	 
	 
	Figure
	FIGURE 3-9: SHORT-TERM VEHICLE TRACKING FOR TRAFFIC COUNTING 
	• Inputs: Bounding boxes from two consecutive video frames. 
	• Inputs: Bounding boxes from two consecutive video frames. 
	• Inputs: Bounding boxes from two consecutive video frames. 

	• Outputs: Information about which two bounding boxes in the different frames belong to the same vehicle or are not a good candidate for a tracked bounding box (this could be due to detection being lost or a false detection in one frame).  
	• Outputs: Information about which two bounding boxes in the different frames belong to the same vehicle or are not a good candidate for a tracked bounding box (this could be due to detection being lost or a false detection in one frame).  

	2. Identify the frame in which a vehicle’s bounding box FIRST crosses the reference line. 
	2. Identify the frame in which a vehicle’s bounding box FIRST crosses the reference line. 


	The purpose of this step is to identify the frame in which the vehicle’s bounding box first crosses the reference line; it may take a vehicle’s bounding box multiple frames to cross the reference line (used for counting). If the count goes up by one every time a bounding box touches the reference line, the final count results will be massively over-estimated. Therefore, it is important not to count bounding boxes from the same vehicle twice. 
	 
	 
	Figure
	FIGURE 3-10: CONDITION FOR TRAFFIC COUNTING USING BOUNDING BOXES AND REFERENCE LINES 
	• Inputs: 1) bounding boxes from two consecutive frames, 2) information about which two bounding boxes belong to the same vehicle, and 3) position of each reference line in different travel lane. 
	• Inputs: 1) bounding boxes from two consecutive frames, 2) information about which two bounding boxes belong to the same vehicle, and 3) position of each reference line in different travel lane. 
	• Inputs: 1) bounding boxes from two consecutive frames, 2) information about which two bounding boxes belong to the same vehicle, and 3) position of each reference line in different travel lane. 

	• Outputs: The frame ID that a vehicle’s bounding box first touches the reference line.  
	• Outputs: The frame ID that a vehicle’s bounding box first touches the reference line.  

	3. Log counted vehicle base on its class and lane. 
	3. Log counted vehicle base on its class and lane. 


	To provide detailed lane-wise traffic count information, this data extraction component needs to log counted vehicles to produce a total traffic count, lane-wise traffic count, and vehicle-class-based traffic count. The frame ID of each vehicle passing the reference line can provide information regarding the time between the leading and following cars. 
	• Inputs: 1) detection results, 2) frame of the bounding box that first touches the referent line, and 3) which reference line the bounding box passed. 
	• Inputs: 1) detection results, 2) frame of the bounding box that first touches the referent line, and 3) which reference line the bounding box passed. 
	• Inputs: 1) detection results, 2) frame of the bounding box that first touches the referent line, and 3) which reference line the bounding box passed. 

	• Outputs: A csv file recording all input information. 
	• Outputs: A csv file recording all input information. 


	3.3.2 Data Extraction Component: Speed  
	 
	Figure
	FIGURE 3-11: TRAFFIC SPEED DATA EXTRACTION PROCESSING FLOWCHART 
	The objective of this component is to determine vehicle traffic speed using the vehicle detection bounding boxes. The core of the proposed method is to use two reference locations with known distances to form a virtual speed loop; based on the time it takes for a vehicle to travel through the speed loop (extrapolated from frame ID), the speed of the vehicle can be computed. The following steps describe the method: 
	1. Establish vehicle tracking from bounding boxes using OpenCV tracker 
	1. Establish vehicle tracking from bounding boxes using OpenCV tracker 
	1. Establish vehicle tracking from bounding boxes using OpenCV tracker 


	The step is performed using OpenCV Tracker with the “CSRT” algorithm. Establishing tracking enables us to identify the frames when the vehicle of interest enters and exits the virtual speed loop and to estimate its traveling speed. Without tracking, it would be impossible to know if the bounding box interacting with the virtual speed loop belongs to the same vehicle or not.  
	 
	Figure
	FIGURE 3-12: LONG-TERM VEHICLE TRACKING USING OPENCV TRACKER 
	• Inputs: Detection file with bounding box information in each frame 
	• Inputs: Detection file with bounding box information in each frame 
	• Inputs: Detection file with bounding box information in each frame 

	• Outputs: Established tracking information with a unique ID is assigned to each successfully tracked vehicle.  
	• Outputs: Established tracking information with a unique ID is assigned to each successfully tracked vehicle.  


	2. Estimate a consistent reference point from the vehicle to enforce spatial-temporal consistency 
	2. Estimate a consistent reference point from the vehicle to enforce spatial-temporal consistency 
	2. Estimate a consistent reference point from the vehicle to enforce spatial-temporal consistency 


	Using a consistent reference point on the vehicle when checking whether the vehicle has passed each reference speed line ensures the consistency and reliability of the computed traffic speed. One way to keep this consistency is to always use the center of the front grille as the reference point. The reference point estimation assumes the relative position of the reference point stays relatively the same in different vehicles at different distances.  
	 
	Figure
	Figure
	FIGURE 3-13: VEHICLE REFERENCE POINT ESTIMATION USING A BOUNDING BOX 
	• Inputs: 1) estimation parameters, which indicate the relative position of the reference point within the bounding box; 2) bounding boxes from the detection file.  
	• Inputs: 1) estimation parameters, which indicate the relative position of the reference point within the bounding box; 2) bounding boxes from the detection file.  
	• Inputs: 1) estimation parameters, which indicate the relative position of the reference point within the bounding box; 2) bounding boxes from the detection file.  

	• Outputs: Location of reference point within each bounding box.  
	• Outputs: Location of reference point within each bounding box.  

	3. Find frames of interest (FOI) when the vehicle first enters and exits the virtual speed loop. 
	3. Find frames of interest (FOI) when the vehicle first enters and exits the virtual speed loop. 


	Identifying the frames that a vehicle first enters and exits the virtual speed loop can help us extrapolate the time it takes for a vehicle to travel through the speed loop. The time information is one of the key inputs for computing vehicle speed. 
	 
	Figure
	FIGURE 3-14: SAMPLE CALCULATION OF A VEHICLE’S TIME SPENT IN THE VIRTUAL LOOP 
	• Inputs: 1) bounding boxes with tracking labels (bounding boxes from the same vehicle would have same tracking labels), 2) the reference point position in each frame, and 3) the location of virtual speed lines. 
	• Inputs: 1) bounding boxes with tracking labels (bounding boxes from the same vehicle would have same tracking labels), 2) the reference point position in each frame, and 3) the location of virtual speed lines. 
	• Inputs: 1) bounding boxes with tracking labels (bounding boxes from the same vehicle would have same tracking labels), 2) the reference point position in each frame, and 3) the location of virtual speed lines. 

	• Outputs: 1) for each vehicle, the frame IDs of when it first enters and exits the virtual speed loop. 2) the time it took for the vehicle to travel through the speed loop. 
	• Outputs: 1) for each vehicle, the frame IDs of when it first enters and exits the virtual speed loop. 2) the time it took for the vehicle to travel through the speed loop. 

	4. Compute individual vehicle speed using FOI 
	4. Compute individual vehicle speed using FOI 


	Once the time for a vehicle to cross the virtual loop is calculated, the speed of the vehicle can be computed using the distances 𝑑 traveled by the vehicle and the time it takes for the reference point to intersect the entry and exit labels, Δ𝑡. 𝑠 = 𝑑  ∆𝑡 
	• Inputs: 1) tracking ID of the vehicle, 2) the time it takes the vehicle to pass through the speed loop; and 3) the length of the speed loop. 
	• Inputs: 1) tracking ID of the vehicle, 2) the time it takes the vehicle to pass through the speed loop; and 3) the length of the speed loop. 
	• Inputs: 1) tracking ID of the vehicle, 2) the time it takes the vehicle to pass through the speed loop; and 3) the length of the speed loop. 

	• Outputs: individual vehicle speed computed from 𝑉=𝑑𝑠𝑑𝑡. This is shown as a csv file that logs tracking ID, FOI, and vehicle speed. 
	• Outputs: individual vehicle speed computed from 𝑉=𝑑𝑠𝑑𝑡. This is shown as a csv file that logs tracking ID, FOI, and vehicle speed. 


	 
	  
	3.3.3 Data extraction component: Time headway 
	Desired time headway, as a required input in traffic simulation model, is an important information of driver behavior. The objective of this component is to derive traffic headway information from traffic count and the timestamp when each count occurs. 
	As described in traffic count data extraction component section, for each counted vehicle, the AI-system records the frame id when the vehicle crosses the reference line. Using this information, the time difference between two consecutive counts can be inferred base on the difference in frame id. Since the vehicles are being counted when their bounding boxes initially cross the reference line, the time difference between two counts can be effectively used as the time headway between a leading and following 
	As described in traffic count data extraction component section, for each counted vehicle, the AI-system records the frame id when the vehicle crosses the reference line. Using this information, the time difference between two consecutive counts can be inferred base on the difference in frame id. Since the vehicles are being counted when their bounding boxes initially cross the reference line, the time difference between two counts can be effectively used as the time headway between a leading and following 
	Figure 3-15
	Figure 3-15

	 illustrates how time headways are computed from the vehicle count sequence.  

	 
	Figure
	FIGURE 3-15: COMPUTE TIME HEADWAY FROM VEHICLE COUNT SEQUENCE 
	Certain traffic simulation software, such as Vissim, uses time gap parameters to describe driver following behavior. The difference between time headway and time gap is that time headway is based on the time difference between two vehicle’s front bumpers crossing the same reference point, while time gap is the time difference between the leading vehicle’s rear bumper and the following vehicle’s front bumper. Although the current version of the AI-system does not record the time a vehicle’s rear bumper cross
	Certain traffic simulation software, such as Vissim, uses time gap parameters to describe driver following behavior. The difference between time headway and time gap is that time headway is based on the time difference between two vehicle’s front bumpers crossing the same reference point, while time gap is the time difference between the leading vehicle’s rear bumper and the following vehicle’s front bumper. Although the current version of the AI-system does not record the time a vehicle’s rear bumper cross
	Figure 3-16
	Figure 3-16

	, the time gap can be calculated by subtracting the time for the leading vehicle to travel its car length from the time headway. As previous data extraction component records the speed and vehicle type of each counted vehicle, self-time, and by extension time gap, can be estimated by assuming a typical vehicle length for each vehicle type. 

	 
	Figure
	FIGURE 3-16: ESTIMATING TIME GAP FROM TIME HEADWAY 
	3.3.4 Data extraction component: Lane change 
	Extracting driver merge decision data (consisting of vehicle type and merging zone) involves the following three major steps:  
	1) Detecting individual vehicles and their positions in the image,  
	1) Detecting individual vehicles and their positions in the image,  
	1) Detecting individual vehicles and their positions in the image,  

	2) Classifying the detected vehicles (cars or trucks) in the image, and  
	2) Classifying the detected vehicles (cars or trucks) in the image, and  

	3) Determining the merge location (the change lane decision) for each vehicle from the image sequence (frames) and classifying its corresponding zone (Zones1 to 4) and vehicle type.  
	3) Determining the merge location (the change lane decision) for each vehicle from the image sequence (frames) and classifying its corresponding zone (Zones1 to 4) and vehicle type.  


	Figure 3-17
	Figure 3-17
	Figure 3-17

	 illustrates the data extraction procedure. Each image is given a frame number to keep track of the sequence of the images, as shown in 
	Figure 3-17
	Figure 3-17

	(a). 
	Figure 3-17
	Figure 3-17

	(a) also illustrates Steps 1 and 2 for vehicle detection and vehicle classification in each image. The two vehicle-classification categories are cars and trucks; the “cars” class (represented by orange boxes in 
	Figure 3-17
	Figure 3-17

	(a) includes passenger vehicles (sedans, SUVs, and small cars), and the “trucks” class (represented by green boxes in 
	Figure 3-17
	Figure 3-17

	(a)) includes pickup trucks, buses, and trailers. The position of each detected vehicle and the class of each vehicle in the image is recorded. 
	Figure 3-17
	Figure 3-17

	(b) illustrates how to determine the merge location. When the position of a detected vehicle in the image sequence crosses the pavement marking line separating the closed lane from the open lane, we determine the merge location and record its corresponding zone number.  

	Table 3-1
	Table 3-1
	Table 3-1

	 shows an example of how zone-based vehicle merge count is recorded. As graphically illustrated in 
	Figure 3-17
	Figure 3-17

	 (b), at frame #57, the car’s position changes from the closed lane to the open lane in Zone 2. Hence, in 
	Table 3-1
	Table 3-1

	, a new record (57) is added under Frame # and the merge count in the corresponding zone (Zone 2) and vehicle type (Cars) is incremented by 1. Similarly, the first truck’s merge zone was recorded at Frame #47 in Zone 3, and the second truck merge location is recorded at Frame #97 in Zone 4. When the next car merges lanes in Zone 2, the count will be incremented to 2 at the corresponding frame number. The total number of vehicles that merged lanes at the end of 97 frames is 3. From 
	Table 3-1
	Table 3-1

	, we can infer when (frame #) and where (zone #) each class of vehicle changes lanes for merging.  

	The lane-change location can be identified in this study. With the location reference, we can compute the location based on the distance to the work zone taper or different zones of the work zone, which is the one we used in our study. In addition, the speed during the lane change can also be computed in the future.  
	 
	Figure
	FIGURE 3-17 ILLUSTRATION OF DATA EXTRACTION STEPS 
	 
	 

	TABLE 3-1 ZONE-BASED VEHICLE MERGE COUNT INCREMENT TABLE ALONG WITH VEHICLE TYPE 
	  
	  
	  
	  

	Zone 1 
	Zone 1 

	Zone 2 
	Zone 2 

	Zone 3 
	Zone 3 

	Zone 4 
	Zone 4 


	Frame # 
	Frame # 
	Frame # 

	Cars 
	Cars 

	 Trucks 
	 Trucks 

	Cars 
	Cars 

	Trucks 
	Trucks 

	 Cars 
	 Cars 

	Trucks 
	Trucks 

	 Cars 
	 Cars 

	Trucks 
	Trucks 


	47 
	47 
	47 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 


	57 
	57 
	57 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 


	97 
	97 
	97 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	1 
	1 



	 
	We demonstrate the implementation of the system through a case study on work zone traffic videos collected from Georgia Interstate-95 (I-95), in the following chapter. 
	 
	  
	 CASE STUDY OF THE AI-BASED SYSTEM AND DRIVER BEHAVIOR ANALYSIS 
	In this chapter, a case study presents the use of the proposed AI-system to extract traffic and driver behavior information from two 30-minute traffic footages using the proposed AI-system. In addition, this chapter also presents the benefits of analyzing the extracted information to obtain accurate and refined traffic and driver behavior information. The analyzed traffic and driver behavior information includes vehicle counts, vehicle types, driver behaviors, individual vehicle speeds, individual time head
	The case study involves two 30-minute work zone videos collected in a work zone on I-95 near Savannah, Georgia; the videos were chosen by design to analyze the impact of traffic density and vehicle type on work zone driver merge behaviors. First, we show the implementation of the proposed AI-system and the results of traffic count and speed aggregated into 3-minute intervals. Second, we demonstrate the application of using the extracted data for driver behavior study at the work zone with a) high traffic de
	4.1 Case study data description.  
	In this case study, we use two 30-minute-long work zone videos that were taken on I-95 with a camera mounted on a tower, as shown in 
	In this case study, we use two 30-minute-long work zone videos that were taken on I-95 with a camera mounted on a tower, as shown in 
	Figure 4-1: Camera mounting tower and work zone sites for collecting videos
	Figure 4-1: Camera mounting tower and work zone sites for collecting videos

	. The work zone is in a straight section of the interstate with a right-lane closure. The videos were collected during clear weather conditions from 3:00 PM to 3:30 PM (video A) and 2:30 PM to 3:00 PM (video B). The two videos were chosen because of the difference in their traffic conditions. Video A shows dynamic traffic conditions in which the traffic evolves from slow-moving, high-density conditions to nearly free-flowing, low-density conditions. Video B shows a more static traffic condition in which tra
	Figure 4-2
	Figure 4-2

	. In Video A, the transition from congested traffic conditions to non-congested traffic occurred around the 9 to 10-minute mark.  

	 
	Figure
	Figure
	(a) camera mounting tower   (b) work zone sites 
	FIGURE 4-1: CAMERA MOUNTING TOWER AND WORK ZONE SITES FOR COLLECTING VIDEOS 
	 
	 
	Figure
	Figure
	Figure

	(a) low traffic density condition  (b) high traffic density condition 
	(a) low traffic density condition  (b) high traffic density condition 
	(a) low traffic density condition  (b) high traffic density condition 


	FIGURE 4-2: VIDEOS A AND B WITH LOW AND HIGH TRAFFIC DENSITY CONDITION IN THE WORK ZONE 
	4.2 Use of the AI-system 
	The user interface of the AI-system provides an interactive way for the user to set up the AI-system and visualize vehicle detection and reference lines on the original traffic video frames, as shown in the left part of Figure 4.3. Interactive functions of the interface are shown in the right part of Figure 4.3, including loading data, drawing of reference lines, defining reference distance, cycling through video frames, etc. Using this user interface, the user can complete the setup of the AI-system by dra
	 
	 
	Figure
	FIGURE 4-3: USER INTERFACE AND REQUIRED INPUT FOR IMPLEMENTING AI-SYSTEM 
	By performing vehicle detection and classification using the Yolo3 deep-learning model, detection and classification results are obtained; a portion of the results are shown in 
	By performing vehicle detection and classification using the Yolo3 deep-learning model, detection and classification results are obtained; a portion of the results are shown in 
	Table 4-1
	Table 4-1

	. Each entry in the table represents one instance of detection; the information regarding that detection is also recorded. Information includes the frame index of the detection, bounding box location within that frame (x, y, width, height), the confidence level of the detection, and the classification of the detection.  

	TABLE 4-1 SAMPLE VEHICLE DETECTION RESULTS USING YOLO3 
	Frame Index 
	Frame Index 
	Frame Index 
	Frame Index 

	X 
	X 

	y 
	y 

	width 
	width 

	height 
	height 

	confidence 
	confidence 

	label 
	label 


	4438 
	4438 
	4438 

	1021 
	1021 

	846 
	846 

	210.6931 
	210.6931 

	158.1098 
	158.1098 

	0.999565 
	0.999565 

	car 
	car 


	4435 
	4435 
	4435 

	992 
	992 

	815 
	815 

	209.3338 
	209.3338 

	155.1874 
	155.1874 

	0.999516 
	0.999516 

	car 
	car 


	2078 
	2078 
	2078 

	986 
	986 

	856 
	856 

	213.1085 
	213.1085 

	155.4163 
	155.4163 

	0.999494 
	0.999494 

	truck 
	truck 


	6267 
	6267 
	6267 

	944 
	944 

	831 
	831 

	196.1606 
	196.1606 

	137.9711 
	137.9711 

	0.99949 
	0.99949 

	car 
	car 


	4434 
	4434 
	4434 

	982 
	982 

	800 
	800 

	215.4278 
	215.4278 

	160.2763 
	160.2763 

	0.999476 
	0.999476 

	car 
	car 


	6266 
	6266 
	6266 

	923 
	923 

	811 
	811 

	199.7261 
	199.7261 

	142.763 
	142.763 

	0.999459 
	0.999459 

	car 
	car 


	4436 
	4436 
	4436 

	997 
	997 

	827 
	827 

	211.4515 
	211.4515 

	155.8624 
	155.8624 

	0.999434 
	0.999434 

	car 
	car 


	12610 
	12610 
	12610 

	984 
	984 

	851 
	851 

	208.1568 
	208.1568 

	149.3467 
	149.3467 

	0.999421 
	0.999421 

	truck 
	truck 


	4443 
	4443 
	4443 

	1059 
	1059 

	882 
	882 

	226.681 
	226.681 

	180.8946 
	180.8946 

	0.999411 
	0.999411 

	truck 
	truck 


	4867 
	4867 
	4867 

	1198 
	1198 

	823 
	823 

	212.9472 
	212.9472 

	135.7052 
	135.7052 

	0.9994 
	0.9994 

	car 
	car 


	1387 
	1387 
	1387 

	996 
	996 

	864 
	864 

	194.5786 
	194.5786 

	143.9435 
	143.9435 

	0.999399 
	0.999399 

	car 
	car 


	4442 
	4442 
	4442 

	1051 
	1051 

	871 
	871 

	222.3091 
	222.3091 

	182.1582 
	182.1582 

	0.999386 
	0.999386 

	car 
	car 


	… 
	… 
	… 

	… 
	… 

	… 
	… 

	… 
	… 

	… 
	… 

	… 
	… 

	… 
	… 



	 
	The 30-minute videos each contain 17962 frames (downsampled from 30 frames per second to 10 frames per second). Among these frames, the Yolo3 vehicle detection yielded more than 443,000 detection instances with an average detection confidence of 0.657. The classification results show about 24.4% of detections are classified as “trucks,” and the rest are classified as “cars.” These vehicle detection results are then used by the data extraction components described in Chapter 3 to extract traffic and driver b
	4.4 Traffic and driver behavior analysis 
	This section presents the benefits of obtaining the traffic and driver behavior information by conducting traffic and driver behavior analysis. The analysis uses information that can be extracted using widely available 2D cameras, the information extracted includes vehicle counts, vehicle types, driver behaviors, individual vehicle speeds, individual time headways/gaps, and lane change locations. Although the preliminary version of the proposed AI-System produces a promising outcome, there is still a discre
	Traffic count results 
	Table 4-2
	Table 4-2
	Table 4-2

	 and 
	Figure 4-4
	Figure 4-4

	 show the traffic count results obtained from the case study videos; the traffic count results are aggregated into five-minute intervals. The results generally show a higher proportion of vehicles traveling in the inner lane than in the outer lane, but the difference in traffic count number is reduced in high traffic density conditions.  

	TABLE 4-2 LANE-WISE TRAFFIC COUNT AGGREGATED IN FIVE-MINUTE INTERVALS 
	Time interval 
	Time interval 
	Time interval 
	Time interval 

	Video A 
	Video A 

	Video B 
	Video B 


	TR
	Inner Lane 
	Inner Lane 

	Outer Lane 
	Outer Lane 

	Both Lane 
	Both Lane 

	Inner Lane 
	Inner Lane 

	Outer Lane 
	Outer Lane 

	Both Lane 
	Both Lane 


	1-5 min 
	1-5 min 
	1-5 min 

	92 
	92 

	76 
	76 

	168 
	168 

	48 
	48 

	56 
	56 

	104 
	104 


	6-10 min 
	6-10 min 
	6-10 min 

	93 
	93 

	64 
	64 

	157 
	157 

	70 
	70 

	51 
	51 

	121 
	121 


	11-15 min 
	11-15 min 
	11-15 min 

	90 
	90 

	70 
	70 

	160 
	160 

	88 
	88 

	85 
	85 

	173 
	173 


	16-20 min 
	16-20 min 
	16-20 min 

	83 
	83 

	59 
	59 

	142 
	142 

	67 
	67 

	69 
	69 

	136 
	136 


	21-25 min 
	21-25 min 
	21-25 min 

	92 
	92 

	62 
	62 

	154 
	154 

	98 
	98 

	88 
	88 

	186 
	186 


	26-30 min 
	26-30 min 
	26-30 min 

	96 
	96 

	66 
	66 

	162 
	162 

	101 
	101 

	103 
	103 

	204 
	204 


	Total 
	Total 
	Total 

	546 
	546 

	397 
	397 

	943 
	943 

	472 
	472 

	452 
	452 

	924 
	924 



	 
	Figure
	Figure
	(a) Video A      (b) Video B 
	FIGURE 4-4: VEHICLE COUNTS OVER TIME AGGREGATED INTO FIVE-MINUTE INTERVALS 
	Traffic speed results 
	The traffic speed information obtained from the case study videos is shown in 
	The traffic speed information obtained from the case study videos is shown in 
	Table 4-3
	Table 4-3

	. In this table, the speed is reported for each travel lane, and the statistical values, such as minimum, maximum, mean, median, and standard deviation, are used to describe the distribution of the traffic speed. This level of detail can be expected from the AI-system, as the system estimated speed at the individual vehicle level; thus, the system enables users to obtain speed information statistics that describe the distribution of traffic overall speed.  

	TABLE 4-3 STATISTICS OF EXTRACTED SPEED DATA IN 5-MINUTE INTERVALS 
	Video A  
	Video A  
	Video A  
	Video A  


	Bins 
	Bins 
	Bins 

	Inner Lane Speed (MPH) 
	Inner Lane Speed (MPH) 

	Outer Lane Speed (MPH) 
	Outer Lane Speed (MPH) 


	Minutes 
	Minutes 
	Minutes 

	Min 
	Min 

	Mean 
	Mean 

	Max 
	Max 

	Median 
	Median 

	SD 
	SD 

	Min 
	Min 

	Mean 
	Mean 

	Max 
	Max 

	Median 
	Median 

	SD 
	SD 



	0-5 
	0-5 
	0-5 
	0-5 

	7.5 
	7.5 

	21.9 
	21.9 

	35.4 
	35.4 

	22.5 
	22.5 

	6.7 
	6.7 

	7.5 
	7.5 

	19.8 
	19.8 

	30.9 
	30.9 

	19.1 
	19.1 

	6.1 
	6.1 


	5-10 
	5-10 
	5-10 

	19.1 
	19.1 

	26.1 
	26.1 

	41.3 
	41.3 

	24.8 
	24.8 

	5.0 
	5.0 

	15.4 
	15.4 

	20.2 
	20.2 

	41.3 
	41.3 

	19.1 
	19.1 

	3.9 
	3.9 


	10-15 
	10-15 
	10-15 

	30.9 
	30.9 

	47.7 
	47.7 

	82.5 
	82.5 

	49.5 
	49.5 

	10.7 
	10.7 

	27.5 
	27.5 

	45.5 
	45.5 

	82.5 
	82.5 

	41.3 
	41.3 

	11.0 
	11.0 


	15-20 
	15-20 
	15-20 

	41.3 
	41.3 

	56.3 
	56.3 

	82.5 
	82.5 

	61.9 
	61.9 

	7.8 
	7.8 

	41.3 
	41.3 

	53.3 
	53.3 

	61.9 
	61.9 

	49.5 
	49.5 

	7.2 
	7.2 


	20-25 
	20-25 
	20-25 

	24.8 
	24.8 

	54.9 
	54.9 

	82.5 
	82.5 

	49.5 
	49.5 

	10.2 
	10.2 

	41.3 
	41.3 

	50.9 
	50.9 

	61.9 
	61.9 

	49.5 
	49.5 

	6.6 
	6.6 


	25-30 
	25-30 
	25-30 

	41.3 
	41.3 

	56.2 
	56.2 

	82.5 
	82.5 

	61.9 
	61.9 

	8.8 
	8.8 

	41.3 
	41.3 

	53.5 
	53.5 

	82.5 
	82.5 

	49.5 
	49.5 

	7.6 
	7.6 


	Video B 
	Video B 
	Video B 


	Bins 
	Bins 
	Bins 

	Inner Lane Speed (MPH) 
	Inner Lane Speed (MPH) 

	Outer Lane Speed (MPH) 
	Outer Lane Speed (MPH) 


	Minutes 
	Minutes 
	Minutes 

	Min 
	Min 

	Mean 
	Mean 

	Max 
	Max 

	Median 
	Median 

	SD 
	SD 

	Min 
	Min 

	Mean 
	Mean 

	Max 
	Max 

	Median 
	Median 

	SD 
	SD 


	0-5 
	0-5 
	0-5 

	1.1 
	1.1 

	12.3 
	12.3 

	22.5 
	22.5 

	12.4 
	12.4 

	4.4 
	4.4 

	2.8 
	2.8 

	11.1 
	11.1 

	17.7 
	17.7 

	11.3 
	11.3 

	3.5 
	3.5 


	5-10 
	5-10 
	5-10 

	2.6 
	2.6 

	15.4 
	15.4 

	22.5 
	22.5 

	16.5 
	16.5 

	4.3 
	4.3 

	8.8 
	8.8 

	13.2 
	13.2 

	19.1 
	19.1 

	13.8 
	13.8 

	2.5 
	2.5 


	10-15 
	10-15 
	10-15 

	7.5 
	7.5 

	20.9 
	20.9 

	35.4 
	35.4 

	20.6 
	20.6 

	5.2 
	5.2 

	6.7 
	6.7 

	16.5 
	16.5 

	27.5 
	27.5 

	16.5 
	16.5 

	4.4 
	4.4 


	15-20 
	15-20 
	15-20 

	3.8 
	3.8 

	14.3 
	14.3 

	22.5 
	22.5 

	14.6 
	14.6 

	3.6 
	3.6 

	2.4 
	2.4 

	13.2 
	13.2 

	22.5 
	22.5 

	13.0 
	13.0 

	4.1 
	4.1 


	20-25 
	20-25 
	20-25 

	14.6 
	14.6 

	23.4 
	23.4 

	35.4 
	35.4 

	22.5 
	22.5 

	4.8 
	4.8 

	5.6 
	5.6 

	21.9 
	21.9 

	30.9 
	30.9 

	22.5 
	22.5 

	6.4 
	6.4 


	25-30 
	25-30 
	25-30 

	15.4 
	15.4 

	27.6 
	27.6 

	35.4 
	35.4 

	27.5 
	27.5 

	4.8 
	4.8 

	15.4 
	15.4 

	27.8 
	27.8 

	35.4 
	35.4 

	27.5 
	27.5 

	4.3 
	4.3 



	 
	Figure 4-5
	Figure 4-5
	Figure 4-5

	 shows the average traffic speed in each lane. The results show a similar speed trend is being followed by traffic in both lanes, but a higher average speed can be found in the inner lane than in the outer lane; this result is reflective of typical traffic conditions. The traffic speed also captured the lower traffic speed in high-density conditions ( in Video B and in the beginning of Video A) and the transition from a congested to a non-congested condition in Video A.  

	 
	Figure
	Figure
	(a) Video A      (b) Video B 
	FIGURE 4-5 TRAFFIC SPEED ESTIMATION IN INNER AND OUTER LANES  
	Traffic headway results 
	The preliminary version of the AI-system enables the extraction of time headway information at the individual vehicle level. Since the information about the drivers’ following behaviors can be used in traffic simulation software like Vissim, the time gap information (as shown in Figure 3-16 of Chapter 3, time gap, Tg = Th - Ts) is estimated from the extracted time headway. 
	The preliminary version of the AI-system enables the extraction of time headway information at the individual vehicle level. Since the information about the drivers’ following behaviors can be used in traffic simulation software like Vissim, the time gap information (as shown in Figure 3-16 of Chapter 3, time gap, Tg = Th - Ts) is estimated from the extracted time headway. 
	Table 4-4
	Table 4-4

	 shows the time gap results. One advantage of having time headway information at the vehicle-level is the ability to filter the dataset 

	to suit the needs of the analysis. As an example, 
	to suit the needs of the analysis. As an example, 
	Table 4-4
	Table 4-4

	 also shows the time gap results where time gaps larger than 4-sec were removed to mitigate the impact of results from the random arrival of vehicles; this improves the reliability of the inferred driver following behavior using the filtered time gap results.  

	  
	TABLE 4-4 STATISTICAL VALUES OF TIME-GAP FROM VIDEO A AND B 
	Video A (inner lane)  
	Video A (inner lane)  
	Video A (inner lane)  
	Video A (inner lane)  


	Bins 
	Bins 
	Bins 

	Time Gap (sec) 
	Time Gap (sec) 

	Time Gap under 4-sec (sec) 
	Time Gap under 4-sec (sec) 


	Minutes 
	Minutes 
	Minutes 

	Min 
	Min 

	Mean 
	Mean 

	Max 
	Max 

	Median 
	Median 

	SD 
	SD 

	Min 
	Min 

	Mean 
	Mean 

	Max 
	Max 

	Median 
	Median 

	SD 
	SD 


	0-5 
	0-5 
	0-5 

	0.550 
	0.550 

	2.297 
	2.297 

	8.525 
	8.525 

	1.850 
	1.850 

	1.484 
	1.484 

	0.550 
	0.550 

	1.959 
	1.959 

	3.975 
	3.975 

	1.825 
	1.825 

	0.891 
	0.891 


	5-10 
	5-10 
	5-10 

	0.450 
	0.450 

	2.424 
	2.424 

	13.375 
	13.375 

	1.775 
	1.775 

	2.093 
	2.093 

	0.450 
	0.450 

	1.821 
	1.821 

	3.900 
	3.900 

	1.625 
	1.625 

	0.817 
	0.817 


	10-15 
	10-15 
	10-15 

	0.400 
	0.400 

	2.621 
	2.621 

	14.650 
	14.650 

	1.800 
	1.800 

	2.477 
	2.477 

	0.400 
	0.400 

	1.534 
	1.534 

	3.900 
	3.900 

	1.350 
	1.350 

	0.816 
	0.816 


	15-20 
	15-20 
	15-20 

	0.350 
	0.350 

	2.499 
	2.499 

	17.825 
	17.825 

	1.500 
	1.500 

	2.917 
	2.917 

	0.350 
	0.350 

	1.566 
	1.566 

	3.975 
	3.975 

	1.350 
	1.350 

	0.944 
	0.944 


	20-25 
	20-25 
	20-25 

	0.200 
	0.200 

	2.618 
	2.618 

	30.675 
	30.675 

	1.450 
	1.450 

	3.781 
	3.781 

	0.200 
	0.200 

	1.549 
	1.549 

	3.800 
	3.800 

	1.300 
	1.300 

	0.913 
	0.913 


	25-30 
	25-30 
	25-30 

	0.350 
	0.350 

	2.594 
	2.594 

	12.000 
	12.000 

	1.650 
	1.650 

	2.534 
	2.534 

	0.350 
	0.350 

	1.506 
	1.506 

	3.900 
	3.900 

	1.250 
	1.250 

	0.822 
	0.822 


	Video A (outer lane)  
	Video A (outer lane)  
	Video A (outer lane)  


	Bins 
	Bins 
	Bins 

	Time Gap (sec) 
	Time Gap (sec) 

	Time Gap under 4-sec (sec) 
	Time Gap under 4-sec (sec) 


	Minutes 
	Minutes 
	Minutes 

	Min 
	Min 

	Mean 
	Mean 

	Max 
	Max 

	Median 
	Median 

	SD 
	SD 

	Min 
	Min 

	Mean 
	Mean 

	Max 
	Max 

	Median 
	Median 

	SD 
	SD 


	0-5 
	0-5 
	0-5 

	0.550 
	0.550 

	2.760 
	2.760 

	10.750 
	10.750 

	2.100 
	2.100 

	2.027 
	2.027 

	0.550 
	0.550 

	2.015 
	2.015 

	3.950 
	3.950 

	1.900 
	1.900 

	0.931 
	0.931 


	5-10 
	5-10 
	5-10 

	0.575 
	0.575 

	3.233 
	3.233 

	15.200 
	15.200 

	2.225 
	2.225 

	2.673 
	2.673 

	0.575 
	0.575 

	2.016 
	2.016 

	3.975 
	3.975 

	1.825 
	1.825 

	0.894 
	0.894 


	10-15 
	10-15 
	10-15 

	0.400 
	0.400 

	2.976 
	2.976 

	8.600 
	8.600 

	2.050 
	2.050 

	2.014 
	2.014 

	0.400 
	0.400 

	1.857 
	1.857 

	4.000 
	4.000 

	1.613 
	1.613 

	0.940 
	0.940 


	15-20 
	15-20 
	15-20 

	0.250 
	0.250 

	3.796 
	3.796 

	15.850 
	15.850 

	2.588 
	2.588 

	3.629 
	3.629 

	0.250 
	0.250 

	1.851 
	1.851 

	4.000 
	4.000 

	1.650 
	1.650 

	0.993 
	0.993 


	20-25 
	20-25 
	20-25 

	0.600 
	0.600 

	3.230 
	3.230 

	14.000 
	14.000 

	1.850 
	1.850 

	3.260 
	3.260 

	0.600 
	0.600 

	1.672 
	1.672 

	3.500 
	3.500 

	1.550 
	1.550 

	0.814 
	0.814 


	25-30 
	25-30 
	25-30 

	0.425 
	0.425 

	4.016 
	4.016 

	31.000 
	31.000 

	2.600 
	2.600 

	4.575 
	4.575 

	0.425 
	0.425 

	1.961 
	1.961 

	3.700 
	3.700 

	1.925 
	1.925 

	0.949 
	0.949 


	Video B (inner lane) 
	Video B (inner lane) 
	Video B (inner lane) 


	Bins 
	Bins 
	Bins 

	Time Gap (sec) 
	Time Gap (sec) 

	Time Gap under 4-sec (sec) 
	Time Gap under 4-sec (sec) 


	Minutes 
	Minutes 
	Minutes 

	Min 
	Min 

	Mean 
	Mean 

	Max 
	Max 

	Median 
	Median 

	SD 
	SD 

	Min 
	Min 

	Mean 
	Mean 

	Max 
	Max 

	Median 
	Median 

	SD 
	SD 


	0-5 
	0-5 
	0-5 

	0.675 
	0.675 

	3.481 
	3.481 

	15.300 
	15.300 

	2.300 
	2.300 

	3.253 
	3.253 

	0.675 
	0.675 

	2.070 
	2.070 

	3.625 
	3.625 

	2.000 
	2.000 

	0.765 
	0.765 


	5-10 
	5-10 
	5-10 

	0.450 
	0.450 

	2.790 
	2.790 

	13.900 
	13.900 

	2.150 
	2.150 

	2.281 
	2.281 

	0.450 
	0.450 

	1.814 
	1.814 

	3.150 
	3.150 

	1.850 
	1.850 

	0.787 
	0.787 


	10-15 
	10-15 
	10-15 

	0.500 
	0.500 

	2.268 
	2.268 

	6.825 
	6.825 

	1.850 
	1.850 

	1.329 
	1.329 

	0.500 
	0.500 

	1.871 
	1.871 

	3.600 
	3.600 

	1.750 
	1.750 

	0.752 
	0.752 


	15-20 
	15-20 
	15-20 

	0.750 
	0.750 

	2.792 
	2.792 

	9.550 
	9.550 

	2.388 
	2.388 

	1.760 
	1.760 

	0.750 
	0.750 

	2.230 
	2.230 

	3.950 
	3.950 

	2.250 
	2.250 

	0.803 
	0.803 


	20-25 
	20-25 
	20-25 

	0.450 
	0.450 

	2.061 
	2.061 

	5.600 
	5.600 

	1.875 
	1.875 

	1.167 
	1.167 

	0.450 
	0.450 

	1.859 
	1.859 

	3.725 
	3.725 

	1.750 
	1.750 

	0.896 
	0.896 


	25-30 
	25-30 
	25-30 

	0.400 
	0.400 

	2.144 
	2.144 

	8.200 
	8.200 

	1.775 
	1.775 

	1.422 
	1.422 

	0.400 
	0.400 

	1.828 
	1.828 

	4.000 
	4.000 

	1.700 
	1.700 

	0.864 
	0.864 


	Video B (outer lane) 
	Video B (outer lane) 
	Video B (outer lane) 


	Bins 
	Bins 
	Bins 

	Time Gap (sec) 
	Time Gap (sec) 

	Time Gap under 4-sec (sec) 
	Time Gap under 4-sec (sec) 


	Minutes 
	Minutes 
	Minutes 

	Min 
	Min 

	Mean 
	Mean 

	Max 
	Max 

	Median 
	Median 

	SD 
	SD 

	Min 
	Min 

	Mean 
	Mean 

	Max 
	Max 

	Median 
	Median 

	SD 
	SD 


	0-5 
	0-5 
	0-5 

	1.000 
	1.000 

	2.966 
	2.966 

	9.650 
	9.650 

	2.650 
	2.650 

	1.640 
	1.640 

	1.000 
	1.000 

	2.380 
	2.380 

	4.000 
	4.000 

	2.425 
	2.425 

	0.838 
	0.838 


	5-10 
	5-10 
	5-10 

	0.500 
	0.500 

	3.507 
	3.507 

	10.750 
	10.750 

	3.200 
	3.200 

	2.192 
	2.192 

	0.500 
	0.500 

	2.200 
	2.200 

	3.850 
	3.850 

	1.925 
	1.925 

	0.936 
	0.936 


	10-15 
	10-15 
	10-15 

	0.400 
	0.400 

	2.320 
	2.320 

	12.225 
	12.225 

	2.075 
	2.075 

	1.701 
	1.701 

	0.400 
	0.400 

	1.957 
	1.957 

	3.800 
	3.800 

	1.875 
	1.875 

	0.822 
	0.822 


	15-20 
	15-20 
	15-20 

	0.750 
	0.750 

	2.624 
	2.624 

	7.050 
	7.050 

	2.288 
	2.288 

	1.325 
	1.325 

	0.750 
	0.750 

	2.290 
	2.290 

	4.000 
	4.000 

	2.100 
	2.100 

	0.878 
	0.878 


	20-25 
	20-25 
	20-25 

	0.350 
	0.350 

	2.229 
	2.229 

	8.050 
	8.050 

	1.950 
	1.950 

	1.358 
	1.358 

	0.350 
	0.350 

	1.852 
	1.852 

	3.800 
	3.800 

	1.750 
	1.750 

	0.760 
	0.760 


	25-30 
	25-30 
	25-30 

	0.400 
	0.400 

	1.868 
	1.868 

	8.750 
	8.750 

	1.625 
	1.625 

	1.270 
	1.270 

	0.400 
	0.400 

	1.651 
	1.651 

	3.450 
	3.450 

	1.500 
	1.500 

	0.780 
	0.780 



	 
	  
	Based on the time-gap results obtained from the videos, we have observed that the drivers typically follow each other with a time-gap in the range between 1.5 sec to 2.5 sec. In different traffic conditions, speed does not significantly change the following behavior of outer lane vehicles, while the inner lane drivers follow each other closer at higher speeds (1.5 sec compared to 1.9 sec). Also, the following behavior shows a slightly smaller variation (standard deviation) in high traffic density conditions
	Work zone merge behavior analysis  
	In this section, we analyze the impact of traffic density on the work zone driver merge behavior using the two highway work zone scenarios consisting of a) high traffic density conditions and b) low traffic density conditions. We grouped the lane change positions of each vehicle merging from the closed lane to the adjacent open lane into four zones, plotted the percentage of vehicles merging in each zone, and analyzed the merge location distribution to classify work zone driver merge behavior (by each vehic
	Zones for grouping driver merge locations 
	To group the different drivers’ merge locations in a work zone and analyze drivers’ merge location distribution, we defined four zones. Accordingly, we divided the work zone transition area and the advance warning area into four zones, as illustrated in 
	To group the different drivers’ merge locations in a work zone and analyze drivers’ merge location distribution, we defined four zones. Accordingly, we divided the work zone transition area and the advance warning area into four zones, as illustrated in 
	Figure 4-6
	Figure 4-6

	. Zone 1 represents the transition area, which consists of traffic control barriers (such as cones or cylinders) placed on the travel lane arranged in a tapering manner, gradually decreasing lane width. Zone 2, Zone 3, and Zone 4 cover the advance warning areas; they are 0 ft. to 500 ft. (152 m), 500 ft. (152 m) to 1000 ft. (304 m), and 1000 ft. (304 m) to 1500 ft (458 m), measured upstream from the beginning of the transition area (the work zone taper), respectively.  

	 
	Figure
	FIGURE 4-6 FOUR ZONES DEFINED IN THIS STUDY TO GROUP THE MERGE LOCATIONS (ADOPTED FROM TSAI ET AL., 2011) [1 FEET = 0.305 M] 
	Data Processing 
	The four zone boundaries, the two reference lines for the virtual speed loop, and the merge detection line (based on the pavement marking between the closed lane and adjacent open lane) were manually drawn on the images, as shown in 
	The four zone boundaries, the two reference lines for the virtual speed loop, and the merge detection line (based on the pavement marking between the closed lane and adjacent open lane) were manually drawn on the images, as shown in 
	Figure 4-7
	Figure 4-7

	. In both scenarios, the merge locations, along with vehicle type, frame #, and zone, were recorded visually. 

	 
	Figure
	FIGURE 4-7 MANUAL DRAWING OF MERGE ZONES, VIRTUAL SPEED LOOP REFERENCE LINES AND THE MERGE DETECTION LINE IN IMAGES COLLECTED FROM THE GA I-95 WORK ZONE. 
	Using the traffic speed and the traffic flow extracted from the proposed AI-system, the traffic density was calculated. For example, traffic and merge data extracted from the scenario with low traffic density condition is summarized below: 
	Traffic Flow    = 1034 vehicles/0.5 hours 
	Traffic Speed     = 43.5 mph 
	Traffic Density   = 29.5 vehicles/mile 
	Number of merges   = 32 (17 cars, 15 trucks)  
	Similarly, traffic and merge data extracted from the scenario with high traffic density condition is summarized below: 
	Traffic Flow    = 1170 vehicles/0.5 hours 
	Traffic Speed     = 20 mph 
	Traffic Density   = 117 vehicles/mile 
	Number of merges   = 85 (81 cars, 4 trucks) 
	Work zone driver merge behavior data analysis  
	After the data is extracted and processed for the two scenarios, there are three steps in work zone driver merge behavior data analysis: 
	Step 1: Determining the percentage of drivers merging in each zone by dividing the number of merges in each zone by the total number of merges. The percentages are computed separately for cars and trucks. 
	Step 2: Plotting the percentage of merges in each zone as a histogram separately for each vehicle type. This histogram produces a statistical distribution of the drivers’ merging locations in different zones.  
	Step 3: Analyzing the impact of traffic density on driver merge location based on work zone driver merge behavior classifications, including 1) late or early driver merge behaviors, and 2) dangerously late merge behaviors. The details of each behavior are discussed below.  
	Analysis 1: Late or early driver merge behavior.  
	Earlier driver merge behavior will result in a higher percentage of drivers perform merge maneuver in Zone 1 and Zone 2, while later driver merge behavior will result in a higher percentage of drivers perform merge maneuver in Zone 3 and Zone 4. Therefore, based on the distribution of merge locations among Zone 1 to Zone 4, the driver merge behavior can be evaluated across different traffic scenarios.  
	Analysis 2: Dangerously late merge behavior.  
	In addition, if the percentage of vehicles in Zone 1 are higher in one scenario than in others, it indicates that the dangerous late driver merge behavior in this scenario is higher in than in other scenarios. Dangerous late merge occurs when a vehicle merges inside the transition zone (Zone 1) and is likely to impact the safety and mobility in the work zone. Merging in Zone 1 is dangerous because the pavement width continuously reduces, and the driver is at risk of crashing into the traffic control cones o
	Work zone driver merge behavior results 
	This section presents the analysis results of the work zone driver merge behavior for the two scenarios – low and high traffic density condition. The analysis was performed using the steps discussed in the data analysis section above. The analysis data for this case study is shown in 
	This section presents the analysis results of the work zone driver merge behavior for the two scenarios – low and high traffic density condition. The analysis was performed using the steps discussed in the data analysis section above. The analysis data for this case study is shown in 
	Figure 4-8
	Figure 4-8

	. It is observed that at low traffic density, the majority of car drivers tend to merge early (88% in Zone 3 and 4). However, in high traffic density, nearly half the car drivers merge late (53% in Zone 1 and 2). Comparing the two traffic conditions (low, and high traffic density) for dangerous late merges, it is clearly seen (in 
	Figure 4-8
	Figure 4-8

	) that car drivers merge later in high traffic density conditions than in low traffic density conditions (the percentage of dangerous late merges increases from 6% in low traffic density to 28% in high traffic density conditions for Zone 1). This late merge 

	behavior could be attributed to 1) drivers' tendency to merge early to avoid changing (reducing) speed, 2) drivers’ feeling safer to merge late at slow speeds than at high speeds,  ) drivers’ seeing the work zone earlier in low traffic density than in high traffic density, or 4) drivers being eager to get home at 5 pm and behaving aggressively (especially in the high traffic density scenario). 
	 
	Figure
	FIGURE 4-8 COMPARISON OF THE PERCENTAGE OF CARS MERGING AT DIFFERENT ZONES AT LOW, AND HIGH-DENSITY TRAFFIC CONDITIONS 
	  
	 ERROR ANALYSIS AND IDENTIFICATION OF FACTORS 
	A preliminary version of the AI-system has been developed in this research, and improvements of this preliminary AI-system are required. To further improve the developed AI-system, it is important to identify the errors and analyze the detailed causal factors and reasons of the errors (error analysis) so improvements can be made. The error analysis is an essential but complicated procedure for establishing a refined, robust, and sustainable AI-system. This chapter presents an error analysis methodology 1) b
	A preliminary version of the AI-system has been developed in this research, and improvements of this preliminary AI-system are required. To further improve the developed AI-system, it is important to identify the errors and analyze the detailed causal factors and reasons of the errors (error analysis) so improvements can be made. The error analysis is an essential but complicated procedure for establishing a refined, robust, and sustainable AI-system. This chapter presents an error analysis methodology 1) b
	Table 2-1
	Table 2-1

	. Finally, this chapter also recommends the possible methods, including statistical methods and multi-interval aggregation methods, etc., to remove bias and outliers for improving the accuracy and reliability of the extracted information (e.g., vehicle count and vehicle speed). 

	5.1 Error Analysis Methodology 
	This section presents the error analysis methodology. The purpose of the error analysis is to study the accuracy of real-world driver behavior extracted using the AI-system and to identify the factors impacting the accuracy and to quantitatively analyze the impact of the factors causing the errors. This section presents the design of error analysis and the data preparation of the ground reference traffic data.  
	5.1.1 Design of Error Analysis 
	The design of error analysis is to compare the performance of automatically extracted traffic information with ground reference data for a 30-minute long work zone traffic video a) to study the statistical distribution and signature of errors/differences, b) to identify the factors causing the errors, c) to qualitatively show the impact of different levels of error-causing factors, d) to recommend the statistical method, like median and standard deviation to eliminate the outliers/bias caused by error-causi
	5.1.2 Ground Reference Data preparation (on I-95) 
	Figure 5-1
	Figure 5-1
	Figure 5-1

	 shows the traffic annotation tool used to manually extract traffic count and speed information. Using this traffic annotation tool, the ground reference is obtained by manually triggering the tool to log the frame ID every time a vehicle crosses the reference lines. The reference lines were drawn using the pavement markings as references, which ensures an estimated distance of 40 ft (10-ft long striping with 30-ft gaps) between the two reference lines.  

	 
	Figure
	FIGURE 5-1: USER INTERFACE OF TRAFFIC ANNOTATOR WITH REFERENCE LINES 
	Using the traffic annotation tool, ground reference data obtained includes the lane that a vehicle is traveling in, the frame IDs of a vehicle entering and exiting the virtual speed loop, and vehicle class categorized by length (passenger car, pickup truck, and semi-truck). The traffic count is obtained based on the number of vehicles that enter the virtual speed loop and the time of occurrence of a count is obtained from the number of vehicles that enter the virtual speed loop. The time spent in the virtua
	TABLE 5-1 EXTRACTED LANE-WISE TRAFFIC DATA USING AI-SYSTEM AND GROUND REFERENCE TRAFFIC DATA 
	 
	 
	 
	 

	Inner Lane 
	Inner Lane 

	Outer Lane 
	Outer Lane 

	Both Lanes 
	Both Lanes 


	Time (minute) 
	Time (minute) 
	Time (minute) 

	Estimated Speed (MPH) 
	Estimated Speed (MPH) 

	GT Speed 
	GT Speed 
	(MPH) 

	Estimated Count 
	Estimated Count 

	GT Count 
	GT Count 

	Estimated Speed (MPH) 
	Estimated Speed (MPH) 

	GT Speed 
	GT Speed 
	(MPH) 

	Estimated Count 
	Estimated Count 

	GT Count 
	GT Count 

	Estimated Speed (MPH) 
	Estimated Speed (MPH) 

	GT Speed 
	GT Speed 
	(MPH) 

	Estimated Count 
	Estimated Count 

	GT Count 
	GT Count 


	1 
	1 
	1 

	22.60 
	22.60 

	20.49 
	20.49 

	1 
	1 

	20 
	20 

	18.61 
	18.61 

	18.53 
	18.53 

	19 
	19 

	15 
	15 

	18.81 
	18.81 

	19.65 
	19.65 

	20 
	20 

	35 
	35 


	2 
	2 
	2 

	 - 
	 - 

	11.27 
	11.27 

	0 
	0 

	12 
	12 

	12.34 
	12.34 

	11.09 
	11.09 

	12 
	12 

	12 
	12 

	12.34 
	12.34 

	11.18 
	11.18 

	12 
	12 

	24 
	24 


	3 
	3 
	3 

	21.99 
	21.99 

	17.87 
	17.87 

	2 
	2 

	17 
	17 

	16.84 
	16.84 

	15.74 
	15.74 

	16 
	16 

	13 
	13 

	17.42 
	17.42 

	16.94 
	16.94 

	18 
	18 

	30 
	30 


	4 
	4 
	4 

	19.28 
	19.28 

	25.01 
	25.01 

	7 
	7 

	25 
	25 

	23.31 
	23.31 

	23.58 
	23.58 

	26 
	26 

	17 
	17 

	22.45 
	22.45 

	24.43 
	24.43 

	33 
	33 

	42 
	42 


	5 
	5 
	5 

	28.41 
	28.41 

	29.67 
	29.67 

	12 
	12 

	18 
	18 

	24.38 
	24.38 

	26.10 
	26.10 

	29 
	29 

	19 
	19 

	25.56 
	25.56 

	27.84 
	27.84 

	41 
	41 

	37 
	37 


	6 
	6 
	6 

	23.21 
	23.21 

	22.90 
	22.90 

	4 
	4 

	20 
	20 

	18.59 
	18.59 

	19.83 
	19.83 

	22 
	22 

	15 
	15 

	19.30 
	19.30 

	21.59 
	21.59 

	26 
	26 

	35 
	35 


	7 
	7 
	7 

	24.45 
	24.45 

	25.07 
	25.07 

	7 
	7 

	20 
	20 

	20.42 
	20.42 

	21.20 
	21.20 

	14 
	14 

	10 
	10 

	21.76 
	21.76 

	23.78 
	23.78 

	21 
	21 

	30 
	30 


	8 
	8 
	8 

	24.21 
	24.21 

	23.23 
	23.23 

	7 
	7 

	16 
	16 

	20.48 
	20.48 

	20.49 
	20.49 

	21 
	21 

	13 
	13 

	21.41 
	21.41 

	22.00 
	22.00 

	28 
	28 

	29 
	29 


	9 
	9 
	9 

	25.60 
	25.60 

	27.45 
	27.45 

	7 
	7 

	19 
	19 

	18.65 
	18.65 

	19.53 
	19.53 

	22 
	22 

	13 
	13 

	20.33 
	20.33 

	24.23 
	24.23 

	29 
	29 

	32 
	32 


	10 
	10 
	10 

	28.84 
	28.84 

	32.26 
	32.26 

	11 
	11 

	18 
	18 

	23.64 
	23.64 

	20.14 
	20.14 

	18 
	18 

	13 
	13 

	25.61 
	25.61 

	27.18 
	27.18 

	29 
	29 

	31 
	31 


	11 
	11 
	11 

	37.02 
	37.02 

	38.26 
	38.26 

	17 
	17 

	22 
	22 

	35.85 
	35.85 

	38.59 
	38.59 

	36 
	36 

	15 
	15 

	36.22 
	36.22 

	38.40 
	38.40 

	53 
	53 

	37 
	37 


	12 
	12 
	12 

	40.86 
	40.86 

	43.13 
	43.13 

	22 
	22 

	19 
	19 

	34.04 
	34.04 

	39.26 
	39.26 

	36 
	36 

	10 
	10 

	36.63 
	36.63 

	41.80 
	41.80 

	58 
	58 

	29 
	29 


	13 
	13 
	13 

	40.99 
	40.99 

	46.75 
	46.75 

	16 
	16 

	21 
	21 

	36.29 
	36.29 

	38.11 
	38.11 

	31 
	31 

	14 
	14 

	37.89 
	37.89 

	43.29 
	43.29 

	47 
	47 

	35 
	35 


	14 
	14 
	14 

	54.55 
	54.55 

	57.00 
	57.00 

	19 
	19 

	17 
	17 

	47.72 
	47.72 

	53.81 
	53.81 

	45 
	45 

	20 
	20 

	49.75 
	49.75 

	55.28 
	55.28 

	64 
	64 

	37 
	37 


	15 
	15 
	15 

	53.48 
	53.48 

	61.48 
	61.48 

	17 
	17 

	11 
	11 

	49.34 
	49.34 

	54.73 
	54.73 

	31 
	31 

	11 
	11 

	50.81 
	50.81 

	58.11 
	58.11 

	48 
	48 

	22 
	22 


	16 
	16 
	16 

	48.93 
	48.93 

	52.99 
	52.99 

	17 
	17 

	20 
	20 

	45.53 
	45.53 

	50.23 
	50.23 

	34 
	34 

	12 
	12 

	46.67 
	46.67 

	51.96 
	51.96 

	51 
	51 

	32 
	32 


	17 
	17 
	17 

	49.21 
	49.21 

	57.47 
	57.47 

	20 
	20 

	16 
	16 

	47.65 
	47.65 

	56.91 
	56.91 

	39 
	39 

	15 
	15 

	48.18 
	48.18 

	57.20 
	57.20 

	59 
	59 

	31 
	31 


	18 
	18 
	18 

	51.65 
	51.65 

	57.73 
	57.73 

	16 
	16 

	15 
	15 

	49.46 
	49.46 

	55.19 
	55.19 

	31 
	31 

	13 
	13 

	50.21 
	50.21 

	56.55 
	56.55 

	47 
	47 

	28 
	28 


	19 
	19 
	19 

	50.35 
	50.35 

	55.13 
	55.13 

	23 
	23 

	19 
	19 

	46.27 
	46.27 

	48.66 
	48.66 

	29 
	29 

	10 
	10 

	48.08 
	48.08 

	52.90 
	52.90 

	52 
	52 

	29 
	29 


	20 
	20 
	20 

	47.53 
	47.53 

	59.64 
	59.64 

	17 
	17 

	13 
	13 

	48.84 
	48.84 

	53.61 
	53.61 

	28 
	28 

	9 
	9 

	48.35 
	48.35 

	57.17 
	57.17 

	45 
	45 

	22 
	22 


	21 
	21 
	21 

	51.13 
	51.13 

	57.73 
	57.73 

	21 
	21 

	24 
	24 

	44.79 
	44.79 

	51.55 
	51.55 

	33 
	33 

	16 
	16 

	47.26 
	47.26 

	55.26 
	55.26 

	54 
	54 

	40 
	40 


	22 
	22 
	22 

	44.06 
	44.06 

	57.27 
	57.27 

	22 
	22 

	27 
	27 

	48.46 
	48.46 

	53.84 
	53.84 

	36 
	36 

	18 
	18 

	46.79 
	46.79 

	55.90 
	55.90 

	58 
	58 

	45 
	45 


	23 
	23 
	23 

	52.20 
	52.20 

	56.76 
	56.76 

	15 
	15 

	17 
	17 

	46.24 
	46.24 

	51.70 
	51.70 

	33 
	33 

	13 
	13 

	48.11 
	48.11 

	54.57 
	54.57 

	48 
	48 

	30 
	30 


	24 
	24 
	24 

	45.24 
	45.24 

	48.45 
	48.45 

	17 
	17 

	8 
	8 

	37.92 
	37.92 

	41.24 
	41.24 

	17 
	17 

	2 
	2 

	41.58 
	41.58 

	47.01 
	47.01 

	34 
	34 

	10 
	10 


	25 
	25 
	25 

	48.77 
	48.77 

	47.30 
	47.30 

	14 
	14 

	16 
	16 

	42.54 
	42.54 

	46.95 
	46.95 

	35 
	35 

	13 
	13 

	44.32 
	44.32 

	47.14 
	47.14 

	49 
	49 

	29 
	29 


	26 
	26 
	26 

	46.09 
	46.09 

	48.18 
	48.18 

	17 
	17 

	19 
	19 

	41.07 
	41.07 

	50.44 
	50.44 

	39 
	39 

	13 
	13 

	42.60 
	42.60 

	49.10 
	49.10 

	56 
	56 

	32 
	32 


	27 
	27 
	27 

	50.77 
	50.77 

	59.48 
	59.48 

	22 
	22 

	26 
	26 

	51.39 
	51.39 

	56.15 
	56.15 

	36 
	36 

	13 
	13 

	51.16 
	51.16 

	58.37 
	58.37 

	58 
	58 

	39 
	39 


	28 
	28 
	28 

	47.87 
	47.87 

	55.34 
	55.34 

	19 
	19 

	20 
	20 

	45.22 
	45.22 

	53.20 
	53.20 

	27 
	27 

	10 
	10 

	46.31 
	46.31 

	54.63 
	54.63 

	46 
	46 

	30 
	30 


	29 
	29 
	29 

	50.47 
	50.47 

	56.76 
	56.76 

	18 
	18 

	17 
	17 

	46.09 
	46.09 

	51.70 
	51.70 

	36 
	36 

	13 
	13 

	47.55 
	47.55 

	54.57 
	54.57 

	54 
	54 

	30 
	30 



	30 
	30 
	30 
	30 

	64.60 
	64.60 

	61.56 
	61.56 

	6 
	6 

	14 
	14 

	53.34 
	53.34 

	55.31 
	55.31 

	23 
	23 

	17 
	17 

	55.67 
	55.67 

	58.13 
	58.13 

	29 
	29 

	31 
	31 


	Total 
	Total 
	Total 

	45.02 
	45.02 

	43.76 
	43.76 

	413 
	413 

	546 
	546 

	39.17 
	39.17 

	40.03 
	40.03 

	854 
	854 

	397 
	397 

	41.07 
	41.07 

	41.62 
	41.62 

	1267 
	1267 

	943 
	943 



	5.2 Error Analysis Findings, Interpretations, and Recommendations  
	This section presents the findings and analysis made by comparing the results obtained from the AI-system and the ground reference data. Although time headway is one of the pieces of information extracted by the AI-system, the accuracy of obtained headway information heavily depends on the traffic count accuracy. Therefore, the error analysis was performed with the main focuses on identifying factors that impact the accuracy in 1) vehicle count estimation and 2) vehicle speed estimation. Also, a pilot study
	Table 5-1
	Table 5-1
	Table 5-1

	 shows the aggregated 1-minute traffic speed and count results from the manually obtained ground reference and the results estimated by the AI-system. The results show a 34.4% overestimation in total traffic count; the majority of overestimation cases occur in the outer lane, while the inner lane shows a closer traffic count to the ground reference. On the other hand, vehicle traffic speed results show very minimal error compared to the ground reference; the 30-minute average speed shows less than 2 MPH dif

	5.2.1 Vehicle count error analysis results 
	Figure 5-2
	Figure 5-2
	Figure 5-2

	 shows the lane-wise traffic count in each 3-minute interval of the video. We can see at the beginning of the video that the inner lane suffered significant undercounting before the 10-minute mark from 
	Figure 5-2
	Figure 5-2

	a. On the other hand, the outer lane shows overestimation of the traffic count, and this is most obvious after the 10-minute mark.  

	 
	Figure
	(a) manual traffic count and AI-system traffic count (est.) for the inner lane 
	 
	Figure
	(b) manual traffic count and AI-system traffic count (est.) for the outer lane 
	FIGURE 5-2: TRAFFIC COUNT BY AI-SYSTEM AND MANUAL COUNT IN INNER AND OUTER LANES 
	Since the traffic speed starts to increase at around the 9 to 10-minute mark, this observation suggests that the traffic speed could be an important factor impacting the performance of the vehicle traffic count. Upon further investigation, 
	Since the traffic speed starts to increase at around the 9 to 10-minute mark, this observation suggests that the traffic speed could be an important factor impacting the performance of the vehicle traffic count. Upon further investigation, 
	Figure 5-3
	Figure 5-3

	 shows the relationship between traffic count error and traffic speed and traffic density; the positive count error indicates over-counting, and the negative count error indicates undercounting. The results show a positive relationship between count error and traffic speed and a negative relationship between count error and traffic density.  

	 
	Figure
	Figure
	(a) count error at different traffic speed   (b) count error at different traffic density 
	FIGURE 5-3: TRAFFIC COUNT ERROR AT DIFFERENT TRAFFIC SPEED AND DENSITY 
	Although the relationships between count errors, traffic speed, and traffic density are observed, the causes of these errors at different speeds and densities are different. At low traffic speed, typically caused by high traffic density, we observed undercounting is most obvious in the inner lane. Such errors are likely caused by the high traffic density in the outer lane blocking the view of the camera to the inner lane and leads to false-negative detection by Yolo3. This is a sensor-related error, as it i
	On the other end of the spectrum, we observed a higher rate of overcounting at higher traffic speeds. As described in Chapter 3, vehicle counting relies on short-term vehicle tracking near the reference line; this tracking uses the intersection over union (IOU) area between bounding boxes in the consecutive frames. At high traffic speeds, 
	bounding boxes of the same vehicle may move significant distances in consecutive frames, which may cause short-term tracking to fail and recognize bounding boxes from the same vehicle in different frames as separate instances for counting, thus, leading to overcounting. This is an algorithm-related error, since it is caused by short-term tracking failure. 
	In addition to traffic speed, vehicle detection results from Yolo3 are another source of error. 
	In addition to traffic speed, vehicle detection results from Yolo3 are another source of error. 
	Figure 5-4
	Figure 5-4

	 shows examples of false-positive and false-negative vehicle detections by Yolo3. As mentioned, high traffic density conditions are more likely to cause false-negative detections due to occlusion. False-positive detections were also observed for some vehicles, especially for vehicles with a trailer, causing Yolo3 to detect both the vehicle and the trailer as separate vehicles. Overall, since these types of vehicles do not make up a large portion of the traffic, the impact of this algorithm-related factor is

	 
	Figure
	(a) false-positive detection      (b) false-negative detections 
	FIGURE 5-4: EXAMPLE OF FALSE-POSITIVE DETECTIONS AND OCCLUSION CAUSED FALSE-NEGATIVES 
	5.2.2 Vehicle speed error analysis results 
	Figure 5-5
	Figure 5-5
	Figure 5-5

	 shows the lane-wise traffic speed in each 1-minute interval of the video. From the figures, we can see in both traffic lanes that the AI-system captured traffic speed very accurately at the conditions in which traffic speed is below 40 MPH, while showing slight underestimation at a higher speed. The max error in average speed observed was around 10 MPH.  

	 
	 
	Figure
	Figure
	(a) inner lane traffic speed     (b) outer lane traffic speed 
	FIGURE 5-5: TRAFFIC SPEED ESTIMATED (EST.) BY AI-SYSTEM AND MANUAL METHOD (GT) IN ONE MINUTE INTERVALS 
	 
	 
	Figure
	Figure
	(a) aggregated in 1-minute intervals   (b) aggregated in 3-minute intervals 
	FIGURE 5-6: TRAFFIC SPEED ESTIMATION ERRORS AT DIFFERENT GROUND REFERENCE TRAFFIC SPEED 
	By plotting the traffic speed error against ground reference speed, as can be observed in 
	By plotting the traffic speed error against ground reference speed, as can be observed in 
	Figure 5-6
	Figure 5-6

	, the AI-system tends to underestimate speed in faster traffic than slower traffic. The error is likely caused by the fact that when the AI-system determines the time a vehicle exits the virtual speed loop, it only records the frame when the reference point of the vehicle has moved past the reference line. Since the frame rate of video used is at 10 fps, this means the AI-system is effectively rounding up the time a vehicle spends in the virtual loop to the nearest 0.1 seconds. This rounding error in travel
	Figure 5-7
	Figure 5-7

	. Since this error is introduced because of how speed is estimated, this is an algorithm-related error. 

	 
	Figure
	FIGURE 5-7: TRAFFIC SPEED COMPUTATION ERRORS INTRODUCED BY HIGH VEHICLE SPEED 
	  
	5.2.3 Pilot study of data cleaning and error case identification using statistical analysis 
	As part of error analysis in this section, a pilot study is presented 1) to explore the smallest temporal resolution required to identify atypical traffic and error cases produced by the AI-system, 2) to propose methods to identify atypical traffic and error cases, and 3) to propose methods to remove the bias in traffic speed computation. 
	Using the first 15 minutes of traffic video, 
	Using the first 15 minutes of traffic video, 
	Figure 5-8
	Figure 5-8

	 represents the traffic speed distribution aggregated in 3-minute, 5-minute, and 15-minute intervals. From the distribution of traffic speeds, we can see the traffic distribution is a normal-distribution-liked distribution. Thus, by assuming a normal distribution, we can identify outliers in the distribution and investigate further and verify if it is atypical traffic that is driving too fast or too slow or if it is an error case produced by the AI-system. 

	With the assumption that traffic speed distribution follows normal distribution, we can observe that when traffic is analyzed at 3-minute intervals, such distributions can be easily observed; at 5-minute intervals, the normal distribution shape is still very noticeable but may present skewness during the transition of traffic speed condition change. 
	With the assumption that traffic speed distribution follows normal distribution, we can observe that when traffic is analyzed at 3-minute intervals, such distributions can be easily observed; at 5-minute intervals, the normal distribution shape is still very noticeable but may present skewness during the transition of traffic speed condition change. 
	Figure 5-8
	Figure 5-8

	 also shows that when traffic speed data is aggregated at 15-minute intervals, identifying outlier cases is difficult, as the traffic condition changes during the 15-minute period and makes it so that the distribution no longer follows normal distribution.  

	 
	Figure
	Figure
	Figure
	 
	Figure
	Figure
	(a) traffic speed distribution results aggregated in 3-minute intervals 
	 
	Figure
	Figure
	Figure
	(b) traffic speed distribution results aggregated in 5-minute intervals 
	 
	Figure
	(c) traffic speed distribution results aggregated in 15-minute intervals 
	FIGURE 5-8: TRAFFIC SPEED DISTRIBUTION RESULTS OF THE SAME 15-MINUTE PERIOD AGGREGATED IN DIFFERENT TIME INTERVALS. 
	As a method to identify outliers in the distribution, we marked instances with more than two times the standard deviation from the mean as potential atypical traffic cases. However, these cases are not necessarily caused by errors in the AI-system. As shown in 
	As a method to identify outliers in the distribution, we marked instances with more than two times the standard deviation from the mean as potential atypical traffic cases. However, these cases are not necessarily caused by errors in the AI-system. As shown in 
	Figure 5-9
	Figure 5-9

	, by comparing the distribution between AI-system results and ground truth, we can see cases marked as outliers by the standard deviation threshold method are not error results but some atypical vehicles traveling faster than other vehicles . Therefore, further investigation is needed for these cases before deciding which instances should be removed.  

	   
	Figure
	Figure
	(a) estimated speed distribution   (b) ground truth distribution 
	FIGURE 5-9: TRAFFIC SPEED DISTRIBUTION EXTRACTED USING AI-SYSTEM (A) COMPARED WITH GROUND TRUTH DISTRIBUTION (B) 
	 
	Figure
	FIGURE 5-10: PROCEDURE FOR IDENTIFYING ERROR CASES 
	Although simply using the standard deviation method cannot guarantee identification of error-cases produced by the AI-system, this method does help identify potential error cases for further investigation. Using the “object_id” recorded by the AI-system, the results can be traced back to the frames and bounding boxes used to compute the traffic speed. 
	Although simply using the standard deviation method cannot guarantee identification of error-cases produced by the AI-system, this method does help identify potential error cases for further investigation. Using the “object_id” recorded by the AI-system, the results can be traced back to the frames and bounding boxes used to compute the traffic speed. 
	Figure 5-10
	Figure 5-10

	 shows two cases where potential cases are traced back to the video frames in which Case (a) shows the trajectory of the bounding boxes and frames where the bounding boxes were obtained. We can see the bounding boxes belong to the same vehicle in all frames, indicating this instance is not an error case. In Case (b), the bounding box does not belong to any vehicle visible in the frame, indicating an error; the exact cause of this case has yet to be determined. It might be caused by incorrect vehicle detecti

	The procedure presented in this section is mostly a manual analysis to demonstrate the process of identifying error cases; a more robust and automatic method should be explored for large-scale implementation.  
	 
	 
	Figure
	Figure
	 
	Figure
	Figure
	(a) correct vehicle trajectory tracking case  
	 
	Figure
	Figure
	(b) incorrect vehicle trajectory tracking case 
	FIGURE 5.10 CORRECT AND INCORRECT VEHICLE TRAJECTORY TRACKING CASES 
	5.2.4 Interpretations and recommendations  
	The results presented in this chapter show that traffic speed and occlusion are the main impacting factors in vehicle traffic count errors. In this analysis, we found higher traffic speed generally leads to higher traffic over-counting due to short-term vehicle tracking failure (algorithm-related factor), and in congested conditions, occlusion, sensor-related factors also cause undercounting, especially for inner-lane traffic. This shows traffic conditions would impact the traffic count accuracy and algorit
	larger amount of underestimation at higher traffic speeds than at lower traffic speeds. We found that traffic speed and video frame rate impact the accuracy in speed results, and the errors are caused by algorithm-related factors. 
	As a recommendation, we believe that increasing the frame rate of videos would help improve the performance of the AI-system. From the standpoint of vehicle counting, when using a higher frame rate, the AI-system would have more frames to track the vehicle; thus, we can expect an improvement in higher speed conditions. The increasing frame rate of the video would also help improve speed estimation, as illustrated in 
	As a recommendation, we believe that increasing the frame rate of videos would help improve the performance of the AI-system. From the standpoint of vehicle counting, when using a higher frame rate, the AI-system would have more frames to track the vehicle; thus, we can expect an improvement in higher speed conditions. The increasing frame rate of the video would also help improve speed estimation, as illustrated in 
	Figure 5-7
	Figure 5-7

	. The reason for speed error at high speeds is caused by trajectory data points being too far apart from frame to frame, and the time spent in the virtual speed loop is always rounded up to the nearest 0.1 seconds. 
	Table 5-2
	Table 5-2

	 shows the error when one more frame was counted as the vehicle spent in the virtual speed loop due to rounding; the error is computed by adding the frame time of one frame to the time spent in the speed loop and compared to the re-estimated speed to the actual speed. Since the error in the time spent in the speed loop equals one frame time, the speed error represents the maximum speed error that can be introduced by the frame rate; we can see the error is reduced significantly when increasing the frame rat

	TABLE 5-2: IMPACT OF MISCOUNTING ONE FRAME TO SPEED ESTIMATION 
	Actual Speed (MPH) 
	Actual Speed (MPH) 
	Actual Speed (MPH) 
	Actual Speed (MPH) 

	Time Spent in Speed Loop (40-ft) 
	Time Spent in Speed Loop (40-ft) 

	Speed Error when over-count one frame (@ 10fps) 
	Speed Error when over-count one frame (@ 10fps) 

	Speed Error when over-count one frame (@ 30fps) 
	Speed Error when over-count one frame (@ 30fps) 


	10 
	10 
	10 

	2.73 sec 
	2.73 sec 

	-0.2 MPH 
	-0.2 MPH 

	-0.1 MPH 
	-0.1 MPH 


	20 
	20 
	20 

	1.36 sec 
	1.36 sec 

	-0.8 MPH 
	-0.8 MPH 

	-0.4 MPH 
	-0.4 MPH 


	30 
	30 
	30 

	0.91 sec 
	0.91 sec 

	-1.6 MPH 
	-1.6 MPH 

	-0.9 MPH 
	-0.9 MPH 


	40 
	40 
	40 

	0.68 sec 
	0.68 sec 

	-2.8 MPH 
	-2.8 MPH 

	-1.5 MPH 
	-1.5 MPH 


	50 
	50 
	50 

	0.55 sec 
	0.55 sec 

	-4.3 MPH 
	-4.3 MPH 

	-2.3 MPH 
	-2.3 MPH 


	60 
	60 
	60 

	0.45 sec 
	0.45 sec 

	-5.9 MPH 
	-5.9 MPH 

	-3.3 MPH 
	-3.3 MPH 


	70 
	70 
	70 

	0.39 sec 
	0.39 sec 

	-7.9 MPH 
	-7.9 MPH 

	-4.4 MPH 
	-4.4 MPH 


	80 
	80 
	80 

	0.34 sec 
	0.34 sec 

	-10.0 MPH 
	-10.0 MPH 

	-5.6 MPH 
	-5.6 MPH 



	 
	 
	  
	 SENSITIVITY STUDY AND APPLICATIONS OF WORKZONE TRAFFIC SIMULATION USING EXTRACTED REAL-WORLD DRIVING BEHAVIOR AND TRAFFIC INFORMATION  
	 
	6.1 Chapter Organization and Research Objectives 
	This chapter presents a methodology for developing freeway work zone simulation models in PTV Vissim using data from the AI-based traffic and driving behavior extraction system (herein referred to as the “AI-based extraction system”) summarized in Chapters 3-5 of this report. The Vissim model development effort and analysis framework are detailed in Section 6.2. The outcomes of two subtasks are then presented in the sections that follow: 
	o Task 1 – Sensitivity Analysis (Section 6.3). The purpose of this initial task is to determine the sensitivity of model outputs to changes in key input parameters. The outcomes of this task answer two critical questions. First, how can one translate data from the AI-based extraction system to Vissim model inputs? The lane-changing observations collected as part of the case study in Chapter 4 and additional scenarios may be used to inform Vissim model inputs and validate model outputs but cannot be replicat
	o Task 1 – Sensitivity Analysis (Section 6.3). The purpose of this initial task is to determine the sensitivity of model outputs to changes in key input parameters. The outcomes of this task answer two critical questions. First, how can one translate data from the AI-based extraction system to Vissim model inputs? The lane-changing observations collected as part of the case study in Chapter 4 and additional scenarios may be used to inform Vissim model inputs and validate model outputs but cannot be replicat
	o Task 1 – Sensitivity Analysis (Section 6.3). The purpose of this initial task is to determine the sensitivity of model outputs to changes in key input parameters. The outcomes of this task answer two critical questions. First, how can one translate data from the AI-based extraction system to Vissim model inputs? The lane-changing observations collected as part of the case study in Chapter 4 and additional scenarios may be used to inform Vissim model inputs and validate model outputs but cannot be replicat


	Second, how do model outputs generated under typical default parameter values differ from those under the optimum parameter set selected previously? The results of this sensitivity analysis are used to evaluate the reliability and utility of the semi-automatically extracted traffic data and provide recommendations for modelers.  
	o Task 2 – Modeling Freeway Work Zone Traffic Operations at Sites With Varying Characteristics (Section 6.4). The purpose of this task is to determine how traffic measures of effectiveness (MOEs) of interest to agencies and practitioners (e.g., throughput, speed, travel time, and queue length) vary at three-to-two freeway lane closures with different prevailing characteristics. The outcomes of this task are used to provide recommendations supporting agency work zone scheduling and traffic control decisions 
	o Task 2 – Modeling Freeway Work Zone Traffic Operations at Sites With Varying Characteristics (Section 6.4). The purpose of this task is to determine how traffic measures of effectiveness (MOEs) of interest to agencies and practitioners (e.g., throughput, speed, travel time, and queue length) vary at three-to-two freeway lane closures with different prevailing characteristics. The outcomes of this task are used to provide recommendations supporting agency work zone scheduling and traffic control decisions 
	o Task 2 – Modeling Freeway Work Zone Traffic Operations at Sites With Varying Characteristics (Section 6.4). The purpose of this task is to determine how traffic measures of effectiveness (MOEs) of interest to agencies and practitioners (e.g., throughput, speed, travel time, and queue length) vary at three-to-two freeway lane closures with different prevailing characteristics. The outcomes of this task are used to provide recommendations supporting agency work zone scheduling and traffic control decisions 


	Key findings are summarized in Section 6.5 at the conclusion of this chapter. Recommendations for further extending the simulation study and recommendations for the practitioners are presented in Chapter 7.  
	6.2 Vissim Model Development and Analysis Framework 
	6.2.1 Background 
	An abundance of microsimulation software packages are currently available to researchers and practitioners, each with strengths and weaknesses dependent on the purpose of a given analysis. In response to the increased use of microsimulation as an analysis tool for transportation projects, many state departments of transportation (DOTs) have published guidelines in recent years. Though some DOTs maintain a broader set of traffic analysis and microsimulation guidelines—such as those published by the Florida (
	PTV Vissim is a stochastic, behavior-based microsimulation software package with wide-ranging applications. Given its ability to model the acceleration, deceleration, car-following, and lane-changing behavior of individual vehicles under nearly unlimited combinations of input parameters, Vissim is well-suited for use in analyzing the complexity traffic flow at freeway work zones. However, developing and calibrating a model capable of producing robust outputs is often an arduous task. Previous sensitivity an
	Table 6-1: Key Vissim Calibration Parameters for Modeling Freeway Work Zones 
	Category 
	Category 
	Category 
	Category 

	Parameter 
	Parameter 

	Description 
	Description 

	Default Value 
	Default Value 

	Literature-Recommended Range1 
	Literature-Recommended Range1 


	Car-Following 
	Car-Following 
	Car-Following 

	CC0 
	CC0 

	Standstill distance (ft) 
	Standstill distance (ft) 

	4.92 ft 
	4.92 ft 

	4.92 – 20 ft 
	4.92 – 20 ft 


	TR
	CC1 
	CC1 

	Desired following headway (s) 
	Desired following headway (s) 

	0.9 s 
	0.9 s 

	0.9 – 2.7 s 
	0.9 – 2.7 s 


	TR
	CC2 
	CC2 

	Following Distance Oscillation (ft) 
	Following Distance Oscillation (ft) 

	13.12 ft 
	13.12 ft 

	13.12 – 55 ft 
	13.12 – 55 ft 


	Lane-Changing 
	Lane-Changing 
	Lane-Changing 

	SDRF 
	SDRF 

	Safety Distance Reduction Factor 
	Safety Distance Reduction Factor 

	0.6 
	0.6 

	0.1 – 0.6 
	0.1 – 0.6 


	TR
	Lane Change Distance 
	Lane Change Distance 

	Lane Change Distance (ft) 
	Lane Change Distance (ft) 

	656.2 ft 
	656.2 ft 

	≥ 25   ft 
	≥ 25   ft 



	1Ranges represent the minimum and maximum values explored in freeway work zone-specific literature  
	The importance of other input parameters to modeling freeway work zones—such as the maximum deceleration for cooperative braking (ft/s2), desired acceleration for heavy trucks (ft/s2), and deceleration per distance for necessary lane changes (-1 ft/s2)—have also been explored in the literature and will be discussed further in subsequent sections of this chapter. The reader may refer to the PTV Vissim User Manual for 
	additional detail regarding the full set of car-following and lane-changing parameters included in the software (PTV Group, 2020). However, the following brief descriptions are offered here: 
	Car-Following Parameters 
	CCO (Standstill Distance, ft) – The CC0 parameter is the first of 10 parameters that comprise the Wiedemann 99 car-following model used in Vissim. This parameter has no variation and defines the desired distance between a trailing and lead vehicle when both are stopped. 
	CC1 (Gap Time Distribution, s) – The multiplicative component of the desired safety distance between a trailing and lead vehicle is defined by the CC1 parameter. This desired safety distance is calculated at each simulation time step as: 
	𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑆𝑎𝑓𝑒𝑡𝑦 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒=𝐶𝐶1∗𝑠𝑝𝑒𝑒𝑑+𝐶𝐶0     (6-1) 
	The desired safety distance directly influences the time gap (i.e., front bumper to rear bumper) between vehicles in a following pair. As a result, the CC1 parameter has been found to have the greatest influence on simulated capacity (Lownes and Machemehl, 2006). As of the release of PTV Vissim 9 in 2016, CC1 may be coded as a static value or as a vehicle class-specific distribution. 
	CC2 (Following Distance Oscillation) – The CC2 parameter defines the maximum additional distance beyond the desired safety distance that a trailing vehicle will allow before intentionally moving closer to the lead vehicle. 
	Lane-Changing Parameters 
	SDRF (Safety Distance Reduction Factor) – This unitless parameter is used to calculate the maximum reduction in the desired safety distance allowed by a vehicle when selecting an acceptable gap for changing lanes. At the default value of 0.6, a vehicle will accept a gap in the adjacent lane equivalent to 60% of its desired safety distance. 
	LCD (Lane Change Distance, ft) – For each connector in a Vissim network, the lane change distance defines the distance upstream of a necessary lane change (e.g., turn bay, off-ramp, or lane closure) at which a vehicle will begin to look for opportunities to merge. As of PTV Vissim 2020, this parameter can be coded as a static value or as a vehicle class-specific distribution. 
	The purpose of calibration is to establish confidence in a model’s ability to replicate a known base condition, thereby maximizing the validity of model outputs under a theoretical condition (e.g., existing versus future conditions on a given roadway segment of interest). Recent study of typical practice highlights the need to limit ambiguity in the model calibration process to improve model robustness and transferability (VDOT, 2020). If a modeler were to test just three levels of each of the five paramete
	size of a given calibration experiment quickly balloons, and any number of parameter sets may produce a reasonable match to the base condition. Consequently, there is still an evident need to limit the number of “unknowns” in calibrating freeway work zone simulation models to increase consistency in methods and resultant outputs.  
	Past research has aimed to address this need by providing recommended default values or regression equations for estimating specific parameter values based on expected lane utilization, capacity, and queue length at a given freeway lane closure (Chatterjee et al., 2009; Edara and Chatterjee, 2010; Yeom et al., 2016). However, none of these studies considered differences in driving behavior by vehicle class, and each were conducted in legacy versions of Vissim not equipped with features included in more rece
	The remainder of this section is organized as follows. First, the critical components of base Vissim model development are described in detail. Next, a methodology is offered for translating data collected from the AI-based extraction system to Vissim model inputs. Where applicable, publicly available traffic data and pertinent literature are referenced as supplemental data sources used in model development. Finally, a framework for the sensitivity analysis and factorial experiment conducted as part of Task
	6.2.2 Base Model Development and Data Collection 
	6.2.2.1 Base Vissim Model Geometry and Network Objects 
	Vissim 2021 (Build 2021.00-03) was selected for use in this study, as this version of the software was the latest released by PTV at the time of this writing and includes each of the advantageous features highlighted in Section 6.2.1. A core purpose of this research is to develop generalized recommendations for modelers and agencies. Accordingly, key model inputs were carefully selected to be representative of typical rural and urban six-lane freeways across the southeastern United States. While a baseline 
	Two freeway work zones on I-95 near Savannah, GA, were used for calibrating the Vissim model. Characteristics of each site are summarized below: 
	• Northbound I- 5 milepost    in Richmond Hill, GA (herein referred to as “Site A”) 
	• Northbound I- 5 milepost    in Richmond Hill, GA (herein referred to as “Site A”) 
	• Northbound I- 5 milepost    in Richmond Hill, GA (herein referred to as “Site A”) 

	o 2019 Annual Average Daily Traffic (AADT) = 57,900 vehicles per day (GDOT Count Station 029-0194) 
	o 2019 Annual Average Daily Traffic (AADT) = 57,900 vehicles per day (GDOT Count Station 029-0194) 
	o 2019 Annual Average Daily Traffic (AADT) = 57,900 vehicles per day (GDOT Count Station 029-0194) 

	o 2019 Daily Truck Percentage = 23% (GDOT Count Station 191-0187) 
	o 2019 Daily Truck Percentage = 23% (GDOT Count Station 191-0187) 

	o Six-lane Cross Section 
	o Six-lane Cross Section 

	o Curved roadway geometry upstream of the lane closure taper 
	o Curved roadway geometry upstream of the lane closure taper 


	• Northbound I-95 milepost 97 in Pooler, GA (herein referred to as “Site B”) 
	• Northbound I-95 milepost 97 in Pooler, GA (herein referred to as “Site B”) 

	o 2019 AADT = 85,300 vehicles per day (GDOT Count Station 051-0381) 
	o 2019 AADT = 85,300 vehicles per day (GDOT Count Station 051-0381) 
	o 2019 AADT = 85,300 vehicles per day (GDOT Count Station 051-0381) 

	o 2019 Daily Truck Percentage = 14% (GDOT Count Station 051-0383) 
	o 2019 Daily Truck Percentage = 14% (GDOT Count Station 051-0383) 

	o Six-lane Cross Section 
	o Six-lane Cross Section 

	o Straight roadway geometry upstream of the lane closure taper 
	o Straight roadway geometry upstream of the lane closure taper 



	In each case above, three northbound through lanes were reduced to two open lanes through the work zone (herein referred to as a “ -2 lane closure”). The base Vissim model included the following elements, as depicted in Figure 6-1. 
	Network Geometry 
	A total of five three-lane links and one two-lane link were coded upstream and downstream of the modeled lane closures, respectively. The portion of the network upstream of the modeled lane closure was extended to six miles to allow adequate distance for queues to propagate and dissipate during the simulation period and for discretionary lane changes to occur prior to the advance warning area. This six-mile segment was subdivided to represent each of five zones: 
	• Zone 1: Transition Area 
	• Zone 1: Transition Area 
	• Zone 1: Transition Area 

	• Zone 2: 0-500 feet upstream of the Transition Area 
	• Zone 2: 0-500 feet upstream of the Transition Area 

	• Zone 3: 500-1000 feet upstream of the Transition Area 
	• Zone 3: 500-1000 feet upstream of the Transition Area 

	• Zone 4: 1000-5280 feet upstream of the Transition Area 
	• Zone 4: 1000-5280 feet upstream of the Transition Area 

	• Zone 5: 0-5 miles upstream of the Advance Warning Area 
	• Zone 5: 0-5 miles upstream of the Advance Warning Area 


	Zones 1-4 were coded based on the field data collection effort detailed in Chapter 4 of this report and informed by the work zone traffic control guidance prescribed in Part 6 of the Manual on Uniform Traffic Control Devices (MUTCD; FHWA, 2012). At a posted speed limit of 70 miles per hour (mph) and lane width of 12 feet, the MUTCD recommends a minimum merging taper length of 840 feet. As such, Zone 1 was coded to extend 840 feet, with approximately one-half of this distance assumed wide enough to accommoda
	as a travel lane in Vissim, the emergency stop distance associated with the two-lane connector joining the three- and two-lane links was set to 420 feet. The emergency stop distance parameter defines the distance upstream of a necessary lane change that a simulated vehicle will come to a complete stop and wait for an acceptable gap to merge. Visual observations of the simulation confirmed that this setting functioned as intended. 
	 
	Figure
	FIGURE 6-1: DIAGRAM OF BASE VISSIM MODEL (NOT TO SCALE) 
	Network Objects 
	Network objects in Vissim are comprised of lines and polygons coded to control vehicle behavior and collect data during the simulation. Given the simplicity of the modeled network, only desired speed decisions, reduced speed areas, data collection points, and travel time measurements were necessary in this case. For further background regarding the mechanics of each of these network objects, the reader is referred to the PTV Vissim User Manual (PTV Group, 2020). 
	Desired Speed Decisions and Reduced Speed Areas 
	Desired free flow speed within Zones 2-4 and upstream of the advance warning area was governed by a set of lane-wise desired speed decisions placed at the entry point to the Vissim network. Typical mean free flow speed by lane and vehicle class was extracted from GDOT CCS data at Site A and Site B from September 2019. However, speed data was only available as an average for a given lane and vehicle class aggregated in one-hour intervals. Consequently, prior study of freeway work zones by Jehn and Turochy (2
	Table 6-2: Vissim Desired Speed Distributions (Upstream of Work Zone) 
	Lane 
	Lane 
	Lane 
	Lane 

	Observed Average Speed1 
	Observed Average Speed1 

	Desired Speed Distribution (Percentile)2 
	Desired Speed Distribution (Percentile)2 


	TR
	10th 
	10th 

	25th 
	25th 

	50th 
	50th 

	75th 
	75th 

	90th 
	90th 


	All Vehicles 
	All Vehicles 
	All Vehicles 


	Right 
	Right 
	Right 

	69 
	69 

	57 
	57 

	63 
	63 

	69 
	69 

	75 
	75 

	81 
	81 


	Center 
	Center 
	Center 

	77 
	77 

	65 
	65 

	71 
	71 

	77 
	77 

	83 
	83 

	88 
	88 


	Left 
	Left 
	Left 

	79 
	79 

	67 
	67 

	73 
	73 

	79 
	79 

	85 
	85 

	91 
	91 


	Passenger Cars 
	Passenger Cars 
	Passenger Cars 


	Right 
	Right 
	Right 

	70 
	70 

	58 
	58 

	64 
	64 

	70 
	70 

	76 
	76 

	81 
	81 


	Center 
	Center 
	Center 

	78 
	78 

	66 
	66 

	72 
	72 

	78 
	78 

	84 
	84 

	89 
	89 


	Left 
	Left 
	Left 

	80 
	80 

	68 
	68 

	74 
	74 

	80 
	80 

	86 
	86 

	92 
	92 


	Heavy Trucks 
	Heavy Trucks 
	Heavy Trucks 


	Right 
	Right 
	Right 

	65 
	65 

	53 
	53 

	58 
	58 

	65 
	65 

	71 
	71 

	76 
	76 


	Center 
	Center 
	Center 

	72 
	72 

	60 
	60 

	66 
	66 

	72 
	72 

	78 
	78 

	83 
	83 


	Left 
	Left 
	Left 

	74 
	74 

	62 
	62 

	68 
	68 

	74 
	74 

	80 
	80 

	85 
	85 



	1Observed average speed from GDOT CCS 191-0187 in September 2019 
	2Estimated desired speed distributions used as Vissim inputs  
	Similarly, free flow speeds within and downstream of the transition area were defined based on a combination of guidance from HCM6 and the literature (TRB, 2016; Jehn and Turochy, 2019). Speed data within the transition area at Site B was available from trajectory data collected through the AI-based extraction system during the one-hour period from 2:30PM – 3:30PM on April 6, 2011. However, since free flow conditions were not observed during these periods, this data could not be utilized to develop Vissim d
	typical posted speed limit. Therefore, since the studied segments of I-95 have a normal posted speed limit of 70 mph, it was assumed that the speed limit was posted at 60 mph during construction.  
	Mean free flow speed through the work zone was then estimated based on Equation 10-10 in HCM6 Volume 2: 
	𝐹𝐹𝑆𝑊𝑍=9.95+33.49×𝑓𝑆𝑟+0.53×𝑆𝐿𝑊𝑍−5.60×𝐿𝐶𝑆𝐼−3.84×𝑓𝐵𝑟−1.71×𝑓𝐷𝑁−8.7×𝑇𝑅𝐷 (6-2) 
	Where: 
	𝐹𝐹𝑆𝑊𝑍 = work zone free flow speed (mph) 
	𝑓𝑆𝑟 = ratio of non-work zone speed limit (mph) to work zone speed limit (mph) 
	𝑆𝐿𝑤𝑧 = work zone speed limit (mph) 
	𝐿𝐶𝑆𝐼 = lane closure severity index 
	𝑓𝐵𝑟 = indicator variable for barrier type (0 for rigid barrier, 1 for soft barrier) 
	𝑓𝐷𝑁 = indicator variable for daylight or night (0 for daylight, 1 for night) 
	𝑇𝑅𝐷 = total ramp density along the facility (ramps/mile) 
	The reader is referred to Chapter 10 in HCM6 for the full definition of each of the variables listed in the equation above. When each variable is defined based on the characteristics of the studied 3-2 lane closures, a work zone free flow speed of 61 mph is calculated. Since this free flow speed only represents a mean for all lanes and vehicle classes, full desired speed distributions were constructed based on data from prior work by Jehn and Turochy (2019). Free flow speed data from this study exhibited a 
	  
	Table 6-3: Vissim Desired Speed Distributions (Work Zone) 
	Lane 
	Lane 
	Lane 
	Lane 

	Calculated Average Speed1 
	Calculated Average Speed1 

	Desired Speed Distribution (Percentile)2 
	Desired Speed Distribution (Percentile)2 


	TR
	10th 
	10th 

	25th 
	25th 

	50th 
	50th 

	75th 
	75th 

	90th 
	90th 


	All Vehicles 
	All Vehicles 
	All Vehicles 


	Center 
	Center 
	Center 

	56 
	56 

	47 
	47 

	51 
	51 

	56 
	56 

	61 
	61 

	65 
	65 


	Left 
	Left 
	Left 

	65 
	65 

	56 
	56 

	60 
	60 

	65 
	65 

	70 
	70 

	74 
	74 


	Passenger Cars 
	Passenger Cars 
	Passenger Cars 


	Center 
	Center 
	Center 

	58 
	58 

	49 
	49 

	54 
	54 

	58 
	58 

	63 
	63 

	67 
	67 


	Left 
	Left 
	Left 

	68 
	68 

	59 
	59 

	63 
	63 

	68 
	68 

	72 
	72 

	77 
	77 


	Heavy Trucks 
	Heavy Trucks 
	Heavy Trucks 


	Center 
	Center 
	Center 

	54 
	54 

	47 
	47 

	50 
	50 

	54 
	54 

	57 
	57 

	60 
	60 


	Left 
	Left 
	Left 

	62 
	62 

	56 
	56 

	59 
	59 

	62 
	62 

	66 
	66 

	69 
	69 



	1Estimated average speed from HCM6 Equation 10-10 
	2Estimated desired speed distributions used as Vissim inputs  
	Data Collection Points and Travel Time Measurements 
	A total of 44 data collection points were coded in the base Vissim model to measure lane utilization, volume, speed, and queue propagation at each of the locations noted in Figure 6-1 and Table 6-4. The purpose of each of these data collection points falls into one of three categories. First, two data collection points were placed 200 feet downstream of the emergency stop distance location in Vissim to extract measures of capacity (i.e., speed and flow rate versus time in each lane). Next, four sets of data
	Table 6-4: Data Collection Point Summary 
	Data Collection Point IDs 
	Data Collection Point IDs 
	Data Collection Point IDs 
	Data Collection Point IDs 

	Location 
	Location 

	Purpose 
	Purpose 


	1-2 
	1-2 
	1-2 

	200 feet downstream of full lane closure 
	200 feet downstream of full lane closure 

	Capacity Measurement 
	Capacity Measurement 


	3-5 
	3-5 
	3-5 

	Beginning of Zone 1 (Transition Area) 
	Beginning of Zone 1 (Transition Area) 

	Speed, Flow, and Lane Utilization Measurement 
	Speed, Flow, and Lane Utilization Measurement 


	TR
	6-8 
	6-8 

	Beginning of Zone 2 (500 feet upstream of Transition Area) 
	Beginning of Zone 2 (500 feet upstream of Transition Area) 


	TR
	9-11 
	9-11 

	Beginning of Zone 3 (1000 feet upstream of Transition Area) 
	Beginning of Zone 3 (1000 feet upstream of Transition Area) 


	TR
	12-14 
	12-14 

	Beginning of Zone 4 (1 mile upstream of Transition Area) 
	Beginning of Zone 4 (1 mile upstream of Transition Area) 


	15-44 
	15-44 
	15-44 

	1/2 mile intervals upstream of Advance Warning Area 
	1/2 mile intervals upstream of Advance Warning Area 

	Queue Length Estimation 
	Queue Length Estimation 



	 
	While understanding capacity and mitigating queue length at freeway work zones may be of particular interest to agencies and practitioners, driver frustration and road user costs are primarily driven by travel delay. Therefore, travel time measurements were 
	coded at the entry point to the Vissim network and at the end of the transition area to estimate average travel time through the simulated six-mile work zone corridor.   
	6.2.2.2 Vissim Input Volume Distributions 
	As emphasized previously, a critical objective of Task 1 is the development of generalized recommendations for modeling freeway lane closures across the southeastern United States. These recommendations are applied in Task 2 to draw conclusions on the impact of various geometric, traffic stream, environmental, and work zone-specific characteristics on MOEs of interest to agencies and practitioners. To maximize the transferability and validity of the findings associated with each task, volume inputs were cod
	For the purposes of this research, Site A (summarized in Section 6.2.2) was assumed to be representative of rural, six-lane freeway facilities, which are likely to exhibit lower overall traffic volumes than their urban counterparts but a substantially higher proportion of heavy trucks. On the contrary, Site B (summarized in Section 6.2.2) was assumed to be representative of a typical urban, six-lane freeway in southeastern United States. As mentioned previously, trajectory data collected as part of this cas
	The Traffic Analysis and Data Application maintained by GDOT (GDOT, 2021) includes data collected from thousands of short-term, weigh-in-motion, and CCSs throughout the state of Georgia and is publicly available through a dynamic web mapping interface. Given the limitations of the field data noted previously, two CCSs located near the study work zones were leveraged to develop Vissim model inputs, as each station provides vehicle count and classification by lane in one-hour intervals. Data from these two CC
	• Site A (GDOT CCS 191-0187, September 2019) – I-95 approximately 3.5 miles north of SR-57 in Townsend, GA 
	• Site A (GDOT CCS 191-0187, September 2019) – I-95 approximately 3.5 miles north of SR-57 in Townsend, GA 
	• Site A (GDOT CCS 191-0187, September 2019) – I-95 approximately 3.5 miles north of SR-57 in Townsend, GA 

	o Average Northbound Peak Hour Volume (Weekday) = 1,480 vehicles/hour 
	o Average Northbound Peak Hour Volume (Weekday) = 1,480 vehicles/hour 
	o Average Northbound Peak Hour Volume (Weekday) = 1,480 vehicles/hour 

	o Average Truck % (Weekday, 9AM – 9PM) = 30% 
	o Average Truck % (Weekday, 9AM – 9PM) = 30% 

	o Average Northbound Peak Hour Volume (Weekend) = 1,739 vehicles/hour 
	o Average Northbound Peak Hour Volume (Weekend) = 1,739 vehicles/hour 



	o Average Truck % (Weekend, 9AM – 9PM) = 14% 
	o Average Truck % (Weekend, 9AM – 9PM) = 14% 
	o Average Truck % (Weekend, 9AM – 9PM) = 14% 
	o Average Truck % (Weekend, 9AM – 9PM) = 14% 


	• Site B (GDOT CCS 051-0383, September 2016) – I-95 approximately 1.5 miles north of I-16 in Pooler, GA 
	• Site B (GDOT CCS 051-0383, September 2016) – I-95 approximately 1.5 miles north of I-16 in Pooler, GA 

	o Average Northbound Peak Hour Volume (Weekday) = 2,706 vehicles/hour 
	o Average Northbound Peak Hour Volume (Weekday) = 2,706 vehicles/hour 
	o Average Northbound Peak Hour Volume (Weekday) = 2,706 vehicles/hour 

	o Average Truck % (Weekday, 9AM – 9PM) = 16% 
	o Average Truck % (Weekday, 9AM – 9PM) = 16% 

	o Average Northbound Peak Hour Volume (Weekend) = 2,842 vehicles/hour 
	o Average Northbound Peak Hour Volume (Weekend) = 2,842 vehicles/hour 

	o Average Truck % (Weekend, 9AM – 9PM) = 8% 
	o Average Truck % (Weekend, 9AM – 9PM) = 8% 



	Figure 6-2 shows the distribution of traffic volumes at each CCS by time of day and day of week. 
	 
	Figure
	FIGURE 6-2: NORTHBOUND I-95 GDOT CCS TRAFFIC VOLUME SUMMARY 
	Based on the bulleted summary above and the traffic volume distributions illustrated in Figure 6-2, it was concluded that (1) the weekday data at Site B is suitable for use in developing Vissim model inputs for the sensitivity analysis conducted in Task 1, and (2) both weekday and weekend conditions should be analyzed as part of Task 2 to capture the full range of traffic characteristics that might be observed at rural and urban six-lane freeways across the southeastern United States.  
	Task 1 – Sensitivity Analysis Volume Inputs 
	Lane-based vehicle count and classification data from Site B collected during each weekday (excluding Labor Day) in September 2016 was used to develop the volume 
	inputs and vehicle compositions coded in Vissim for Task 1, as summarized in Table 6-5. To aid in the interpretation of Table 6-5, the following should be noted: 
	o Each Vissim model was coded to run for 43,200 simulation seconds (12 hours) to replicate the full rise and fall of traffic volumes from 9AM to 9PM, thereby allowing the opportunity for queues to form and dissipate upstream of the lane closure. 
	o Each Vissim model was coded to run for 43,200 simulation seconds (12 hours) to replicate the full rise and fall of traffic volumes from 9AM to 9PM, thereby allowing the opportunity for queues to form and dissipate upstream of the lane closure. 
	o Each Vissim model was coded to run for 43,200 simulation seconds (12 hours) to replicate the full rise and fall of traffic volumes from 9AM to 9PM, thereby allowing the opportunity for queues to form and dissipate upstream of the lane closure. 

	o A one hour seeding period (i.e., ‘‘warm-up’’ time, during which no outputs are collected from the model) was included in each model run. 
	o A one hour seeding period (i.e., ‘‘warm-up’’ time, during which no outputs are collected from the model) was included in each model run. 

	o Three vehicle classes were modeled and deemed sufficient for capturing the range of vehicles included in the real-world traffic stream: passenger cars (average length = 18.5 feet), single-unit trucks (average length = 32.5 feet), and heavy trucks (average length = 73.5 feet). 
	o Three vehicle classes were modeled and deemed sufficient for capturing the range of vehicles included in the real-world traffic stream: passenger cars (average length = 18.5 feet), single-unit trucks (average length = 32.5 feet), and heavy trucks (average length = 73.5 feet). 

	o A single vehicle composition was coded for the entire simulation period, as the percentage of each vehicle class in the traffic stream did not vary substantially between 9AM and 9PM in the GDOT CCS data.  
	o A single vehicle composition was coded for the entire simulation period, as the percentage of each vehicle class in the traffic stream did not vary substantially between 9AM and 9PM in the GDOT CCS data.  


	TABLE 6-5: TASK 1 VISSIM VOLUME INPUTS AND VEHICLE COMPOSITIONS BY TIME PERIOD1,2 
	Time of Day 
	Time of Day 
	Time of Day 
	Time of Day 

	Vissim Time  
	Vissim Time  
	Interval (s) 

	Volume (vph) 
	Volume (vph) 

	% Single Unit Trucks 
	% Single Unit Trucks 

	% Heavy Trucks 
	% Heavy Trucks 


	TR
	Lane 1 
	Lane 1 

	Lane 2 
	Lane 2 

	Lane 3 
	Lane 3 

	Lane 1 
	Lane 1 

	Lane 2 
	Lane 2 

	Lane 3 
	Lane 3 

	Lane 1 
	Lane 1 

	Lane 2 
	Lane 2 

	Lane 3 
	Lane 3 


	9:00AM 
	9:00AM 
	9:00AM 

	0-3600 
	0-3600 

	660 
	660 

	760 
	760 

	470 
	470 

	4% 
	4% 

	3% 
	3% 

	2% 
	2% 

	24% 
	24% 

	18% 
	18% 

	0% 
	0% 


	TR
	10:00AM 
	10:00AM 

	3600-7200 
	3600-7200 

	760 
	760 

	860 
	860 

	540 
	540 


	TR
	11:00AM 
	11:00AM 

	7200-10800 
	7200-10800 

	850 
	850 

	970 
	970 

	610 
	610 


	TR
	12:00PM 
	12:00PM 

	10800-14400 
	10800-14400 

	850 
	850 

	970 
	970 

	610 
	610 


	TR
	1:00PM 
	1:00PM 

	14400-18000 
	14400-18000 

	850 
	850 

	970 
	970 

	610 
	610 


	TR
	2:00PM 
	2:00PM 

	18000-21600 
	18000-21600 

	900 
	900 

	1030 
	1030 

	640 
	640 


	TR
	3:00PM 
	3:00PM 

	21600-25200 
	21600-25200 

	950 
	950 

	1080 
	1080 

	670 
	670 


	TR
	4:00PM 
	4:00PM 

	25200-28800 
	25200-28800 

	900 
	900 

	1030 
	1030 

	640 
	640 


	TR
	5:00PM 
	5:00PM 

	28800-32400 
	28800-32400 

	850 
	850 

	970 
	970 

	610 
	610 


	TR
	6:00PM 
	6:00PM 

	32400-36000 
	32400-36000 

	760 
	760 

	860 
	860 

	540 
	540 


	TR
	7:00PM 
	7:00PM 

	36000-39600 
	36000-39600 

	570 
	570 

	650 
	650 

	400 
	400 


	TR
	8:00PM 
	8:00PM 

	39600-43200 
	39600-43200 

	470 
	470 

	540 
	540 

	340 
	340 



	1Traffic volume and vehicle class percentages drawn directly from GDOT CCS data 
	2Lanes are numbered from right to left (i.e., “Lane 1” = right lane) 
	The input volume distribution summarized in Table 6-5 was assumed representative of the overall rise and fall of traffic volumes that may have been observed at the study site the day the video data was collected. This relationship with the field data collected from the AI-based extraction system was critical to forming a basis for the model calibration 
	and validation effort described in Section 6.3. The use of CCS data from April 6, 2011 was explored, but only partial data was available in the GDOT TADA system for this date. 
	Task 2 – Factorial Experiment Volume Inputs 
	The traffic volumes used in support of Task 1 were meant to provide a reasonable match to those that may have been observed on the day field data was collected at Site B. On the contrary, those developed as part of Task 2 were intended to be coarser in nature, thereby capturing the full range of conditions that might be observed at typical rural and urban six-lane freeways in the southeastern United States. The range of typical conditions at Site A and Site B summarized in Section 6.2.2.2 were adapted to fo
	o Scenario 1—Site A (Rural), Typical Weekday, 30% Trucks 
	o Scenario 1—Site A (Rural), Typical Weekday, 30% Trucks 
	o Scenario 1—Site A (Rural), Typical Weekday, 30% Trucks 
	o Scenario 1—Site A (Rural), Typical Weekday, 30% Trucks 

	o Scenario 2—Site B (Urban), Typical Weekday, 15% Trucks 
	o Scenario 2—Site B (Urban), Typical Weekday, 15% Trucks 

	o Scenario 3—Site B (Urban), Typical Weekend, 5% Trucks 
	o Scenario 3—Site B (Urban), Typical Weekend, 5% Trucks 



	Though initially considered as a fourth scenario, it was determined that typical weekend traffic volumes at Site A (Rural) were unlikely to produce congestion in Vissim or in the field. Furthermore, a similar proportion of heavy trucks was observed in the traffic stream under this scenario as that on a typical weekday at Site B (Urban). Therefore, the traffic volumes and truck percentages represented by the three scenarios listed above were considered sufficient for capturing the range of likely conditions 
	The full set of input volume distributions used as part of Task 2 were developed from raw field data through the following multi-step process: 
	1. The distribution of traffic volumes by hour of the day was tabulated as a percentage of the maximum observed hourly volume for Scenario 1, Scenario 2, and Scenario 3. 
	1. The distribution of traffic volumes by hour of the day was tabulated as a percentage of the maximum observed hourly volume for Scenario 1, Scenario 2, and Scenario 3. 
	1. The distribution of traffic volumes by hour of the day was tabulated as a percentage of the maximum observed hourly volume for Scenario 1, Scenario 2, and Scenario 3. 

	2. The pre-breakdown capacity (vehicles per hour) of Site B under Scenario 2 was determined during Task 1 (see Section 6.3). 
	2. The pre-breakdown capacity (vehicles per hour) of Site B under Scenario 2 was determined during Task 1 (see Section 6.3). 

	3. Three input volume distributions were developed for Scenario 2 
	3. Three input volume distributions were developed for Scenario 2 

	a. Low (Maximum Hourly Volume = Theoretical Capacity - 200 vehicles / hour) 
	a. Low (Maximum Hourly Volume = Theoretical Capacity - 200 vehicles / hour) 
	a. Low (Maximum Hourly Volume = Theoretical Capacity - 200 vehicles / hour) 

	b. Medium (Maximum Hourly Volume = Theoretical Capacity) 
	b. Medium (Maximum Hourly Volume = Theoretical Capacity) 

	c. High (Maximum Hourly Volume = Theoretical Capacity + 200 vehicles / hour) 
	c. High (Maximum Hourly Volume = Theoretical Capacity + 200 vehicles / hour) 


	4. A passenger car equivalent (PCE) of 2.5 was assumed for heavy trucks based on past research (Sarasua et al., 2006) and used to convert each of these three maximum hourly volumes to units of passenger cars per hour. 
	4. A passenger car equivalent (PCE) of 2.5 was assumed for heavy trucks based on past research (Sarasua et al., 2006) and used to convert each of these three maximum hourly volumes to units of passenger cars per hour. 

	5. The maximum hourly volumes applicable to the “Low”, “Medium”, and “High” cases for Scenario 1 and Scenario 3 (in vehicles per hour) were calculated from the passenger car equivalent flow rates calculated in Step 4. 
	5. The maximum hourly volumes applicable to the “Low”, “Medium”, and “High” cases for Scenario 1 and Scenario 3 (in vehicles per hour) were calculated from the passenger car equivalent flow rates calculated in Step 4. 


	The full input volume distributions coded for each of the 12 cases referenced above are omitted here for brevity. Maximum hourly volumes modeled as part of Task 2 are summarized in Table 6-6. 
	TABLE 6-6: TASK 2 MAXIMUM HOURLY VISSIM INPUT VOLUME BY SCENARIO 
	Scenario ID 
	Scenario ID 
	Scenario ID 
	Scenario ID 

	% Trucks 
	% Trucks 

	Max Volume (vph) 
	Max Volume (vph) 

	Max Volume (pcph) 
	Max Volume (pcph) 


	1 (Low) 
	1 (Low) 
	1 (Low) 

	30% 
	30% 

	2,028 
	2,028 

	2,940 
	2,940 


	1 (Med) 
	1 (Med) 
	1 (Med) 

	30% 
	30% 

	2,197 
	2,197 

	3,185 
	3,185 


	1 (High) 
	1 (High) 
	1 (High) 

	30% 
	30% 

	2,366 
	2,366 

	3,430 
	3,430 


	2 (Low) 
	2 (Low) 
	2 (Low) 

	15% 
	15% 

	2,400 
	2,400 

	2,940 
	2,940 


	2 (Med) 
	2 (Med) 
	2 (Med) 

	15% 
	15% 

	2,600 
	2,600 

	3,185 
	3,185 


	2 (High) 
	2 (High) 
	2 (High) 

	15% 
	15% 

	2,800 
	2,800 

	3,430 
	3,430 


	3 (Low) 
	3 (Low) 
	3 (Low) 

	5% 
	5% 

	2,735 
	2,735 

	2,940 
	2,940 


	3 (Med) 
	3 (Med) 
	3 (Med) 

	5% 
	5% 

	2,963 
	2,963 

	3,185 
	3,185 


	3 (High) 
	3 (High) 
	3 (High) 

	5% 
	5% 

	3,191 
	3,191 

	3,430 
	3,430 



	Further discussion regarding the application of the input volume distributions summarized above is provided in Section 6.4. 
	6.2.3 Analysis Framework 
	As indicated previously, the traffic data obtained from the AI-based extraction system focused on too narrow a time period to justify its use in developing macroscopic model inputs such as traffic volume, vehicle compositions, and desired speed. However, the vehicle trajectory data obtained from even one hour of video provided enough insight into site traffic operations to establish a framework for model calibration and analysis conducted during Task 1 and Task 2. Most critically, detailed lane-changing obs
	6.2.3.1 Model Calibration Data and Car-Following Parameters 
	The video data described in Chapter 4 was used to measure flow rate, speed, and time gap at Site B (northbound I-95 in Pooler, GA) in 5-minute intervals during the one-hour period from 2:30PM – 3:30PM on April 6, 2011. While congestion persists throughout most of this one-hour period, the data summarized in Table 6-7 shows that queues begin to dissipate from 3:00 – 3:30PM. As such, the calibration effort described in the next section was focused in part on replicating this pattern of congestion; however, si
	TABLE 6-7: SEMI-AUTOMATICALLY EXTRACTED TRAFFIC DATA SUMMARY 
	Time 
	Time 
	Time 
	Time 

	Mean Speed (mph) 
	Mean Speed (mph) 

	Median Time Gap (s) 
	Median Time Gap (s) 


	Oversaturated Conditions 
	Oversaturated Conditions 
	Oversaturated Conditions 



	2:30 PM 
	2:30 PM 
	2:30 PM 
	2:30 PM 

	16.9 
	16.9 

	1.94 
	1.94 


	2:35 PM 
	2:35 PM 
	2:35 PM 

	17.7 
	17.7 

	1.84 
	1.84 


	2:40 PM 
	2:40 PM 
	2:40 PM 

	31.8 
	31.8 

	1.69 
	1.69 


	2:45 PM 
	2:45 PM 
	2:45 PM 

	32.6 
	32.6 

	1.97 
	1.97 


	2:50 PM 
	2:50 PM 
	2:50 PM 

	34.1 
	34.1 

	1.67 
	1.67 


	2:55 PM 
	2:55 PM 
	2:55 PM 

	37.9 
	37.9 

	1.79 
	1.79 


	Average 
	Average 
	Average 

	29.2 
	29.2 

	1.80 
	1.80 


	Undersaturated Conditions 
	Undersaturated Conditions 
	Undersaturated Conditions 


	3:00 PM 
	3:00 PM 
	3:00 PM 

	20.9 
	20.9 

	1.86 
	1.86 


	3:05 PM 
	3:05 PM 
	3:05 PM 

	23.7 
	23.7 

	1.71 
	1.71 


	3:10 PM 
	3:10 PM 
	3:10 PM 

	46.7 
	46.7 

	1.46 
	1.46 


	3:15 PM 
	3:15 PM 
	3:15 PM 

	55.0 
	55.0 

	1.47 
	1.47 


	3:20 PM 
	3:20 PM 
	3:20 PM 

	53.3 
	53.3 

	1.40 
	1.40 


	3:25 PM 
	3:25 PM 
	3:25 PM 

	55.1 
	55.1 

	1.53 
	1.53 


	Average 
	Average 
	Average 

	42.1 
	42.1 

	1.58 
	1.58 



	Given the lack of temporal breadth in the semi-automatically extracted traffic data and inherent error in vehicle counts obtained from the AI-based system during congested conditions, estimated equivalent hourly flow rates were not considered for use as a calibration metric. Furthermore, the traffic volumes developed from GDOT CCS data are intended to be representative of the study site but likely differ from those that would have been observed on the day the video was captured. In this way, modeling a broa
	On the contrary, while not used as a direct input, time gap measurements motivated the range of values for the CC1 (gap time distribution) parameter coded in Vissim. The median values summarized in Table 6-7 were obtained after screening trajectory data such that records for vehicle following pairs with a time headway greater than 4.0 seconds were excluded (Dong et al., 2015). Additionally, records collected under oversaturated conditions were deemed unrepresentative of the true desired time gap that define
	Recalling from earlier discussion that the CC0 (standstill distance) parameter is a component of the desired safety distance (i.e., desired time gap) in Vissim, the contribution of CC0 was subtracted from the median time gap calculation. Assuming a CC0 value of 10 feet per recommendations in the literature (Dong et al., 2015), this calculation becomes: 
	𝐶𝐶1 (𝑠)=𝑀𝑒𝑑𝑖𝑎𝑛 𝑇𝑖𝑚𝑒 𝐺𝑎𝑝 (𝑓𝑡)− 𝐶𝐶0 (𝑓𝑡)𝑀𝑒𝑑𝑖𝑎𝑛 𝑆𝑝𝑒𝑒𝑑 (𝑚𝑝ℎ)∗1.47(𝑓𝑡𝑠𝑚𝑝ℎ) 𝐶𝐶1=1.6−1042.1∗1.47=1.4𝑠 
	A range of candidate values for the CC1 parameter between 1.0s and 1.8s were ultimately selected for use in the subject sensitivity analysis to bracket the expected calibrated value. This range coincides with that prescribed by Yeom et al. in a 2016 study completed in support of NCHRP Project 03-107, which provided generalized simulation guidance based on nationwide field data (Yeom et al., 2016). Remaining car-following and lane-changing parameter ranges were selected based on the comprehensive literature 
	TABLE 6-8: CAR-FOLLOWING AND LANE CHANGING PARAMETER RANGE SUMMARY 
	Parameter 
	Parameter 
	Parameter 
	Parameter 

	Default Value 
	Default Value 

	Selected Value(s) 
	Selected Value(s) 


	Car-Following 
	Car-Following 
	Car-Following 


	CC0 (ft) 
	CC0 (ft) 
	CC0 (ft) 

	4.92 
	4.92 

	10 
	10 


	CC1 (s) 
	CC1 (s) 
	CC1 (s) 

	0.9 
	0.9 

	1.0, 1.2, 1.4, 1.6, 1.8 
	1.0, 1.2, 1.4, 1.6, 1.8 


	CC2 (ft) 
	CC2 (ft) 
	CC2 (ft) 

	13.12 
	13.12 

	26.24 
	26.24 


	Other Car-Following Parameters 
	Other Car-Following Parameters 
	Other Car-Following Parameters 

	Default 
	Default 


	Lane-Changing 
	Lane-Changing 
	Lane-Changing 


	Safety Distance Reduction Factor 
	Safety Distance Reduction Factor 
	Safety Distance Reduction Factor 

	0.6 
	0.6 

	0.3, 0.45, 0.6 
	0.3, 0.45, 0.6 


	-1 ft/s^2 per distance 
	-1 ft/s^2 per distance 
	-1 ft/s^2 per distance 

	200 
	200 

	100 
	100 


	Maximum deceleration (own/trailing), Maximum Deceleration for Cooperative Braking 
	Maximum deceleration (own/trailing), Maximum Deceleration for Cooperative Braking 
	Maximum deceleration (own/trailing), Maximum Deceleration for Cooperative Braking 

	-9.84 ft/s^2 
	-9.84 ft/s^2 

	-15 ft/s^2 
	-15 ft/s^2 


	Cooperative Lane Change 
	Cooperative Lane Change 
	Cooperative Lane Change 

	Unchecked 
	Unchecked 

	Checked within 1/2 mile of transition area 
	Checked within 1/2 mile of transition area 


	Lane Change Distance 
	Lane Change Distance 
	Lane Change Distance 

	656.2 ft 
	656.2 ft 

	Field data-based distribution 
	Field data-based distribution 


	Other Lane-Changing Parameters 
	Other Lane-Changing Parameters 
	Other Lane-Changing Parameters 

	Default 
	Default 



	Though not included in Table 6-8, the desired acceleration distribution for heavy trucks was also modified from its default based on past findings in the literature. Specifically, default Vissim parameters assume a mean standstill acceleration of 8.2 ft/s2 for heavy trucks, whereas recent research suggests that a mean value of 2.2 ft/s2 is more representative of the actual performance capabilities of Interstate semitrailers (Yang et al., 2016). This stark difference between the default and adjusted values f
	Lane Change Distance Distributions 
	Based on the lane change study presented in Chapter 4, lane change positions were extracted for the two sites, Site A and B, including set of lane-changing observations that vary by type of lane closure, upstream geometry, and traffic stream characteristics. A total of eight unique, vehicle class-specific lane change distance distributions—four each for passenger cars and heavy trucks—were developed for use in Vissim based on the extracted data. These distributions are summarized in Table 6-9 and Table 6-10
	TABLE 6-9: LANE CHANGE DISTANCE DISTRIBUTION SUMMARY (PASSENGER CARS) 
	Distance Upstream of  
	Distance Upstream of  
	Distance Upstream of  
	Distance Upstream of  
	Full Lane Closure (ft) 

	Curved Upstream Geometry, Right-Side Closure 
	Curved Upstream Geometry, Right-Side Closure 

	Straight Upstream Geometry, Right-Side Closure 
	Straight Upstream Geometry, Right-Side Closure 

	Curved Upstream Geometry, Left-Side Closure 
	Curved Upstream Geometry, Left-Side Closure 

	Straight Upstream Geometry, Left-Side Closure 
	Straight Upstream Geometry, Left-Side Closure 


	TR
	Cumulative % Merging After Distance 
	Cumulative % Merging After Distance 


	840 
	840 
	840 

	5% 
	5% 

	5% 
	5% 

	15% 
	15% 

	0% 
	0% 


	1,340 
	1,340 
	1,340 

	25% 
	25% 

	10% 
	10% 

	30% 
	30% 

	10% 
	10% 


	1,840 
	1,840 
	1,840 

	65% 
	65% 

	30% 
	30% 

	50% 
	50% 

	60% 
	60% 


	6,120 
	6,120 
	6,120 

	100% 
	100% 

	100% 
	100% 

	100% 
	100% 

	100% 
	100% 



	 
	TABLE 6-10: LANE CHANGE DISTANCE DISTRIBUTION SUMMARY (HEAVY TRUCKS) 
	Distance Upstream of  
	Distance Upstream of  
	Distance Upstream of  
	Distance Upstream of  
	Full Lane Closure (ft) 

	Curved Upstream Geometry, Right-Side Closure 
	Curved Upstream Geometry, Right-Side Closure 

	Straight Upstream Geometry, Right-Side Closure 
	Straight Upstream Geometry, Right-Side Closure 

	Curved Upstream Geometry, Left-Side Closure 
	Curved Upstream Geometry, Left-Side Closure 

	Straight Upstream Geometry, Left-Side Closure 
	Straight Upstream Geometry, Left-Side Closure 


	TR
	Cumulative % Merging After Distance 
	Cumulative % Merging After Distance 


	840 
	840 
	840 

	0% 
	0% 

	0% 
	0% 

	0% 
	0% 

	0% 
	0% 


	1,340 
	1,340 
	1,340 

	15% 
	15% 

	20% 
	20% 

	0% 
	0% 

	10% 
	10% 


	1,840 
	1,840 
	1,840 

	45% 
	45% 

	40% 
	40% 

	0% 
	0% 

	25% 
	25% 


	6,120 
	6,120 
	6,120 

	100% 
	100% 

	100% 
	100% 

	100% 
	100% 

	100% 
	100% 



	In each case above, the “distance” column represents the distance upstream of the full lane closure that vehicles in Vissim will begin to look for opportunities to merge from the closed lane to one of two remaining open lanes. The trajectory data used to develop the lane change distance distributions only included observations at up to approximately 1,840 feet upstream of the lane closure (i.e., 1,000 feet upstream of the beginning of the lane closure taper). Based on the typical applications presented in P
	Lastly, lane changing observations were acquired under both undersaturated and oversaturated conditions as part of the case study detailed in Chapter 4. Since lane changes occurring under congested conditions are constrained by the cooperativeness of vehicles in adjacent lanes and available gaps under tighter vehicle spacing, only observations associated with undersaturated conditions were considered when developing the lane change distance distributions presented in Table 6-9 and Table 6-10. That said, obs
	6.3 Task 1 – Sensitivity Analysis 
	6.3.1 Introduction 
	As introduced in Section 6.1.2, the purpose of this initial task was twofold. First, the Vissim models developed as part of this study were calibrated using the lane change distance distributions obtained from the AI-based extraction system by exploring various combinations of the driving behavior parameter ranges identified earlier in the chapter. The methodologies and outcomes described herein may be used to inform future modeling efforts that make use of vehicle class-specific lane change distance distri
	6.3.2 Sensitivity Analysis Experiment Design 
	Base Vissim model geometry, network objects, and input traffic volumes used as part of the subject sensitivity analysis were detailed earlier in the chapter. A six-mile freeway work zone corridor with a simulated 3-2 lane closure was coded in Vissim to run for a total of 12 hours (43,200 seconds) per random seed. The spatial and temporal extents of the model were intended to capture the propagation and dissipation of queues upstream of the simulated lane closure. Since data from the AI-based extraction syst
	As alluded to throughout this chapter, the structure of the subject sensitivity analysis was formed by exploring various levels of the following parameters, each redefined here for clarity: 
	• CC1 (Gap Time Distribution, s) – This parameter represents the multiplicative component of the desired safety distance in Vissim. At higher speeds, this parameter has the greatest influence on the desired following headway between a lead and trailing vehicle. Consequently, literature has found this parameter to have the greatest influence on simulated throughput. In the context of 3-2 freeway lane closures, research conducted as part of NCHRP Project 03-107 recommended a minimum value of 1.0s and maximum 
	• CC1 (Gap Time Distribution, s) – This parameter represents the multiplicative component of the desired safety distance in Vissim. At higher speeds, this parameter has the greatest influence on the desired following headway between a lead and trailing vehicle. Consequently, literature has found this parameter to have the greatest influence on simulated throughput. In the context of 3-2 freeway lane closures, research conducted as part of NCHRP Project 03-107 recommended a minimum value of 1.0s and maximum 
	• CC1 (Gap Time Distribution, s) – This parameter represents the multiplicative component of the desired safety distance in Vissim. At higher speeds, this parameter has the greatest influence on the desired following headway between a lead and trailing vehicle. Consequently, literature has found this parameter to have the greatest influence on simulated throughput. In the context of 3-2 freeway lane closures, research conducted as part of NCHRP Project 03-107 recommended a minimum value of 1.0s and maximum 

	• SDRF (Safety Distance Reduction Factor) – The SDRF parameter is unitless and defines the maximum reduction in the calculated safety distance that a vehicle will allow when searching for an acceptable gap to merge into an adjacent lane. The default value is 0.6, though the literature has indicated that smaller values may be necessary at merge, diverge, weaving, and work zone segments on freeways (FDOT, 2014). 
	• SDRF (Safety Distance Reduction Factor) – The SDRF parameter is unitless and defines the maximum reduction in the calculated safety distance that a vehicle will allow when searching for an acceptable gap to merge into an adjacent lane. The default value is 0.6, though the literature has indicated that smaller values may be necessary at merge, diverge, weaving, and work zone segments on freeways (FDOT, 2014). 

	• LCD (Lane Change Distance, ft) – For required lane changes (e.g., merges ahead of an off-ramp, turn bay, or lane closure), this parameter defines the distance upstream at which a driver will begin to look for acceptable gaps to merge. In legacy versions of PTV Vissim and in past literature, this parameter is modeled as a static value. This study is believed to be one of the first to leverage the capability of recent versions of Vissim (i.e., beginning with PTV Vissim 2020) to model the lane change distanc
	• LCD (Lane Change Distance, ft) – For required lane changes (e.g., merges ahead of an off-ramp, turn bay, or lane closure), this parameter defines the distance upstream at which a driver will begin to look for acceptable gaps to merge. In legacy versions of PTV Vissim and in past literature, this parameter is modeled as a static value. This study is believed to be one of the first to leverage the capability of recent versions of Vissim (i.e., beginning with PTV Vissim 2020) to model the lane change distanc


	Though additional input parameters impact simulation outputs to varying degrees, these three parameters were deemed most influential in replicating the lane-changing behavior studied as part of the case study presented in Chapter 4 of this report.  
	Several key items are worth noting with regard to the specific ranges selected for each of these parameters. First, the CC1 parameter was varied between a mean value of 1.0s and 1.8s, but modeled based on a normal distribution with a standard deviation of 0.20s in each case. The standard deviation value was selected based on that required (to the nearest 0.1s) to yield a maximum possible gap time of 4.0s in Vissim when coding a mean gap time of 1.8s. Second, the SDRF parameter was varied at three levels—0.6
	period. Since the lane change distance parameter in Vissim defines the point upstream of a required lane change that a vehicle will begin to look for opportunities to merge, each of the distances that form the distributions summarized previously were increased by 300, 500, and 700 feet. These three values were intended to bracket the expected distance traveled by vehicles in Vissim prior to successfully completing a lane change under low-density conditions. 
	The full factorial sensitivity experiment conducted as part of Task 1 is outlined in Table 6-11. In the table, the term ‘‘RFD’’ refers to ‘‘raw field data’’, and the three-character coding system (X-X-X) used to denote specific cases was developed as follows: 
	First Character (CC1 Parameter Value):  
	• A – mean = 1.0s, standard deviation = 0.2s 
	• A – mean = 1.0s, standard deviation = 0.2s 
	• A – mean = 1.0s, standard deviation = 0.2s 

	• B – mean = 1.2s, standard deviation = 0.2s 
	• B – mean = 1.2s, standard deviation = 0.2s 

	• C – mean = 1.4s, standard deviation = 0.2s 
	• C – mean = 1.4s, standard deviation = 0.2s 

	• D – mean = 1.6s, standard deviation = 0.2s 
	• D – mean = 1.6s, standard deviation = 0.2s 

	• E – mean = 1.8s, standard deviation = 0.2s 
	• E – mean = 1.8s, standard deviation = 0.2s 


	Second Character (Lane Change Distance Modifications) 
	• 1 – RFD 
	• 1 – RFD 
	• 1 – RFD 

	• 2 – RFD + 300 feet 
	• 2 – RFD + 300 feet 

	• 3 – RFD + 500 feet 
	• 3 – RFD + 500 feet 

	• 4 – RFD + 700 feet 
	• 4 – RFD + 700 feet 


	Third Character (SDRF Parameter Value): 
	• A – Default (0.60) 
	• A – Default (0.60) 
	• A – Default (0.60) 

	• B – 75% of Default (0.45) 
	• B – 75% of Default (0.45) 

	• C – 50% of Default (0.30) 
	• C – 50% of Default (0.30) 


	In total, 45 unique cases were developed and run using the same 10 random seeds. The additional 15 cases that comprise combinations of scenarios using the RFD lane change distance distributions (i.e., ‘‘1’’ for the second character in the scenario ID) were eliminated from the experiment after initial simulation runs indicated these scenarios were unnecessary. The outputs from these initial runs deviated substantially from field-observed lane change distance distributions, so the size of the experiment was r
	TABLE 6-11: SENSITIVITY ANALYSIS EXPERIMENT SCENARIOS 
	Scenario 
	Scenario 
	Scenario 
	Scenario 

	Mean CC1 (s) 
	Mean CC1 (s) 

	Lane Change Distance Distribution 
	Lane Change Distance Distribution 

	Safety Distance Reduction Factor 
	Safety Distance Reduction Factor 


	 A-2-A 
	 A-2-A 
	 A-2-A 

	1 
	1 

	RFD + 300 feet 
	RFD + 300 feet 

	Default 
	Default 


	 A-3-A 
	 A-3-A 
	 A-3-A 

	1 
	1 

	RFD + 500 feet 
	RFD + 500 feet 

	Default 
	Default 


	 A-4-A 
	 A-4-A 
	 A-4-A 

	1 
	1 

	RFD + 700 feet 
	RFD + 700 feet 

	Default 
	Default 


	 B-2-A 
	 B-2-A 
	 B-2-A 

	1.2 
	1.2 

	RFD + 300 feet 
	RFD + 300 feet 

	Default 
	Default 


	 B-3-A 
	 B-3-A 
	 B-3-A 

	1.2 
	1.2 

	RFD + 500 feet 
	RFD + 500 feet 

	Default 
	Default 


	 B-4-A 
	 B-4-A 
	 B-4-A 

	1.2 
	1.2 

	RFD + 700 feet 
	RFD + 700 feet 

	Default 
	Default 


	 C-2-A 
	 C-2-A 
	 C-2-A 

	1.4 
	1.4 

	RFD + 300 feet 
	RFD + 300 feet 

	Default 
	Default 


	 C-3-A 
	 C-3-A 
	 C-3-A 

	1.4 
	1.4 

	RFD + 500 feet 
	RFD + 500 feet 

	Default 
	Default 


	 C-4-A 
	 C-4-A 
	 C-4-A 

	1.4 
	1.4 

	RFD + 700 feet 
	RFD + 700 feet 

	Default 
	Default 


	 D-2-A 
	 D-2-A 
	 D-2-A 

	1.6 
	1.6 

	RFD + 300 feet 
	RFD + 300 feet 

	Default 
	Default 


	 D-3-A 
	 D-3-A 
	 D-3-A 

	1.6 
	1.6 

	RFD + 500 feet 
	RFD + 500 feet 

	Default 
	Default 


	 D-4-A 
	 D-4-A 
	 D-4-A 

	1.6 
	1.6 

	RFD + 700 feet 
	RFD + 700 feet 

	Default 
	Default 


	 E-2-A 
	 E-2-A 
	 E-2-A 

	1.8 
	1.8 

	RFD + 300 feet 
	RFD + 300 feet 

	Default 
	Default 


	 E-3-A 
	 E-3-A 
	 E-3-A 

	1.8 
	1.8 

	RFD + 500 feet 
	RFD + 500 feet 

	Default 
	Default 


	 E-4-A 
	 E-4-A 
	 E-4-A 

	1.8 
	1.8 

	RFD + 700 feet 
	RFD + 700 feet 

	Default 
	Default 


	 
	 
	 

	 
	 

	 
	 

	 
	 


	 A-2-B 
	 A-2-B 
	 A-2-B 

	1 
	1 

	RFD + 300 feet 
	RFD + 300 feet 

	0.45 
	0.45 


	 A-3-B 
	 A-3-B 
	 A-3-B 

	1 
	1 

	RFD + 500 feet 
	RFD + 500 feet 

	0.45 
	0.45 


	 A-4-B 
	 A-4-B 
	 A-4-B 

	1 
	1 

	RFD + 700 feet 
	RFD + 700 feet 

	0.45 
	0.45 


	 B-2-B 
	 B-2-B 
	 B-2-B 

	1.2 
	1.2 

	RFD + 300 feet 
	RFD + 300 feet 

	0.45 
	0.45 


	 B-3-B 
	 B-3-B 
	 B-3-B 

	1.2 
	1.2 

	RFD + 500 feet 
	RFD + 500 feet 

	0.45 
	0.45 


	 B-4-B 
	 B-4-B 
	 B-4-B 

	1.2 
	1.2 

	RFD + 700 feet 
	RFD + 700 feet 

	0.45 
	0.45 


	 C-2-B 
	 C-2-B 
	 C-2-B 

	1.4 
	1.4 

	RFD + 300 feet 
	RFD + 300 feet 

	0.45 
	0.45 


	 C-3-B 
	 C-3-B 
	 C-3-B 

	1.4 
	1.4 

	RFD + 500 feet 
	RFD + 500 feet 

	0.45 
	0.45 


	 C-4-B 
	 C-4-B 
	 C-4-B 

	1.4 
	1.4 

	RFD + 700 feet 
	RFD + 700 feet 

	0.45 
	0.45 


	 D-2-B 
	 D-2-B 
	 D-2-B 

	1.6 
	1.6 

	RFD + 300 feet 
	RFD + 300 feet 

	0.45 
	0.45 


	 D-3-B 
	 D-3-B 
	 D-3-B 

	1.6 
	1.6 

	RFD + 500 feet 
	RFD + 500 feet 

	0.45 
	0.45 


	 D-4-B 
	 D-4-B 
	 D-4-B 

	1.6 
	1.6 

	RFD + 700 feet 
	RFD + 700 feet 

	0.45 
	0.45 


	 E-2-B 
	 E-2-B 
	 E-2-B 

	1.8 
	1.8 

	RFD + 300 feet 
	RFD + 300 feet 

	0.45 
	0.45 


	 E-3-B 
	 E-3-B 
	 E-3-B 

	1.8 
	1.8 

	RFD + 500 feet 
	RFD + 500 feet 

	0.45 
	0.45 


	 E-4-B 
	 E-4-B 
	 E-4-B 

	1.8 
	1.8 

	RFD + 700 feet 
	RFD + 700 feet 

	0.45 
	0.45 


	 
	 
	 

	 
	 

	 
	 

	 
	 


	 A-2-C 
	 A-2-C 
	 A-2-C 

	1 
	1 

	RFD + 300 feet 
	RFD + 300 feet 

	0.30 
	0.30 


	 A-3-C 
	 A-3-C 
	 A-3-C 

	1 
	1 

	RFD + 500 feet 
	RFD + 500 feet 

	0.30 
	0.30 


	 A-4-C 
	 A-4-C 
	 A-4-C 

	1 
	1 

	RFD + 700 feet 
	RFD + 700 feet 

	0.30 
	0.30 


	 B-2-C 
	 B-2-C 
	 B-2-C 

	1.2 
	1.2 

	RFD + 300 feet 
	RFD + 300 feet 

	0.30 
	0.30 


	 B-3-C 
	 B-3-C 
	 B-3-C 

	1.2 
	1.2 

	RFD + 500 feet 
	RFD + 500 feet 

	0.30 
	0.30 


	 B-4-C 
	 B-4-C 
	 B-4-C 

	1.2 
	1.2 

	RFD + 700 feet 
	RFD + 700 feet 

	0.30 
	0.30 


	 C-2-C 
	 C-2-C 
	 C-2-C 

	1.4 
	1.4 

	RFD + 300 feet 
	RFD + 300 feet 

	0.30 
	0.30 



	Scenario 
	Scenario 
	Scenario 
	Scenario 

	Mean CC1 (s) 
	Mean CC1 (s) 

	Lane Change Distance Distribution 
	Lane Change Distance Distribution 

	Safety Distance Reduction Factor 
	Safety Distance Reduction Factor 


	 C-3-C 
	 C-3-C 
	 C-3-C 

	1.4 
	1.4 

	RFD + 500 feet 
	RFD + 500 feet 

	0.30 
	0.30 


	 C-4-C 
	 C-4-C 
	 C-4-C 

	1.4 
	1.4 

	RFD + 700 feet 
	RFD + 700 feet 

	0.30 
	0.30 


	 D-2-C 
	 D-2-C 
	 D-2-C 

	1.6 
	1.6 

	RFD + 300 feet 
	RFD + 300 feet 

	0.30 
	0.30 


	 D-3-C 
	 D-3-C 
	 D-3-C 

	1.6 
	1.6 

	RFD + 500 feet 
	RFD + 500 feet 

	0.30 
	0.30 


	 D-4-C 
	 D-4-C 
	 D-4-C 

	1.6 
	1.6 

	RFD + 700 feet 
	RFD + 700 feet 

	0.30 
	0.30 


	 E-2-C 
	 E-2-C 
	 E-2-C 

	1.8 
	1.8 

	RFD + 300 feet 
	RFD + 300 feet 

	0.30 
	0.30 


	 E-3-C 
	 E-3-C 
	 E-3-C 

	1.8 
	1.8 

	RFD + 500 feet 
	RFD + 500 feet 

	0.30 
	0.30 


	 E-4-C 
	 E-4-C 
	 E-4-C 

	1.8 
	1.8 

	RFD + 700 feet 
	RFD + 700 feet 

	0.30 
	0.30 



	      
	The lane change distance modifications applied in Vissim relative to the RFD scenario are summarized in Table 6-12. Users should be aware that Vissim currently requires distance distributions to be entered in metric units (i.e., meters), even if imperial units are selected as the universal default preference. 
	Table 6-12: Lane Change Distance Modification Summary 
	RFD 
	RFD 
	RFD 
	RFD 

	RFD + 500 feet 
	RFD + 500 feet 


	Distance (ft) 
	Distance (ft) 
	Distance (ft) 

	Distance (m) 
	Distance (m) 

	Distance (ft) 
	Distance (ft) 

	Distance (m) 
	Distance (m) 


	840 
	840 
	840 

	256 
	256 

	1,340 
	1,340 

	408 
	408 


	1,340 
	1,340 
	1,340 

	408 
	408 

	1,840 
	1,840 

	561 
	561 


	1,840 
	1,840 
	1,840 

	561 
	561 

	2,340 
	2,340 

	713 
	713 


	6,120 
	6,120 
	6,120 

	1,865 
	1,865 

	6,620 
	6,620 

	2,018 
	2,018 


	RFD + 300 feet 
	RFD + 300 feet 
	RFD + 300 feet 

	RFD + 700 feet 
	RFD + 700 feet 


	1,140 
	1,140 
	1,140 

	347 
	347 

	1,540 
	1,540 

	469 
	469 


	1,640 
	1,640 
	1,640 

	500 
	500 

	2,040 
	2,040 

	622 
	622 


	2,140 
	2,140 
	2,140 

	652 
	652 

	2,540 
	2,540 

	774 
	774 


	6,420 
	6,420 
	6,420 

	1,957 
	1,957 

	6,820 
	6,820 

	2,079 
	2,079 



	 
	6.3.3 Sensitivity Analysis Results 
	This subsection demonstrates the sensitivity of simulation outputs under a single set of input traffic volumes and vehicle compositions to changes in the parameters summarized in Table 6-11. The form and outcomes of this experiment are consistent with those of a traditional model calibration effort. First, the parameters expected to have the greatest influence on simulation outputs of interest were varied to identify the parameter set that generates the best match to field conditions observed at the study f
	of simulation lane changing outputs to field-observed lane changing behavior and select a preferred scenario for subsequent use in Task 2. Finally, model outputs under the calibrated parameter set were compared to those generated when using a literature-based default value for the lane change distance in Vissim. The results of this sensitivity analysis provide guidance for future modeling efforts and opportunities for further research. 
	Qualitative Evaluation of Traffic Measures of Effectiveness 
	Simulated average speed by time of day under each of the 45 studied scenarios is presented in Figure 6-3, Figure 6-4, and Figure 6-5 as a series of speed “heat maps”. These heat maps use a green-to-red color scale coded based on the volume-weighted average speed across all travel lanes during each 15-minute interval from 10:00AM to 8:00PM. Since the video camera used to collect trajectory data at the study freeway work zone was mounted at the lane closure taper, the graphics focus on modeled conditions with
	• The simulated free flow speed through the work zone was calculated as 59 mph based on model outputs from time periods with low flow rates 
	• The simulated free flow speed through the work zone was calculated as 59 mph based on model outputs from time periods with low flow rates 
	• The simulated free flow speed through the work zone was calculated as 59 mph based on model outputs from time periods with low flow rates 

	• Breakdown events were identified based on a sudden, sustained drop in speed of at least 25% below free flow speed (59 mph x 75% = 44 mph), measured at the data collection point just downstream of the bottleneck location 
	• Breakdown events were identified based on a sudden, sustained drop in speed of at least 25% below free flow speed (59 mph x 75% = 44 mph), measured at the data collection point just downstream of the bottleneck location 

	o A sudden drop in speed was defined as a decrease in average speed of at least 10% of the observed speed from the previous interval 
	o A sudden drop in speed was defined as a decrease in average speed of at least 10% of the observed speed from the previous interval 
	o A sudden drop in speed was defined as a decrease in average speed of at least 10% of the observed speed from the previous interval 

	o A sustained drop in speed was defined as three consecutive five-minute intervals with observed speeds below the threshold 
	o A sustained drop in speed was defined as three consecutive five-minute intervals with observed speeds below the threshold 

	o Data collection points placed one-quarter mile upstream of the lane closure were examined during each time interval to confirm queue propagation 
	o Data collection points placed one-quarter mile upstream of the lane closure were examined during each time interval to confirm queue propagation 



	This breakdown identification algorithm was also used to classify 15-minute intervals as congested or uncongested for the purposes of calculating measures of capacity and categorizing lane changing observations, as discussed later in this section. 
	As shown in Figure 6-3, Figure 6-4, and Figure 6-5, a wide range of traffic conditions were observed between scenarios—all of which utilized the same traffic volume inputs and vehicle compositions. At a value of 1.0s for the CC1 parameter (i.e., the nine 
	scenarios with an “A” as the first character in their respective ID), little to no congestion was observed throughout the simulation during any of the 10 random seed runs conducted. Conversely, congestion persisted throughout nearly the entire simulation period under scenarios coded with a value of 1.8s for the CC1 parameter (i.e., the nine scenarios with an “ ” as the first character in their respective ID). Though the maximum pre-breakdown flow rate and average queue discharge rate associated with these r
	 
	Figure
	FIGURE 6-3: SENSITIVITY ANALYSIS OUTPUTS SUMMARY AND ZONE 1/TRANSITION AREA SPEED HEAT MAP (SDRF = 0.60) 
	  
	  
	FIGURE 6-4: SENSITIVITY ANALYSIS OUTPUTS SUMMARY AND ZONE 1/TRANSITION AREA SPEED HEAT MAP (SDRF = 0.45) 
	FIGURE 6-4: SENSITIVITY ANALYSIS OUTPUTS SUMMARY AND ZONE 1/TRANSITION AREA SPEED HEAT MAP (SDRF = 0.45) 
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	FIGURE 6-5: SENSITIVITY ANALYSIS OUTPUTS SUMMARY AND ZONE 1/TRANSITION AREA SPEED HEAT MAP (SDRF = 0.30) 
	FIGURE 6-5: SENSITIVITY ANALYSIS OUTPUTS SUMMARY AND ZONE 1/TRANSITION AREA SPEED HEAT MAP (SDRF = 0.30) 
	Figure

	Figure
	Figure
	Comparing Figures 6-3, 6-4, and 6-5, the amount of congestion observed in the 10 random seed runs conducted for each case diminishes markedly as the safety distance reduction factor is reduced below its default value of 0.60. From Case C-2-A (SDRF = 0.60) to Case C-2-C (SDRF = 0.30), the maximum corridor travel time decreases from over 26 minutes per vehicle to just over 16 minutes per vehicle. This 38% decrease in travel time occurs despite modest increases in measures of capacity; when averaged across the
	Regardless, given that congestion was only observed over a short period in the field data, scenarios B-2-A through B-4-A, B-2-B through B-4-B, and B-2-C through B-4-C were deemed most capable of replicating the lane changing behavior observed in the field data. As such, these nine scenarios were carried forward for validation of Vissim lane change outputs against field observations.  
	Quantitative Evaluation of Lane Change Distance Distributions 
	The full set of 45 unique cases was narrowed to each of the nine scenarios coded with a CC1 value of 1.2s (i.e., scenarios with a “B” as the first character in their respective ID), as these scenarios best replicated field data collected as part of this study. Detailed lane changing observations were then extracted from Vissim and compared to the field distributions summarized earlier in the chapter.  This exercise was completed through the use of two methodologies. First, given the ubiquity of discretionar
	Lane Changes (file extension “.spw”) 
	• Vehicle ID 
	• Vehicle ID 
	• Vehicle ID 

	• Time of Lane Change (simulation seconds) 
	• Time of Lane Change (simulation seconds) 

	• Location of Lane Change 
	• Location of Lane Change 

	o Link Number 
	o Link Number 
	o Link Number 

	o Original Lane 
	o Original Lane 

	o New Lane 
	o New Lane 



	Vehicle Record (file extension “.fzp”) 
	• Vehicle ID 
	• Vehicle ID 
	• Vehicle ID 

	• Time of Record (simulation seconds) 
	• Time of Record (simulation seconds) 

	• Vehicle Class 
	• Vehicle Class 


	Records within the .spw files were filtered to ensure that each represented a mandatory lane change associated with the modeled lane closure. An algorithm was coded in Microsoft  xcel to classify a record as “eligible” for lane change distance distribution calculations only if the following conditions were met: 
	• The lane change represented the last lane change recorded for a given Vehicle ID upstream of the lane closure connector 
	• The lane change represented the last lane change recorded for a given Vehicle ID upstream of the lane closure connector 
	• The lane change represented the last lane change recorded for a given Vehicle ID upstream of the lane closure connector 

	• The lane change involved a merge from the rightmost lane to the adjacent center lane 
	• The lane change involved a merge from the rightmost lane to the adjacent center lane 


	 ach “eligible” record was binned based on location (Zone 1, Zone 2, Zone  , or Zone 4) and vehicle class (passenger car, heavy truck). The results of this exercise are presented in Table 6-13 for a lane closure with straight upstream geometry and low traffic density. 
	TABLE 6-13: OUTPUT LANE CHANGE DISTANCE DISTRIBUTION SUMMARY1 
	Lane Change Distance Distribution (Straight Upstream Section, Passenger Cars)  
	Lane Change Distance Distribution (Straight Upstream Section, Passenger Cars)  
	Lane Change Distance Distribution (Straight Upstream Section, Passenger Cars)  
	Lane Change Distance Distribution (Straight Upstream Section, Passenger Cars)  


	Scenario 
	Scenario 
	Scenario 

	B-2-A 
	B-2-A 

	B-3-A 
	B-3-A 

	B-4-A 
	B-4-A 

	B-2-B 
	B-2-B 

	B-3-B 
	B-3-B 

	B-4-B 
	B-4-B 

	B-2-C 
	B-2-C 

	B-3-C 
	B-3-C 

	B-4-C 
	B-4-C 

	Field Data 
	Field Data 


	Zone 4 
	Zone 4 
	Zone 4 

	70% 
	70% 

	75% 
	75% 

	78% 
	78% 

	72% 
	72% 

	77% 
	77% 

	80% 
	80% 

	63% 
	63% 

	69% 
	69% 

	76% 
	76% 

	70% 
	70% 


	Zone 3 
	Zone 3 
	Zone 3 

	11% 
	11% 

	9% 
	9% 

	8% 
	8% 

	13% 
	13% 

	10% 
	10% 

	8% 
	8% 

	18% 
	18% 

	18% 
	18% 

	15% 
	15% 

	20% 
	20% 


	Zone 2 
	Zone 2 
	Zone 2 

	9% 
	9% 

	7% 
	7% 

	7% 
	7% 

	8% 
	8% 

	7% 
	7% 

	6% 
	6% 

	15% 
	15% 

	8% 
	8% 

	5% 
	5% 

	5% 
	5% 


	Zone 1 
	Zone 1 
	Zone 1 

	9% 
	9% 

	8% 
	8% 

	8% 
	8% 

	8% 
	8% 

	7% 
	7% 

	7% 
	7% 

	4% 
	4% 

	5% 
	5% 

	4% 
	4% 

	5% 
	5% 


	Lane Change Distance Distribution (Straight Upstream Section, Heavy Trucks)  
	Lane Change Distance Distribution (Straight Upstream Section, Heavy Trucks)  
	Lane Change Distance Distribution (Straight Upstream Section, Heavy Trucks)  


	Scenario 
	Scenario 
	Scenario 

	B-2-A 
	B-2-A 

	B-3-A 
	B-3-A 

	B-4-A 
	B-4-A 

	B-2-B 
	B-2-B 

	B-3-B 
	B-3-B 

	B-4-B 
	B-4-B 

	B-2-C 
	B-2-C 

	B-3-C 
	B-3-C 

	B-4-C 
	B-4-C 

	Field Data 
	Field Data 


	Zone 4 
	Zone 4 
	Zone 4 

	60% 
	60% 

	65% 
	65% 

	70% 
	70% 

	62% 
	62% 

	69% 
	69% 

	74% 
	74% 

	73% 
	73% 

	79% 
	79% 

	81% 
	81% 

	60% 
	60% 


	Zone 3 
	Zone 3 
	Zone 3 

	15% 
	15% 

	17% 
	17% 

	15% 
	15% 

	17% 
	17% 

	18% 
	18% 

	15% 
	15% 

	13% 
	13% 

	9% 
	9% 

	8% 
	8% 

	20% 
	20% 


	Zone 2 
	Zone 2 
	Zone 2 

	17% 
	17% 

	13% 
	13% 

	9% 
	9% 

	15% 
	15% 

	9% 
	9% 

	6% 
	6% 

	8% 
	8% 

	6% 
	6% 

	5% 
	5% 

	20% 
	20% 


	Zone 1 
	Zone 1 
	Zone 1 

	8% 
	8% 

	5% 
	5% 

	5% 
	5% 

	7% 
	7% 

	5% 
	5% 

	4% 
	4% 

	7% 
	7% 

	7% 
	7% 

	6% 
	6% 

	0% 
	0% 



	1All observations taken prior to the onset of breakdown to ensure lane changes were not constrained by oversaturated conditions 
	The results shown in Table 6-13 highlight a few noteworthy trends. First, the number of vehicles completing mandatory lane changes within Zone 1 is overstated under all analyzed scenarios. This finding is especially evident for heavy trucks. Even under scenario B-4-C—which minimizes the likelihood of late merges occurring based on input parameter values (because this scenario employs the maximum lane change distance and minimum SDRF) —approximately 6% of all lane changes occur within Zone 1, despite the fac
	generally greater in Vissim than in the field data. These findings underscore the challenges of calibrating a Vissim model to lane changing behavior. As mentioned earlier in this chapter, a vehicle traveling at 70 mph will traverse the 500-foot distance that comprises Zone 2 and Zone 3 within approximately five seconds. As a result, field-observed lane changing behavior may be more replicable at coarser levels (e.g., distance bins greater than 500 feet in length). Even so, Table 6-13 suggests a fairly reaso
	The second of two methodologies utilized to evaluate modeled lane changing behavior focused on mandatory lane changes occurring after the onset of congestion. Though not all scenarios were presented in Table 6-13 previously, the methodology for assessing lane changes occurring prior to the onset of congestion is biased towards cases with more agressive driving behavior parameters. In other words, the cases with the smallest value for the CC1 and SDRF parameters are likely to produce the best fit to lane cha
	Accordingly, the proportion of lane changes occuring within each zone after the onset of breakdown was estimated and compared to the field data. This comparison is provided in Figure 6-6, where the goodness-of-fit of the model data to the field data was assessed using the root mean square normalized error (RMSNE). The RMSNE was not computed through direct comparison of the observed and expected lane change proportions for each zone. Rather, the total number of lane changes observed in Vissim across the 10 r
	 
	 
	Figure
	FIGURE 6-6: OUTPUT LANE CHANGE DISTANCE EVALUATION (OVERSATURATED CONDITIONS)
	 
	Comparisons to Default Lane Change Distance 
	Finally, a copy of the scenario B-3 Vissim model was coded to run with the connector lane change distance set to a typical “default” value for freeway work zones. Based on guidance in the literature (Yeom et al., 2016; Jehn and Turochy, 2019), a static value of 3,000 feet was selected and applied in Vissim. Outputs under the calibrated and typical “default” lane change distances are compared in Figure 6-7 and Figure 6-8.  
	 
	Figure
	FIGURE 6-7: CORRIDOR SPEED HEAT MAP (SCENARIO B-3—CALIBRATED LANE CHANGE DISTANCE DISTRIBUTION) 
	 
	Figure
	FIGURE 6-8: CORRIDOR SPEED HEAT MAP (SCENARIO B-3—DEFAULT LANE CHANGE DISTANCE) 
	The qualitative differences in modeled speeds demonstrated in the figures is backed quantitatively by output measures of effectiveness. Under the calibrated parameter set, a maximum pre-breakdown flow rate of 1,330 vehicles per hour per open lane through the work zone was observed, with a maximum corridor travel time of approximately 9.3 minutes. On the contrary, no breakdown events were observed under the typical “default” lane change distance, and the maximum corridor travel time during a given random see
	lane change distance are generally associated with “smoother” operations in practice and are less likely to produce congestion in Vissim (VDOT, 2020). These results highlight the disruptions to traffic operations possible when even a small number of vehicles initiate lane changes near or downstream of the beginning of the transition area.  
	Moreover, the results of Task 1 expose a gap in the existing body of research relative to freeway work zone simulation model calibration in Vissim. Specifically, if one desired to replicate the congestion pattern shown in Figure 6-7 while assuming a static value for the lane change distance, other parameters—such as CC1 and SDRF—would require further modification. As noted in Section 6.2.1, model calibration is a cumbersome process often handled differently from modeler to modeler. These differences lead to
	6.4 Task 2 – Modeling Freeway Work Zone Traffic Operations at Sites With Varying Characteristics 
	6.4.1 Introduction 
	The calibrated model developed as part of Task 1 was intended to be representative of conditions observed under a single case captured by the field data summarized in Section 6.2.3. The purpose of this second task was to extend the preferred parameter set identified during Task 1 to theoretical three-to-two freeway lane closures exhibiting the remaining geometric and traffic stream characteristics represented by the field data. A full factorial experiment was conducted to determine how traffic measures of e
	6.4.2 Experiment Design and Refinement 
	Vissim input geometry, network objects, and driving behavior parameters coded in the calibrated scenario B-3 model were used as the basis for generating a total of 36 additional cases to be studied. Each of these cases are listed in Table 6-14, where the “low”, “medium”, and “high” traffic volume input categories were developed as summarized in Section 6.2.2.   
	As was done for Task 1, a three-character coding system (X-X-X) was used to denote the specific cases that comprise the full factorial experiment conducted here. This coding system was developed as follows: 
	First Character (Upstream Geometry):  
	• C – Curved Upstream Geometry 
	• C – Curved Upstream Geometry 
	• C – Curved Upstream Geometry 

	• S – Straight Upstream Geometry 
	• S – Straight Upstream Geometry 


	Second Character (Maximum Input Volume/Truck Percentage) 
	• 1 – 2,940 pcph/5% 
	• 1 – 2,940 pcph/5% 
	• 1 – 2,940 pcph/5% 

	• 2 – 3,185 pcph/5% 
	• 2 – 3,185 pcph/5% 

	• 3 – 3,430 pcph/5% 
	• 3 – 3,430 pcph/5% 

	• 4 – 2,940 pcph/15% 
	• 4 – 2,940 pcph/15% 

	• 5 – 3,185 pcph/15% 
	• 5 – 3,185 pcph/15% 

	• 6 – 3,430 pcph/15% 
	• 6 – 3,430 pcph/15% 

	• 7 – 2,940 pcph/30% 
	• 7 – 2,940 pcph/30% 

	• 8 – 3,185 pcph/30% 
	• 8 – 3,185 pcph/30% 

	• 9 – 3,430 pcph/30% 
	• 9 – 3,430 pcph/30% 


	Third Character (Lane Closure Side): 
	• R – Right-Side Closure 
	• R – Right-Side Closure 
	• R – Right-Side Closure 

	• L – Left-Side Closure 
	• L – Left-Side Closure 


	The following should be noted relative to the list of scenarios described above and in Table 6-14. First, the curved and straight upstream geometry scenarios were coded with different lane change distance distributions based on the observed field data; all other components of the model were left identical to the baseline calibrated scenario identified as part of Task 1. This calibrated scenario included a lane change distance coded with a distance offset of 500 feet relative to the raw field data, a CC1 val
	TABLE 6-14: FACTORIAL EXPERIMENT ANALYSIS SCENARIOS 
	Scenario 
	Scenario 
	Scenario 
	Scenario 

	% Trucks 
	% Trucks 

	Upstream Geometry 
	Upstream Geometry 

	Lane Closure Side 
	Lane Closure Side 

	Input Volume Distribution 
	Input Volume Distribution 


	C-1-R 
	C-1-R 
	C-1-R 

	5% 
	5% 

	Curved 
	Curved 

	Right 
	Right 

	Low 
	Low 


	C-2-R 
	C-2-R 
	C-2-R 

	5% 
	5% 

	Curved 
	Curved 

	Right 
	Right 

	Medium 
	Medium 


	C-3-R 
	C-3-R 
	C-3-R 

	5% 
	5% 

	Curved 
	Curved 

	Right 
	Right 

	High 
	High 


	C-4-R 
	C-4-R 
	C-4-R 

	15% 
	15% 

	Curved 
	Curved 

	Right 
	Right 

	Low 
	Low 


	C-5-R 
	C-5-R 
	C-5-R 

	15% 
	15% 

	Curved 
	Curved 

	Right 
	Right 

	Medium 
	Medium 


	C-6-R 
	C-6-R 
	C-6-R 

	15% 
	15% 

	Curved 
	Curved 

	Right 
	Right 

	High 
	High 


	C-7-R 
	C-7-R 
	C-7-R 

	30% 
	30% 

	Curved 
	Curved 

	Right 
	Right 

	Low 
	Low 


	C-8-R 
	C-8-R 
	C-8-R 

	30% 
	30% 

	Curved 
	Curved 

	Right 
	Right 

	Medium 
	Medium 


	C-9-R 
	C-9-R 
	C-9-R 

	30% 
	30% 

	Curved 
	Curved 

	Right 
	Right 

	High 
	High 


	C-1-L 
	C-1-L 
	C-1-L 

	5% 
	5% 

	Curved 
	Curved 

	Left 
	Left 

	Low 
	Low 


	C-2-L 
	C-2-L 
	C-2-L 

	5% 
	5% 

	Curved 
	Curved 

	Left 
	Left 

	Medium 
	Medium 


	C-3-L 
	C-3-L 
	C-3-L 

	5% 
	5% 

	Curved 
	Curved 

	Left 
	Left 

	High 
	High 


	C-4-L 
	C-4-L 
	C-4-L 

	15% 
	15% 

	Curved 
	Curved 

	Left 
	Left 

	Low 
	Low 


	C-5-L 
	C-5-L 
	C-5-L 

	15% 
	15% 

	Curved 
	Curved 

	Left 
	Left 

	Medium 
	Medium 


	C-6-L 
	C-6-L 
	C-6-L 

	15% 
	15% 

	Curved 
	Curved 

	Left 
	Left 

	High 
	High 


	C-7-L 
	C-7-L 
	C-7-L 

	30% 
	30% 

	Curved 
	Curved 

	Left 
	Left 

	Low 
	Low 


	C-8-L 
	C-8-L 
	C-8-L 

	30% 
	30% 

	Curved 
	Curved 

	Left 
	Left 

	Medium 
	Medium 


	C-9-L 
	C-9-L 
	C-9-L 

	30% 
	30% 

	Curved 
	Curved 

	Left 
	Left 

	High 
	High 


	 
	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


	S-1-R 
	S-1-R 
	S-1-R 

	5% 
	5% 

	Straight 
	Straight 

	Right 
	Right 

	Low 
	Low 


	S-2-R 
	S-2-R 
	S-2-R 

	5% 
	5% 

	Straight 
	Straight 

	Right 
	Right 

	Medium 
	Medium 


	S-3-R 
	S-3-R 
	S-3-R 

	5% 
	5% 

	Straight 
	Straight 

	Right 
	Right 

	High 
	High 


	S-4-R 
	S-4-R 
	S-4-R 

	15% 
	15% 

	Straight 
	Straight 

	Right 
	Right 

	Low 
	Low 


	S-5-R 
	S-5-R 
	S-5-R 

	15% 
	15% 

	Straight 
	Straight 

	Right 
	Right 

	Medium 
	Medium 


	S-6-R 
	S-6-R 
	S-6-R 

	15% 
	15% 

	Straight 
	Straight 

	Right 
	Right 

	High 
	High 


	S-7-R 
	S-7-R 
	S-7-R 

	30% 
	30% 

	Straight 
	Straight 

	Right 
	Right 

	Low 
	Low 


	S-8-R 
	S-8-R 
	S-8-R 

	30% 
	30% 

	Straight 
	Straight 

	Right 
	Right 

	Medium 
	Medium 


	S-9-R 
	S-9-R 
	S-9-R 

	30% 
	30% 

	Straight 
	Straight 

	Right 
	Right 

	High 
	High 


	S-1-L 
	S-1-L 
	S-1-L 

	5% 
	5% 

	Straight 
	Straight 

	Left 
	Left 

	Low 
	Low 


	S-2-L 
	S-2-L 
	S-2-L 

	5% 
	5% 

	Straight 
	Straight 

	Left 
	Left 

	Medium 
	Medium 


	S-3-L 
	S-3-L 
	S-3-L 

	5% 
	5% 

	Straight 
	Straight 

	Left 
	Left 

	High 
	High 


	S-4-L 
	S-4-L 
	S-4-L 

	15% 
	15% 

	Straight 
	Straight 

	Left 
	Left 

	Low 
	Low 


	S-5-L 
	S-5-L 
	S-5-L 

	15% 
	15% 

	Straight 
	Straight 

	Left 
	Left 

	Medium 
	Medium 


	S-6-L 
	S-6-L 
	S-6-L 

	15% 
	15% 

	Straight 
	Straight 

	Left 
	Left 

	High 
	High 


	S-7-L 
	S-7-L 
	S-7-L 

	30% 
	30% 

	Straight 
	Straight 

	Left 
	Left 

	Low 
	Low 


	S-8-L 
	S-8-L 
	S-8-L 

	30% 
	30% 

	Straight 
	Straight 

	Left 
	Left 

	Medium 
	Medium 


	S-9-L 
	S-9-L 
	S-9-L 

	30% 
	30% 

	Straight 
	Straight 

	Left 
	Left 

	High 
	High 



	 
	6.4.3 Factorial Experiment Results 
	The findings of Task 1 validate the utility of semi-automatically extracted traffic data in mitigating the complexity of the calibration process and providing a basis for future modeling efforts utilizing lane change distance distributions in Vissim. One practical application of these field-measured lane change distance distributions to developing robust Vissim models is presented as part of Task 2. The results summarized in this subsection first explore traditional output measures of capacity at freeway la
	Prior to assessing model outputs, the minimum number of runs required for establishing statistical confidence in the results was computed. Corridor travel time exhibited the greatest standard deviation when comparing the 10 random seed runs conducted for scenario B-3 as part of Task 1. As such, the following equation was evaluated for the maximum corridor travel time assuming a tolerable error of 15%, 95% confidence level, and 10 random seed runs. 𝑛=(𝑠∗𝑡𝛼2𝜇∗𝜀)2 
	Where: 
	n = required number of simulation runs 
	s = standard deviation of the maximum corridor travel time, in minutes 
	𝑡𝛼2= critical value of a two-sided t-statistic at a confidence level of α and n-1 degrees of freedom 
	The results of this computation are shown in Table 6-15 and yield a minimum requirement of five simulation runs. As such, 10 random seed runs were deemed sufficient for conducting the remainder of the experiment.  
	  
	TABLE 6-15: DETERMINATION OF REQUIRED NUMBER OF SIMULATION RUNS 
	Random Seed Run 
	Random Seed Run 
	Random Seed Run 
	Random Seed Run 

	Maximum Corridor Travel Time (minutes) 
	Maximum Corridor Travel Time (minutes) 


	1 
	1 
	1 

	8.9 
	8.9 


	2 
	2 
	2 

	11.8 
	11.8 


	3 
	3 
	3 

	7.3 
	7.3 


	4 
	4 
	4 

	9.6 
	9.6 


	5 
	5 
	5 

	8.7 
	8.7 


	6 
	6 
	6 

	9.9 
	9.9 


	7 
	7 
	7 

	8.1 
	8.1 


	8 
	8 
	8 

	8.2 
	8.2 


	9 
	9 
	9 

	9.1 
	9.1 


	10 
	10 
	10 

	11.3 
	11.3 


	Maximum (minutes) 
	Maximum (minutes) 
	Maximum (minutes) 

	11.8 
	11.8 


	Minimum (minutes) 
	Minimum (minutes) 
	Minimum (minutes) 

	7.3 
	7.3 


	Standard Deviation (minutes) 
	Standard Deviation (minutes) 
	Standard Deviation (minutes) 

	1.4 
	1.4 


	Average (minutes) 
	Average (minutes) 
	Average (minutes) 

	9.3 
	9.3 


	Tolerable Error (minutes) 
	Tolerable Error (minutes) 
	Tolerable Error (minutes) 

	1.4 
	1.4 


	Required Number of Runs1 
	Required Number of Runs1 
	Required Number of Runs1 

	4.9 
	4.9 



	1Calculation for required number of runs assumes n – 1 = 9 degrees of freedom 
	Freeway Capacity Measurements 
	The maximum pre-breakdown flow rate, average queue discharge flow rate, and demand-to-capacity ratio associated with each of the modeled scenarios are summarized in Table 6-16 and Table 6-17 for right- and left-side closures, respectively. As shown in the tables, only 23 scenarios yielded a breakdown event during at least one random seed run.  For scenarios modeled with 5% trucks in the traffic stream (i.e., those with a “1”, “2”, or “ ” as the second character in their respective ID), neither the “low” nor
	TABLE 6-16: SUMMARY OF CAPACITY MEASUREMENTS (RIGHT-SIDE LANE CLOSURE) 
	Measure of Effectiveness 
	Measure of Effectiveness 
	Measure of Effectiveness 
	Measure of Effectiveness 

	Scenario ID 
	Scenario ID 


	TR
	C-1-R 
	C-1-R 

	C-2-R 
	C-2-R 

	C-3-R 
	C-3-R 

	C-33-R 
	C-33-R 

	C-4-R 
	C-4-R 

	C-5-R 
	C-5-R 

	C-6-R 
	C-6-R 

	C-7-R 
	C-7-R 

	C-8-R 
	C-8-R 

	C-9-R 
	C-9-R 


	Maximum Pre-Breakdown Flow Rate (vphpl)1,2 
	Maximum Pre-Breakdown Flow Rate (vphpl)1,2 
	Maximum Pre-Breakdown Flow Rate (vphpl)1,2 

	- 
	- 

	- 
	- 

	1,517 
	1,517 

	1,582 
	1,582 

	- 
	- 

	1,317 
	1,317 

	1,291 
	1,291 

	- 
	- 

	1,107 
	1,107 

	1,080 
	1,080 


	Average Queue Discharge Rate (vphpl)1,2 
	Average Queue Discharge Rate (vphpl)1,2 
	Average Queue Discharge Rate (vphpl)1,2 

	- 
	- 

	- 
	- 

	1,558 
	1,558 

	1,586 
	1,586 

	- 
	- 

	1,219 
	1,219 

	1,238 
	1,238 

	- 
	- 

	955 
	955 

	985 
	985 


	Maximum Input Volume (vphpl)2 
	Maximum Input Volume (vphpl)2 
	Maximum Input Volume (vphpl)2 

	1,368 
	1,368 

	1,482 
	1,482 

	1,596 
	1,596 

	1,710 
	1,710 

	1,200 
	1,200 

	1,300 
	1,300 

	1,400 
	1,400 

	1,014 
	1,014 

	1,099 
	1,099 

	1,183 
	1,183 


	Estimated Demand-to-Capacity Ratio (D/C)3 
	Estimated Demand-to-Capacity Ratio (D/C)3 
	Estimated Demand-to-Capacity Ratio (D/C)3 

	- 
	- 

	- 
	- 

	1.05 
	1.05 

	1.08 
	1.08 

	- 
	- 

	0.99 
	0.99 

	1.08 
	1.08 

	- 
	- 

	0.99 
	0.99 

	1.10 
	1.10 


	Measure of Effectiveness 
	Measure of Effectiveness 
	Measure of Effectiveness 

	Scenario ID 
	Scenario ID 


	TR
	S-1-R 
	S-1-R 

	S-2-R 
	S-2-R 

	S-3-R 
	S-3-R 

	S-33-R 
	S-33-R 

	S-4-R 
	S-4-R 

	S-5-R 
	S-5-R 

	S-6-R 
	S-6-R 

	S-7-R 
	S-7-R 

	S-8-R 
	S-8-R 

	S-9-R 
	S-9-R 


	Maximum Pre-Breakdown Flow Rate (vphpl)1,2 
	Maximum Pre-Breakdown Flow Rate (vphpl)1,2 
	Maximum Pre-Breakdown Flow Rate (vphpl)1,2 

	- 
	- 

	- 
	- 

	1,566 
	1,566 

	1,582 
	1,582 

	- 
	- 

	1,325 
	1,325 

	1,330 
	1,330 

	- 
	- 

	1,100 
	1,100 

	1,088 
	1,088 


	Average Queue Discharge Rate (vphpl)1,2 
	Average Queue Discharge Rate (vphpl)1,2 
	Average Queue Discharge Rate (vphpl)1,2 

	- 
	- 

	- 
	- 

	1,572 
	1,572 

	1,602 
	1,602 

	- 
	- 

	1,222 
	1,222 

	1,253 
	1,253 

	- 
	- 

	955 
	955 

	975 
	975 


	Maximum Input Volume (vphpl)2 
	Maximum Input Volume (vphpl)2 
	Maximum Input Volume (vphpl)2 

	1,368 
	1,368 

	1,482 
	1,482 

	1,596 
	1,596 

	1,710 
	1,710 

	1,200 
	1,200 

	1,300 
	1,300 

	1,400 
	1,400 

	1,014 
	1,014 

	1,099 
	1,099 

	1,183 
	1,183 


	Estimated Demand-to-Capacity Ratio (D/C)3 
	Estimated Demand-to-Capacity Ratio (D/C)3 
	Estimated Demand-to-Capacity Ratio (D/C)3 

	- 
	- 

	- 
	- 

	1.02 
	1.02 

	1.08 
	1.08 

	- 
	- 

	0.98 
	0.98 

	1.05 
	1.05 

	- 
	- 

	1.00 
	1.00 

	1.09 
	1.09 



	1Capacity measurements shown represent an average of the 10 random seed runs conducted for a given scenario 
	2Vissim input volume distributions were coded in one-hour intervals; capacity measurements are shown as 15-minute equivalent hourly flow rates 
	3Demand-to-capacity ratio calculated by comparing the maximum pre-breakdown flow rate to the maximum input volume 
	   
	 
	 
	TABLE 6-17: SUMMARY OF CAPACITY MEASUREMENTS (LEFT-SIDE LANE CLOSURE) 
	Measure of Effectiveness 
	Measure of Effectiveness 
	Measure of Effectiveness 
	Measure of Effectiveness 

	Scenario ID 
	Scenario ID 


	TR
	C-1-L 
	C-1-L 

	C-2-L 
	C-2-L 

	C-3-L 
	C-3-L 

	C-33-L 
	C-33-L 

	C-4-L 
	C-4-L 

	C-5-L 
	C-5-L 

	C-6-L 
	C-6-L 

	C-7-L 
	C-7-L 

	C-8-L 
	C-8-L 

	C-9-L 
	C-9-L 


	Maximum Pre-Breakdown Flow Rate (vphpl)1,2 
	Maximum Pre-Breakdown Flow Rate (vphpl)1,2 
	Maximum Pre-Breakdown Flow Rate (vphpl)1,2 

	- 
	- 

	- 
	- 

	1,492 
	1,492 

	1,553 
	1,553 

	- 
	- 

	1,290 
	1,290 

	1,291 
	1,291 

	- 
	- 

	1,121 
	1,121 

	1,117 
	1,117 


	Average Queue Discharge Rate (vphpl)1,2 
	Average Queue Discharge Rate (vphpl)1,2 
	Average Queue Discharge Rate (vphpl)1,2 

	- 
	- 

	- 
	- 

	1,506 
	1,506 

	1,548 
	1,548 

	- 
	- 

	1,191 
	1,191 

	1,266 
	1,266 

	- 
	- 

	965 
	965 

	1,021 
	1,021 


	Maximum Input Volume (vphpl)2 
	Maximum Input Volume (vphpl)2 
	Maximum Input Volume (vphpl)2 

	1,368 
	1,368 

	1,482 
	1,482 

	1,596 
	1,596 

	1,710 
	1,710 

	1,200 
	1,200 

	1,300 
	1,300 

	1,400 
	1,400 

	1,014 
	1,014 

	1,099 
	1,099 

	1,183 
	1,183 


	Estimated Demand-to-Capacity Ratio (D/C)3 
	Estimated Demand-to-Capacity Ratio (D/C)3 
	Estimated Demand-to-Capacity Ratio (D/C)3 

	- 
	- 

	- 
	- 

	1.07 
	1.07 

	1.10 
	1.10 

	- 
	- 

	1.01 
	1.01 

	1.08 
	1.08 

	- 
	- 

	0.98 
	0.98 

	1.06 
	1.06 


	Measure of Effectiveness 
	Measure of Effectiveness 
	Measure of Effectiveness 

	Scenario ID 
	Scenario ID 


	TR
	S-1-L 
	S-1-L 

	S-2-L 
	S-2-L 

	S-3-L 
	S-3-L 

	S-33-L 
	S-33-L 

	S-4-L 
	S-4-L 

	S-5-L 
	S-5-L 

	S-6-L 
	S-6-L 

	S-7-L 
	S-7-L 

	S-8-L 
	S-8-L 

	S-9-L 
	S-9-L 


	Maximum Pre-Breakdown Flow Rate (vphpl)1,2 
	Maximum Pre-Breakdown Flow Rate (vphpl)1,2 
	Maximum Pre-Breakdown Flow Rate (vphpl)1,2 

	- 
	- 

	- 
	- 

	1,530 
	1,530 

	1,551 
	1,551 

	- 
	- 

	- 
	- 

	1,311 
	1,311 

	- 
	- 

	1,139 
	1,139 

	1,102 
	1,102 


	Average Queue Discharge Rate (vphpl)1,2 
	Average Queue Discharge Rate (vphpl)1,2 
	Average Queue Discharge Rate (vphpl)1,2 

	- 
	- 

	- 
	- 

	1,541 
	1,541 

	1,606 
	1,606 

	- 
	- 

	- 
	- 

	1,283 
	1,283 

	- 
	- 

	958 
	958 

	1,004 
	1,004 


	Maximum Input Volume (vphpl)2 
	Maximum Input Volume (vphpl)2 
	Maximum Input Volume (vphpl)2 

	1,368 
	1,368 

	1,482 
	1,482 

	1,596 
	1,596 

	1,710 
	1,710 

	1,200 
	1,200 

	1,300 
	1,300 

	1,400 
	1,400 

	1,014 
	1,014 

	1,099 
	1,099 

	1,183 
	1,183 


	Estimated Demand-to-Capacity Ratio (D/C)3 
	Estimated Demand-to-Capacity Ratio (D/C)3 
	Estimated Demand-to-Capacity Ratio (D/C)3 

	- 
	- 

	- 
	- 

	1.04 
	1.04 

	1.10 
	1.10 

	- 
	- 

	- 
	- 

	1.07 
	1.07 

	- 
	- 

	0.96 
	0.96 

	1.07 
	1.07 



	1Capacity measurements shown represent an average of the 10 random seed runs conducted for a given scenario 
	2Vissim input volume distributions were coded in one-hour intervals; capacity measurements are shown as 15-minute equivalent hourly flow rates 
	3Demand-to-capacity ratio calculated by comparing the maximum pre-breakdown flow rate to the maximum input volume 
	 
	 
	The results summarized in Table 6-16 and Table 6-17 should be interpreted with the following in mind. First, though the Highway Capacity Manual recommends default passenger car equivalent flow rates for heavy trucks and suggested values for freeway work zones are provided in the literature (TRB, 2016; Sarasua et al., 2006; Jehn and Turochy, 2020), capacity measurements are presented in units of vehicles per hour per lane to provide for easier interpretation across input truck percentages. Second, demand-to-
	Regardless, the results highlight that capacity measurements do not vary substantially at the same input truck percentage when comparing right- and left-side lane closures or those with curved and straight upstream geometry. Considering the results under right-side lane closures versus those under left-side lane closures, the maximum observed difference in the pre-breakdown capacity occurred between scenarios S-8-L and S-8-R, where scenario S-8-L exhibited a maximum pre-breakdown flow rate 39 vehicles per h
	On the contrary, the capacity measurements in the tables underscore the noteworthy impact that heavy trucks have on traffic flow, particularly at freeway lane closures. The best-performing scenario (S-33-R) from a capacity standpoint exhibited a maximum pre-breakdown flow rate of 1,582 vehicles per hour per lane, approximately 500 vehicles per hour per lane greater than the worst-performing scenario (C-9-R). Likewise, the best-performing scenario (S-33-L) produced an average queue discharge rate approximate
	on capacity measurements for comparative purposes, a passenger car equivalent (PCE) factor was calculated based on the methodology applied by Jehn and Turochy (2020). The average of the maximum pre-breakdown flow rates observed under each truck percentage were converted to units of passenger cars per hour per lane by varying the PCE factor until the standard deviation of the calculated PCE flow rates was minimized. Using an Excel-based optimization tool, an optimum PCE of 2.7 was calculated, resulting in an
	Corridor Performance Measures 
	Taken at face value, the differences among capacity measurements between lane closure side and upstream segment geometry presented in the previous subsection have little practical significance. However, as alluded to earlier in this chapter and discussed in this subsection, even minor fluctuations in capacity can have a substantial impact on corridor performance. The minimum, maximum, and average travel time through the six-mile simulated work zone corridor is summarized in Table 6-18 and Table 6-19 for eac
	TABLE 6-18: SUMMARY OF CORRIDOR TRAVEL TIME MEASUREMENTS (RIGHT-SIDE LANE CLOSURE) 
	Maximum Corridor Travel Time Statistics1 
	Maximum Corridor Travel Time Statistics1 
	Maximum Corridor Travel Time Statistics1 
	Maximum Corridor Travel Time Statistics1 

	Scenario ID 
	Scenario ID 


	TR
	C-1-R 
	C-1-R 

	C-2-R 
	C-2-R 

	C-3-R 
	C-3-R 

	C-33-R 
	C-33-R 

	C-4-R 
	C-4-R 

	C-5-R 
	C-5-R 

	C-6-R 
	C-6-R 

	C-7-R 
	C-7-R 

	C-8-R 
	C-8-R 

	C-9-R 
	C-9-R 


	Minimum (min) 
	Minimum (min) 
	Minimum (min) 

	5.2 
	5.2 

	5.3 
	5.3 

	6.7 
	6.7 

	13.8 
	13.8 

	5.3 
	5.3 

	5.4 
	5.4 

	13.0 
	13.0 

	5.3 
	5.3 

	5.5 
	5.5 

	37.9 
	37.9 


	Maximum (min) 
	Maximum (min) 
	Maximum (min) 

	5.4 
	5.4 

	5.9 
	5.9 

	7.9 
	7.9 

	17.9 
	17.9 

	5.4 
	5.4 

	9.3 
	9.3 

	22.6 
	22.6 

	11.2 
	11.2 

	35.7 
	35.7 

	39.0 
	39.0 


	Average (min) 
	Average (min) 
	Average (min) 

	5.3 
	5.3 

	5.5 
	5.5 

	7.2 
	7.2 

	16.1 
	16.1 

	5.3 
	5.3 

	7.3 
	7.3 

	17.1 
	17.1 

	6.1 
	6.1 

	20.8 
	20.8 

	38.3 
	38.3 


	Maximum Corridor Travel Time Statistics1 
	Maximum Corridor Travel Time Statistics1 
	Maximum Corridor Travel Time Statistics1 

	Scenario ID 
	Scenario ID 


	TR
	S-1-R 
	S-1-R 

	S-2-R 
	S-2-R 

	S-3-R 
	S-3-R 

	S-33-R 
	S-33-R 

	S-4-R 
	S-4-R 

	S-5-R 
	S-5-R 

	S-6-R 
	S-6-R 

	S-7-R 
	S-7-R 

	S-8-R 
	S-8-R 

	S-9-R 
	S-9-R 


	Minimum (min) 
	Minimum (min) 
	Minimum (min) 

	5.2 
	5.2 

	5.3 
	5.3 

	6.4 
	6.4 

	12.9 
	12.9 

	5.3 
	5.3 

	5.4 
	5.4 

	11.6 
	11.6 

	5.3 
	5.3 

	5.4 
	5.4 

	38.5 
	38.5 


	Maximum (min) 
	Maximum (min) 
	Maximum (min) 

	5.5 
	5.5 

	6.2 
	6.2 

	7.9 
	7.9 

	16.6 
	16.6 

	5.9 
	5.9 

	7.7 
	7.7 

	15.5 
	15.5 

	14.2 
	14.2 

	39.2 
	39.2 

	39.8 
	39.8 


	Average (min) 
	Average (min) 
	Average (min) 

	5.3 
	5.3 

	5.5 
	5.5 

	7.0 
	7.0 

	14.5 
	14.5 

	5.4 
	5.4 

	6.3 
	6.3 

	13.2 
	13.2 

	6.7 
	6.7 

	23.1 
	23.1 

	39.1 
	39.1 



	1Values displayed in the table are all relative to the maximum travel time observed during a given random seed run 
	  
	TABLE 6-19: SUMMARY OF CORRIDOR TRAVEL TIME MEASUREMENTS (LEFT-SIDE LANE CLOSURE) 
	Maximum Corridor Travel Time Statistics1 
	Maximum Corridor Travel Time Statistics1 
	Maximum Corridor Travel Time Statistics1 
	Maximum Corridor Travel Time Statistics1 

	Scenario ID 
	Scenario ID 


	TR
	C-1-L 
	C-1-L 

	C-2-L 
	C-2-L 

	C-3-L 
	C-3-L 

	C-33-L 
	C-33-L 

	C-4-L 
	C-4-L 

	C-5-L 
	C-5-L 

	C-6-L 
	C-6-L 

	C-7-L 
	C-7-L 

	C-8-L 
	C-8-L 

	C-9-L 
	C-9-L 


	Minimum (min) 
	Minimum (min) 
	Minimum (min) 

	5.2 
	5.2 

	5.2 
	5.2 

	6.9 
	6.9 

	15.7 
	15.7 

	5.3 
	5.3 

	5.4 
	5.4 

	10.5 
	10.5 

	5.3 
	5.3 

	5.6 
	5.6 

	29.7 
	29.7 


	Maximum (min) 
	Maximum (min) 
	Maximum (min) 

	5.3 
	5.3 

	5.4 
	5.4 

	8.6 
	8.6 

	18.8 
	18.8 

	5.7 
	5.7 

	8.1 
	8.1 

	12.8 
	12.8 

	5.5 
	5.5 

	19.2 
	19.2 

	36.1 
	36.1 


	Average (min) 
	Average (min) 
	Average (min) 

	5.3 
	5.3 

	5.3 
	5.3 

	7.5 
	7.5 

	17.6 
	17.6 

	5.4 
	5.4 

	6.3 
	6.3 

	11.3 
	11.3 

	5.4 
	5.4 

	10.2 
	10.2 

	34.0 
	34.0 


	Maximum Corridor Travel Time Statistics1 
	Maximum Corridor Travel Time Statistics1 
	Maximum Corridor Travel Time Statistics1 

	Scenario ID 
	Scenario ID 


	TR
	S-1-L 
	S-1-L 

	S-2-L 
	S-2-L 

	S-3-L 
	S-3-L 

	S-33-L 
	S-33-L 

	S-4-L 
	S-4-L 

	S-5-L 
	S-5-L 

	S-6-L 
	S-6-L 

	S-7-L 
	S-7-L 

	S-8-L 
	S-8-L 

	S-9-L 
	S-9-L 


	Minimum (min) 
	Minimum (min) 
	Minimum (min) 

	5.2 
	5.2 

	5.2 
	5.2 

	6.3 
	6.3 

	10.8 
	10.8 

	5.3 
	5.3 

	5.4 
	5.4 

	8.5 
	8.5 

	5.4 
	5.4 

	5.9 
	5.9 

	36.2 
	36.2 


	Maximum (min) 
	Maximum (min) 
	Maximum (min) 

	5.5 
	5.5 

	5.5 
	5.5 

	6.9 
	6.9 

	15.3 
	15.3 

	6.1 
	6.1 

	7.2 
	7.2 

	12.3 
	12.3 

	12.3 
	12.3 

	28.1 
	28.1 

	38.3 
	38.3 


	Average (min) 
	Average (min) 
	Average (min) 

	5.3 
	5.3 

	5.3 
	5.3 

	6.6 
	6.6 

	12.2 
	12.2 

	5.4 
	5.4 

	6.1 
	6.1 

	9.9 
	9.9 

	6.4 
	6.4 

	15.0 
	15.0 

	37.3 
	37.3 



	1Values displayed in the table are all relative to the maximum travel time observed during a given random seed run 
	The results presented in the tables support previous findings in the literature by demonstrating that maximum corridor travel time—and by association, maximum queue length—increases rapidly as the gap between pre- and post-breakdown capacity increases. A 2 12 study by Hu, Schroeder, and Rouphail explored the “two-capacity” phenomenon documented by numerous others (Hu et al., 2012). Through a comprehensive literature search and theoretical experiment conducted using FREEVAL software, the authors compared out
	As noted previously, Vissim input traffic volumes developed for the current experiment were coded to yield demand-to-capacity ratios no greater than 1.1. In this way, the results of the experiment are most useful for understanding traffic operations at three-to-two freeway lane closures where scheduling decisions are most difficult for agencies. That is, when typical freeway demand is well in excess of theoretical capacity (e.g., on a major urban freeway corridor between 7:00AM and 7:00PM), lane closures ar
	impactful. A few key trends highlighted in the tables are discussed in the subsections that follow. 
	Left- vs. Right-Side Lane Closures 
	When input truck percentage and upstream geometry (e.g., curved vs. straight horizontal alignment) are held constant, the results summarized in Table 6-17 and Table 6-18 generally indicate that the simulated work zone corridor exhibits less delay under left-side lane closures than right-side lane closures. At an input truck percentage of 5%, the difference in maximum corridor travel time is less striking, increasing or decreasing by an average of no more than 1.5 minutes per vehicle. However, it is worth no
	However, as the percentage of trucks increases in the traffic stream, this trend is reversed. Given that most heavy trucks utilize the right two lanes on six-lane freeway facilities, it is intuitive that corridor travel time and queue length increase under right-side lane closures relative to left-side lane closures, with the largest differences observed under scenarios with 30% trucks in the traffic stream. As depicted visually in Figure 6-9, maximum corridor travel time increases by upwards of 50% under s
	A more subtle trend in the data also highlights the sensitivity of corridor operations to stochastic variation in the simulation outputs when a greater percentage of trucks are included in the traffic stream. Namely, the range of the maximum corridor travel time in the 10 random seed runs conducted for scenarios S-8-L and S-8-R included measurements as low as 5.4 minutes per vehicle and as high as 39.2 minutes per vehicle. Given that the only differences among these simulation runs are the random seeds (all
	  
	 
	Figure
	FIGURE 6-9: CORRIDOR SPEED HEAT MAP (SCENARIO S-8-R VS. SCENARIO S-8-L) 
	  
	Curved vs. Straight Upstream Geometry 
	With input truck percentage and lane closure side held constant, the results summarized in Table 6-17 and Table 6-18 are mixed relative to the comparisons presented for left- and right-side lane closures previously. Specifically, when fewer trucks are present in the traffic stream, the results generally indicate that the simulated work zone corridor exhibits less delay under straight upstream geometry than curved upstream geometry. At an input truck percentage of 5%, the maximum corridor travel time increas
	Conversely, as the percentage of trucks in the traffic stream increases, corridor performance generally improves under curved upstream geometry relative to that under straight upstream geometry. Under scenario C-8-L, maximum corridor travel time is 4.8 minutes less (-32%) than that under scenario S-8-L. Though an increase in the lane change distance coded in Vissim has typically been associated with an increase in modeled capacity and related measures of corridor performance, this finding may attributable t
	These mixed results highlight caveats in the field data and Vissim models and allude to opportunities for further research. First, no trucks were observed in the leftmost lane in the field data under curved upstream geometry. The number of trucks observed in the leftmost lane on a six-lane, suburban freeway is likely practically insignificant in any context, and the Vissim models run as part of this experiment were coded such that more than 90% of all heavy trucks enter the network in the right two lanes. H
	  
	 
	Figure
	FIGURE 6-10: CORRIDOR SPEED HEAT MAP (SCENARIO C-33-L VS. SCENARIO S-33-L) 
	  
	6.5 Summary  
	As emphasized at the beginning of this chapter, freeway work zones have a profound impact on the safety and mobility of the traveling public. Recent surveys of state departments of transportation have revealed inconsistencies in work zone scheduling and traffic control decisions (Ramadan and Sisiopiku, 2016). Similarly, there exists a need to limit ambiguity and maximize consistency in microsimulation model development and calibration (VDOT, 2020), particularly when analyzing freeway work zones. Recent adva
	This chapter represents a significant contribution to the body of literature and summarizes two primary tasks. First, Task 1 explored the sensitivity of Vissim model outputs to changes in key input parameters. Of the parameters found to have the greatest influence on simulated capacity and most critical to calibrating freeway work zone simulation models, the lane change distance has been least studied. As such, this is believed to be the first study of its kind to leverage lane change distance distributions
	Second, Task 2 applied the calibrated parameter set developed as part of Task 1 to a full factorial experiment examining the impact of various geometric and traffic stream characteristics on traffic measures of effectiveness such as flow rate, speed, travel time, and queue length. The results of this effort suggest that typical measures of pre- and post-breakdown freeway capacity are not sensitive to changes in lane closure side or upstream geometry at three-to-two lane closures but vary substantially based
	The methodologies and findings presented in this chapter fill existing gaps in the body of freeway work zone capacity and simulation literature and allude to significant opportunities for future research. Subsequent studies should focus on reducing ambiguity in Vissim model development and calibration and facilitating understanding 
	of the sensitivity of corridor measures of effectiveness—those of most concern to agencies and road users—to changes in the prevailing characteristics at a given freeway work zone. 
	  
	 CONCLUSIONS AND RECOMMENDATIONS 
	This chapter presents conclusions and recommendations. In this research project, a preliminary version of an AI-based work zone traffic and driver behavior information extraction system using widely available 2D camera images, machine learning, and computer vision has been proposed and developed to extract real-world traffic and driver behavior information, including vehicle count, vehicle classification, vehicle speed, time headway, and lane change location.   
	A case study involving two 30-minute work zone videos collected on an I-95 work zone near Savannah, Georgia, was used to 1) demonstrate the use of the proposed AI-system to extract traffic and driver behavior information, 2) present the benefits of analyzing the extracted information to obtain accurate and refined traffic and driver behavior information (called analyzed information) including traffic counts, traffic speeds, traffic headway, and work zone driver merge behaviors. This research focuses on stud
	1) For the traffic speed study, in low traffic speed conditions (high traffic density), the average traffic speed was 22MPH with a standard deviation of 7 MPH. An average traffic speed of 53 MPH with a standard deviation of 10 MPH in high traffic speed conditions (low traffic density).  
	1) For the traffic speed study, in low traffic speed conditions (high traffic density), the average traffic speed was 22MPH with a standard deviation of 7 MPH. An average traffic speed of 53 MPH with a standard deviation of 10 MPH in high traffic speed conditions (low traffic density).  
	1) For the traffic speed study, in low traffic speed conditions (high traffic density), the average traffic speed was 22MPH with a standard deviation of 7 MPH. An average traffic speed of 53 MPH with a standard deviation of 10 MPH in high traffic speed conditions (low traffic density).  

	2) For aggregation time interval study, in uniform traffic speed conditions (low speed or high-speed traffic), it was found that the variability/standard deviation of aggregated traffic speed distribution does not vary significantly based on different aggregation time intervals. Therefore, using 15-minute time intervals is acceptable to support subsequent traffic simulation. However, to provide the simulation model with more accurate/consistent speed distribution inputs, it is recommended that a small aggre
	2) For aggregation time interval study, in uniform traffic speed conditions (low speed or high-speed traffic), it was found that the variability/standard deviation of aggregated traffic speed distribution does not vary significantly based on different aggregation time intervals. Therefore, using 15-minute time intervals is acceptable to support subsequent traffic simulation. However, to provide the simulation model with more accurate/consistent speed distribution inputs, it is recommended that a small aggre

	3) For driver following behavior study, the measurement of the time-gap between vehicles in the inner traffic lane was found to be shorter in high traffic speed conditions than in low traffic speed conditions, while the time-gap between vehicles in the outer traffic lane did not show a noticeable difference in different traffic speeds. The average time-gap in high traffic speed conditions was 1.5 seconds compared to 1.9 seconds in low traffic speed conditions. The standard deviation of the time-gap was also
	3) For driver following behavior study, the measurement of the time-gap between vehicles in the inner traffic lane was found to be shorter in high traffic speed conditions than in low traffic speed conditions, while the time-gap between vehicles in the outer traffic lane did not show a noticeable difference in different traffic speeds. The average time-gap in high traffic speed conditions was 1.5 seconds compared to 1.9 seconds in low traffic speed conditions. The standard deviation of the time-gap was also

	4) For the work zone driver merge behavior study that analyzed the lane change locations, the following are the preliminary findings:   
	4) For the work zone driver merge behavior study that analyzed the lane change locations, the following are the preliminary findings:   

	a. A majority of cars (53%) merge late (close to the work zone taper) in low traffic speed conditions (high traffic density), compared to only 12% in high traffic speed conditions (low traffic density).  
	a. A majority of cars (53%) merge late (close to the work zone taper) in low traffic speed conditions (high traffic density), compared to only 12% in high traffic speed conditions (low traffic density).  
	a. A majority of cars (53%) merge late (close to the work zone taper) in low traffic speed conditions (high traffic density), compared to only 12% in high traffic speed conditions (low traffic density).  



	b. Among the 53% late merges in high traffic density conditions, 28% of the cars merge dangerously late inside the work zone transition areas. 
	b. Among the 53% late merges in high traffic density conditions, 28% of the cars merge dangerously late inside the work zone transition areas. 
	b. Among the 53% late merges in high traffic density conditions, 28% of the cars merge dangerously late inside the work zone transition areas. 
	b. Among the 53% late merges in high traffic density conditions, 28% of the cars merge dangerously late inside the work zone transition areas. 

	c. A majority of truck drivers typically merge earlier than car drivers (more than 50% of trucks merge 1000 feet in front of the work zone taper).  
	c. A majority of truck drivers typically merge earlier than car drivers (more than 50% of trucks merge 1000 feet in front of the work zone taper).  



	An error analysis was performed to assess the accuracy of the proposed AI-system and identify the factors contributing to the errors. The following is the summary of the error analysis and findings. 
	1) An error analysis methodology is established by comparing the extracted data with manually collected ground reference data (real-world data), and it involved:  
	1) An error analysis methodology is established by comparing the extracted data with manually collected ground reference data (real-world data), and it involved:  
	1) An error analysis methodology is established by comparing the extracted data with manually collected ground reference data (real-world data), and it involved:  

	a. Analyzing the outliers of aggregated speed distribution in different time intervals, and  
	a. Analyzing the outliers of aggregated speed distribution in different time intervals, and  
	a. Analyzing the outliers of aggregated speed distribution in different time intervals, and  

	b. Identifying the factors impacting the accuracy based on three categories of error sources, including a) sensor-related factors, b) traffic and environment-related factors, c) algorithm-related factors. 
	b. Identifying the factors impacting the accuracy based on three categories of error sources, including a) sensor-related factors, b) traffic and environment-related factors, c) algorithm-related factors. 


	2) The findings from the error analysis reveal that, 
	2) The findings from the error analysis reveal that, 

	a. In traffic count error analysis, 
	a. In traffic count error analysis, 
	a. In traffic count error analysis, 

	i. Traffic count results show overcounting of the vehicles under high traffic speed conditions. Errors in the short-term vehicle tracking and re-identification algorithm were identified as possibly contributing to overcounting, which is an algorithm-related error factor. 
	i. Traffic count results show overcounting of the vehicles under high traffic speed conditions. Errors in the short-term vehicle tracking and re-identification algorithm were identified as possibly contributing to overcounting, which is an algorithm-related error factor. 
	i. Traffic count results show overcounting of the vehicles under high traffic speed conditions. Errors in the short-term vehicle tracking and re-identification algorithm were identified as possibly contributing to overcounting, which is an algorithm-related error factor. 

	ii. Traffic count results show undercounting of the vehicles under low traffic speed conditions. The occlusion of vehicles (vehicles in the lane closer to the camera blocking the view of vehicles in the lane further from the camera) was identified as a factor potentially contributing to undercounting the traffic, which is a combined impact of both traffic and environment-related and sensor-related error factors. 
	ii. Traffic count results show undercounting of the vehicles under low traffic speed conditions. The occlusion of vehicles (vehicles in the lane closer to the camera blocking the view of vehicles in the lane further from the camera) was identified as a factor potentially contributing to undercounting the traffic, which is a combined impact of both traffic and environment-related and sensor-related error factors. 


	b. In traffic speed error analysis, 
	b. In traffic speed error analysis, 

	i. The traffic speed was underestimated (by 6 MPH) at higher traffic speeds (greater than 85 km/h). The low video frame rate, an algorithm-related error factor, contributed to the traffic speed underestimation. 
	i. The traffic speed was underestimated (by 6 MPH) at higher traffic speeds (greater than 85 km/h). The low video frame rate, an algorithm-related error factor, contributed to the traffic speed underestimation. 
	i. The traffic speed was underestimated (by 6 MPH) at higher traffic speeds (greater than 85 km/h). The low video frame rate, an algorithm-related error factor, contributed to the traffic speed underestimation. 




	Based on the error analysis findings, it is recommended that the camera be set at a high location (over 50 ft) so that vehicles in all lanes can be captured without occlusion. It is also recommended that a high video frame rate be used, and that the vehicle detection and re-identification algorithm be refined to improve the vehicle count and traffic speed accuracy in the preliminary version of the proposed AI-system.  
	A case study was conducted using the real-world data collected on I-95 and it demonstrated the preliminary version of AI-based work zone traffic and driver information extraction system (using widely available 2D camera images) is promising for the study of real-world work zone traffic and driver data. It can provide valuable input that has previously not existed, and it can greatly help develop accurate and reliable traffic simulation models.  
	A work zone simulation model was developed to perform a study that explored the sensitivity of Vissim model outputs to changes in key input parameters, especially lane change distance leveraging the extracted real-world traffic and driver behavior information instead of using typical ‘‘default’’ value found in the literature. The outcomes of this study highlighted the disparity in model outputs under the field data-based lane change distance distributions extracted from the AI-system and the typical ‘‘defau
	Further, the calibrated parameter set developed using the real-world traffic data was applied to a full factorial experiment examining the impact of various geometric and traffic stream characteristics on traffic measures of effectiveness such as flow rate, speed, travel time, and queue length. The results of this effort suggest that typical measures of pre- and post-breakdown freeway capacity are not sensitive to changes in lane closure side or upstream geometry at three-to-two lane closures but vary subst
	The following are the recommendations for future research to refine the AI-based work zone traffic and driver information extraction system for full-scale implementation:  
	1) A large dataset with diverse conditions (including different traffic saturation levels, lighting, weather conditions, and different roadway geometries, such as curved roadways, camera viewing angles, etc.) and longer duration is recommended to further validate and improve the preliminary version of the AI-based work zone traffic and driver behavior data extraction system. 
	1) A large dataset with diverse conditions (including different traffic saturation levels, lighting, weather conditions, and different roadway geometries, such as curved roadways, camera viewing angles, etc.) and longer duration is recommended to further validate and improve the preliminary version of the AI-based work zone traffic and driver behavior data extraction system. 
	1) A large dataset with diverse conditions (including different traffic saturation levels, lighting, weather conditions, and different roadway geometries, such as curved roadways, camera viewing angles, etc.) and longer duration is recommended to further validate and improve the preliminary version of the AI-based work zone traffic and driver behavior data extraction system. 

	2) Develop a method to further enhance the accuracy of the vehicle count and speed computation method to remove outliers and noises by applying enhanced data analysis (including multi-interval data aggregation and statistical analysis, etc.). 
	2) Develop a method to further enhance the accuracy of the vehicle count and speed computation method to remove outliers and noises by applying enhanced data analysis (including multi-interval data aggregation and statistical analysis, etc.). 

	3) Perform assessment of the camera image quality (including resolution, distance- to-camera position, lighting conditions, blurriness in various conditions (such as in fog, cases of occlusion, etc.) and its impact on vehicle detection and classification. 
	3) Perform assessment of the camera image quality (including resolution, distance- to-camera position, lighting conditions, blurriness in various conditions (such as in fog, cases of occlusion, etc.) and its impact on vehicle detection and classification. 

	4) Implement camera calibration based on real-world vehicle positions along with current vehicle tracking and re-identification methods to enhance the current vehicle count and speed computation.  
	4) Implement camera calibration based on real-world vehicle positions along with current vehicle tracking and re-identification methods to enhance the current vehicle count and speed computation.  


	The following are the recommendations for further enhancing the driver behavior study using the widely available read-world camera images: 
	1) Study real-world work zone traffic and driver merge behaviors in diverse conditions (including different traffic saturation levels, lighting, and weather conditions, and different roadway geometries, such as curved roadways, camera angles, etc.). 
	1) Study real-world work zone traffic and driver merge behaviors in diverse conditions (including different traffic saturation levels, lighting, and weather conditions, and different roadway geometries, such as curved roadways, camera angles, etc.). 
	1) Study real-world work zone traffic and driver merge behaviors in diverse conditions (including different traffic saturation levels, lighting, and weather conditions, and different roadway geometries, such as curved roadways, camera angles, etc.). 

	2) Establish a performance measure to determine the adequate time interval for traffic information and driver behavior analysis. This performance measure could be the variability, like the standard deviation, in a one-time interval. A finer time interval would be needed if the variability is too large so we could produce accurate simulation outcomes. 
	2) Establish a performance measure to determine the adequate time interval for traffic information and driver behavior analysis. This performance measure could be the variability, like the standard deviation, in a one-time interval. A finer time interval would be needed if the variability is too large so we could produce accurate simulation outcomes. 

	3) Develop a quantitative method with a confidence level indicator to differentiate the extracted traffic and driver behavior information with good and bad quality. The transportation agencies' willingness to adopt automatically and semi-automatically extracted vehicle count and speed information using widely available camera images has been significantly hindered by the lack of a viable method to separate the extracted traffic and driver behavior data, such as vehicle counts and speed information, with goo
	3) Develop a quantitative method with a confidence level indicator to differentiate the extracted traffic and driver behavior information with good and bad quality. The transportation agencies' willingness to adopt automatically and semi-automatically extracted vehicle count and speed information using widely available camera images has been significantly hindered by the lack of a viable method to separate the extracted traffic and driver behavior data, such as vehicle counts and speed information, with goo


	 
	The following are the recommendations for further extending the Vissim traffic simulation study performed in Chapter 6:  
	1) Extend the calibrated parameter set developed as part of the simulation study presented in this report to future study of three-to-two lane closures in lieu of typical default values found in the literature and consider the calibrated parameter set developed when modeling other lane closure configurations (e.g., two-to-one) in the absence of site-specific data. 
	1) Extend the calibrated parameter set developed as part of the simulation study presented in this report to future study of three-to-two lane closures in lieu of typical default values found in the literature and consider the calibrated parameter set developed when modeling other lane closure configurations (e.g., two-to-one) in the absence of site-specific data. 
	1) Extend the calibrated parameter set developed as part of the simulation study presented in this report to future study of three-to-two lane closures in lieu of typical default values found in the literature and consider the calibrated parameter set developed when modeling other lane closure configurations (e.g., two-to-one) in the absence of site-specific data. 

	2) Collect more field data related to truck lane changing behavior and perform detailed analysis on truck lane change phenomenon, as Vissim model outputs were found to be highly sensitive to slight changes in related inputs. The field data collected as part of this study indicated that truck lane changing behavior differs before and after the onset of breakdown (i.e., trucks begin to change lanes further upstream of the transition area after queues have formed and propagated upstream).  
	2) Collect more field data related to truck lane changing behavior and perform detailed analysis on truck lane change phenomenon, as Vissim model outputs were found to be highly sensitive to slight changes in related inputs. The field data collected as part of this study indicated that truck lane changing behavior differs before and after the onset of breakdown (i.e., trucks begin to change lanes further upstream of the transition area after queues have formed and propagated upstream).  


	 
	The following are the recommendations for improving the work zone safety and mobility based on the outcomes of the traffic simulation study: 
	1) Schedule lane closures when demand is less than 90% of theoretical capacity, when possible. This is because significant delays and queues are possible at a given freeway lane closure, even when typical freeway demand is near capacity (i.e., d/c ≤ 1.1). 
	1) Schedule lane closures when demand is less than 90% of theoretical capacity, when possible. This is because significant delays and queues are possible at a given freeway lane closure, even when typical freeway demand is near capacity (i.e., d/c ≤ 1.1). 
	1) Schedule lane closures when demand is less than 90% of theoretical capacity, when possible. This is because significant delays and queues are possible at a given freeway lane closure, even when typical freeway demand is near capacity (i.e., d/c ≤ 1.1). 

	2) Do not configure work zone traffic control such that the transition area begins within ½ mile downstream of a horizontal curve. Field data collected as part of this project suggests that drivers will wait longer to change lanes without visual confirmation of the downstream lane closure.  
	2) Do not configure work zone traffic control such that the transition area begins within ½ mile downstream of a horizontal curve. Field data collected as part of this project suggests that drivers will wait longer to change lanes without visual confirmation of the downstream lane closure.  


	 
	 
	  
	REFERENCE LIST 
	1. Acunzo D, Zhu Y, Xie B, Baratoff G. Context-adaptive approach for vehicle detection under varying lighting conditions. In2007 IEEE Intelligent Transportation Systems Conference 2007 Sep 30 (pp. 654-660). IEEE.  
	1. Acunzo D, Zhu Y, Xie B, Baratoff G. Context-adaptive approach for vehicle detection under varying lighting conditions. In2007 IEEE Intelligent Transportation Systems Conference 2007 Sep 30 (pp. 654-660). IEEE.  
	1. Acunzo D, Zhu Y, Xie B, Baratoff G. Context-adaptive approach for vehicle detection under varying lighting conditions. In2007 IEEE Intelligent Transportation Systems Conference 2007 Sep 30 (pp. 654-660). IEEE.  

	2. Alkherret AA, Al-sayed A, Mousa RM. Determining Microscopic Traffic Variables using Video Image Processing. International Journal of Computer Applications. 2014 Jan 1;104(6).  
	2. Alkherret AA, Al-sayed A, Mousa RM. Determining Microscopic Traffic Variables using Video Image Processing. International Journal of Computer Applications. 2014 Jan 1;104(6).  

	3. Arróspide J, Salgado L, Nieto M, Jaureguizar F. On-board robust vehicle detection and tracking using adaptive quality evaluation. In2008 15th IEEE International Conference on Image Processing 2008 Oct 12. IEEE.  
	3. Arróspide J, Salgado L, Nieto M, Jaureguizar F. On-board robust vehicle detection and tracking using adaptive quality evaluation. In2008 15th IEEE International Conference on Image Processing 2008 Oct 12. IEEE.  

	4. Aytekin B, Altuğ  . Increasing driving safety with a multiple vehicle detection and tracking system using ongoing vehicle shadow information. In2010 IEEE International Conference on Systems, Man and Cybernetics 2010 Oct 10 (pp. 3650-3656). IEEE.  
	4. Aytekin B, Altuğ  . Increasing driving safety with a multiple vehicle detection and tracking system using ongoing vehicle shadow information. In2010 IEEE International Conference on Systems, Man and Cybernetics 2010 Oct 10 (pp. 3650-3656). IEEE.  

	5. Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up robust features. InEuropean conference on computer vision 2006 May 7 (pp. 404-417). Springer, Berlin, Heidelberg.  
	5. Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up robust features. InEuropean conference on computer vision 2006 May 7 (pp. 404-417). Springer, Berlin, Heidelberg.  

	6. Bharadwaj N, Kumar P, Arkatkar S, Maurya A, Joshi G. Traffic data analysis using image processing technique on Delhi–Gurgaon expressway. Current Science. 2016 Mar 10:808-22. 
	6. Bharadwaj N, Kumar P, Arkatkar S, Maurya A, Joshi G. Traffic data analysis using image processing technique on Delhi–Gurgaon expressway. Current Science. 2016 Mar 10:808-22. 

	7. Bharadwaj, N., P. Edara, C. Sun, H. Brown, and Y. Chang. Traffic Flow Modeling of Diverse Work Zone Activities. Transportation Research Record, Journal of the Transportation Research Board, Vol. 2672(16), pp. 23-34. (2018). 
	7. Bharadwaj, N., P. Edara, C. Sun, H. Brown, and Y. Chang. Traffic Flow Modeling of Diverse Work Zone Activities. Transportation Research Record, Journal of the Transportation Research Board, Vol. 2672(16), pp. 23-34. (2018). 

	8. Blanc N, Steux B, Hinz T. LaRASideCam: A fast and robust vision-based blindspot detection system. In2007 IEEE intelligent vehicles symposium 2007 Jun 13 (pp. 480-485). IEEE.  
	8. Blanc N, Steux B, Hinz T. LaRASideCam: A fast and robust vision-based blindspot detection system. In2007 IEEE intelligent vehicles symposium 2007 Jun 13 (pp. 480-485). IEEE.  

	9. Boora A, Ghosh I, Chandra S. Identification of free flow condition on two-lane intercity highways under heterogeneous traffic condition. In27th ARRB Conference, Linking people, places and opportunities, Melbourne, Australia 2016 Nov. 
	9. Boora A, Ghosh I, Chandra S. Identification of free flow condition on two-lane intercity highways under heterogeneous traffic condition. In27th ARRB Conference, Linking people, places and opportunities, Melbourne, Australia 2016 Nov. 

	10. Boult TE, Micheals R, Gao X, Lewis P, Power C, Yin W, Erkan A. Frame-rate omnidirectional surveillance and tracking of camouflaged and occluded targets. InProceedings Second IEEE Workshop on Visual Surveillance (VS'99)(Cat. No. 98-89223) 1999 Jun 26 (pp. 48-55). IEEE.  
	10. Boult TE, Micheals R, Gao X, Lewis P, Power C, Yin W, Erkan A. Frame-rate omnidirectional surveillance and tracking of camouflaged and occluded targets. InProceedings Second IEEE Workshop on Visual Surveillance (VS'99)(Cat. No. 98-89223) 1999 Jun 26 (pp. 48-55). IEEE.  

	11. Broggi A, Cappalunga A, Cattani S, Zani P. Lateral vehicles detection using monocular high resolution cameras on TerraMax™. In2    I    Intelligent Vehicles Symposium 2    Jun 4 (pp. 1143-1148). IEEE. 
	11. Broggi A, Cappalunga A, Cattani S, Zani P. Lateral vehicles detection using monocular high resolution cameras on TerraMax™. In2    I    Intelligent Vehicles Symposium 2    Jun 4 (pp. 1143-1148). IEEE. 

	12. Buch N, Velastin SA, Orwell J. A review of computer vision techniques for the analysis of urban traffic. IEEE Transactions on Intelligent Transportation Systems. 2011 Mar 17;12(3):920-39.  
	12. Buch N, Velastin SA, Orwell J. A review of computer vision techniques for the analysis of urban traffic. IEEE Transactions on Intelligent Transportation Systems. 2011 Mar 17;12(3):920-39.  

	13. Burnos P, Gajda J, Piwowar P, Sroka R, Stencel M, Zeglen T. Measurements of road traffic parameters using inductive loops and piezoelectric sensors. 2007. 
	13. Burnos P, Gajda J, Piwowar P, Sroka R, Stencel M, Zeglen T. Measurements of road traffic parameters using inductive loops and piezoelectric sensors. 2007. 

	14. CDOT Traffic Analysis and Forecasting Guidelines: https://www.codot.gov/library/traffic/traffic-manuals-
	14. CDOT Traffic Analysis and Forecasting Guidelines: https://www.codot.gov/library/traffic/traffic-manuals-


	guidelines/traffic_analysis_forecasting_guidelines/cdot_traffic-analysis-and-forecasting-guidelines_v01-072018.pdf 
	guidelines/traffic_analysis_forecasting_guidelines/cdot_traffic-analysis-and-forecasting-guidelines_v01-072018.pdf 
	guidelines/traffic_analysis_forecasting_guidelines/cdot_traffic-analysis-and-forecasting-guidelines_v01-072018.pdf 

	15. Chan YM, Huang SS, Fu LC, Hsiao PY. Vehicle detection under various lighting conditions by incorporating particle filter. In2007 IEEE Intelligent Transportation Systems Conference 2007 Sep 30 (pp. 534-539). IEEE. 
	15. Chan YM, Huang SS, Fu LC, Hsiao PY. Vehicle detection under various lighting conditions by incorporating particle filter. In2007 IEEE Intelligent Transportation Systems Conference 2007 Sep 30 (pp. 534-539). IEEE. 

	16. Chang HY, Fu CM, Huang CL. Real-time vision-based preceding vehicle tracking and recognition. InIEEE Proceedings. Intelligent Vehicles Symposium, 2005. 2005 Jun 6 (pp. 514-519). IEEE.  
	16. Chang HY, Fu CM, Huang CL. Real-time vision-based preceding vehicle tracking and recognition. InIEEE Proceedings. Intelligent Vehicles Symposium, 2005. 2005 Jun 6 (pp. 514-519). IEEE.  

	17. Chang WC, Cho CW. Real-time side vehicle tracking using parts-based boosting. In2008 IEEE International Conference on Systems, Man and Cybernetics 2008 Oct 12 (pp. 3370-3375). IEEE. 
	17. Chang WC, Cho CW. Real-time side vehicle tracking using parts-based boosting. In2008 IEEE International Conference on Systems, Man and Cybernetics 2008 Oct 12 (pp. 3370-3375). IEEE. 

	18. Chang J, Wang L, Meng G, Xiang S, Pan C. Vision-based occlusion handling and vehicle classification for traffic surveillance systems. IEEE Intelligent Transportation Systems Magazine. 2018 Apr 23;10(2):80-92. 
	18. Chang J, Wang L, Meng G, Xiang S, Pan C. Vision-based occlusion handling and vehicle classification for traffic surveillance systems. IEEE Intelligent Transportation Systems Magazine. 2018 Apr 23;10(2):80-92. 

	19. Chatterjee I, Edara P, Menneni S, Sun C. Replication of work zone capacity values in a simulation model. Transportation research record. 2009;2130(1):138-48. 
	19. Chatterjee I, Edara P, Menneni S, Sun C. Replication of work zone capacity values in a simulation model. Transportation research record. 2009;2130(1):138-48. 

	20. Chin SM, Franzese O, Greene DL, Hwang HL, Gibson RC. Temporary losses of highway capacity and impacts on performance. Oak Ridge National Laboratory. 2002 May. 
	20. Chin SM, Franzese O, Greene DL, Hwang HL, Gibson RC. Temporary losses of highway capacity and impacts on performance. Oak Ridge National Laboratory. 2002 May. 

	21. Chung J, Sohn K. Image-based learning to measure traffic density using a deep convolutional neural network. IEEE Transactions on Intelligent Transportation Systems. 2017 Aug 16;19(5):1670-5. 
	21. Chung J, Sohn K. Image-based learning to measure traffic density using a deep convolutional neural network. IEEE Transactions on Intelligent Transportation Systems. 2017 Aug 16;19(5):1670-5. 

	22. Cui J, Liu F, Li Z, Jia Z. Vehicle localisation using a single camera. In2010 IEEE Intelligent Vehicles Symposium 2010 Jun 21 (pp. 871-876). IEEE. 
	22. Cui J, Liu F, Li Z, Jia Z. Vehicle localisation using a single camera. In2010 IEEE Intelligent Vehicles Symposium 2010 Jun 21 (pp. 871-876). IEEE. 

	23. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05) 2005 Jun 20 (Vol. 1, pp. 886-893). IEEE. 
	23. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05) 2005 Jun 20 (Vol. 1, pp. 886-893). IEEE. 

	24. Daniel, Janice, Karen Dixon, and David Jared. "Analysis of fatal crashes in Georgia work zones." Transportation Research Record 1715.1 (2000): 18-23.  
	24. Daniel, Janice, Karen Dixon, and David Jared. "Analysis of fatal crashes in Georgia work zones." Transportation Research Record 1715.1 (2000): 18-23.  

	25. Dey PP, Chandra S, Gangopadhaya S. Speed distribution curves under mixed traffic conditions. Journal of transportation engineering. 2006 Jun;132(6):475-81. 
	25. Dey PP, Chandra S, Gangopadhaya S. Speed distribution curves under mixed traffic conditions. Journal of transportation engineering. 2006 Jun;132(6):475-81. 

	26. Dong J, Houchin AJ, Shafieirad N, Lu C, Hawkins NR, Knickerbocker S. Vissim calibration for urban freeways. 
	26. Dong J, Houchin AJ, Shafieirad N, Lu C, Hawkins NR, Knickerbocker S. Vissim calibration for urban freeways. 

	27. Edara, P. K., & Cottrell, B. H. (2007). Estimation of traffic mobility impacts at work zones: state of the practice. In Proceedings of the Transportation Research Board 2007 Annual Meeting. 
	27. Edara, P. K., & Cottrell, B. H. (2007). Estimation of traffic mobility impacts at work zones: state of the practice. In Proceedings of the Transportation Research Board 2007 Annual Meeting. 


	28. Edara P, Chatterjee I. Multivariate regression for estimating driving behavior parameters in work zone simulation to replicate field capacities. Transportation Letters. 2010 Jul 1;2(3):175-86. 
	28. Edara P, Chatterjee I. Multivariate regression for estimating driving behavior parameters in work zone simulation to replicate field capacities. Transportation Letters. 2010 Jul 1;2(3):175-86. 
	28. Edara P, Chatterjee I. Multivariate regression for estimating driving behavior parameters in work zone simulation to replicate field capacities. Transportation Letters. 2010 Jul 1;2(3):175-86. 

	29. Elefteriadou LA. The highway capacity manual 6th edition: A guide for multimodal mobility analysis. Ite journal. 2016 Apr;86(4). 
	29. Elefteriadou LA. The highway capacity manual 6th edition: A guide for multimodal mobility analysis. Ite journal. 2016 Apr;86(4). 

	30. Fang W, Zhao Y, Yuan Y, Liu K. Real-time multiple vehicles tracking with occlusion handling. In2011 Sixth International Conference on Image and Graphics 2011 Aug 12 (pp. 667-672). IEEE. 
	30. Fang W, Zhao Y, Yuan Y, Liu K. Real-time multiple vehicles tracking with occlusion handling. In2011 Sixth International Conference on Image and Graphics 2011 Aug 12 (pp. 667-672). IEEE. 

	31. Fatality Analysis Reporting System (FARS). 2016 Final and 2017 Annual Report File, National Highway Traffic Safety Administration (NHTSA). FARS data shown here are from the 50 States, District of Columbia, and Puerto Rico.
	31. Fatality Analysis Reporting System (FARS). 2016 Final and 2017 Annual Report File, National Highway Traffic Safety Administration (NHTSA). FARS data shown here are from the 50 States, District of Columbia, and Puerto Rico.
	31. Fatality Analysis Reporting System (FARS). 2016 Final and 2017 Annual Report File, National Highway Traffic Safety Administration (NHTSA). FARS data shown here are from the 50 States, District of Columbia, and Puerto Rico.
	 
	Accessible at: 
	https://www.workzonesafety.org/crash-information/work-zone-fatal-crashes-fatalities/#national
	https://www.workzonesafety.org/crash-information/work-zone-fatal-crashes-fatalities/#national

	 


	32. FHWA. Manual on Uniform Traffic Control Devices. 2012. 
	32. FHWA. Manual on Uniform Traffic Control Devices. 2012. 

	33. FHWA work zone facts and statistics [Internet]. Dot.gov. [cited 2021 Aug 11]. Available from: https://ops.fhwa.dot.gov/wz/resources/facts_stats.htm 
	33. FHWA work zone facts and statistics [Internet]. Dot.gov. [cited 2021 Aug 11]. Available from: https://ops.fhwa.dot.gov/wz/resources/facts_stats.htm 

	34. Fitzsimmons EJ, Souleyrette RR, Nambisan SS. Measuring horizontal curve vehicle trajectories and speed profiles: pneumatic road tube and video methods. Journal of transportation engineering. 2013 Mar 1;139(3):255-65. 
	34. Fitzsimmons EJ, Souleyrette RR, Nambisan SS. Measuring horizontal curve vehicle trajectories and speed profiles: pneumatic road tube and video methods. Journal of transportation engineering. 2013 Mar 1;139(3):255-65. 

	35. Florida Department of Transportatio, Traffic Analysis Handbook: A Reference 118 for Planning and Operations. Tallahassee, FL. 2014. 
	35. Florida Department of Transportatio, Traffic Analysis Handbook: A Reference 118 for Planning and Operations. Tallahassee, FL. 2014. 

	36. Freund Y, Schapire R, Abe N. A short introduction to boosting. Journal-Japanese Society For Artificial Intelligence. 1999 Sep 1;14(771-780):1612. 
	36. Freund Y, Schapire R, Abe N. A short introduction to boosting. Journal-Japanese Society For Artificial Intelligence. 1999 Sep 1;14(771-780):1612. 

	37. Gao X, Boult TE, Coetzee F, Ramesh V. Error analysis of background adaption. InProceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662) 2000 Jun 15 (Vol. 1, pp. 503-510). IEEE. 
	37. Gao X, Boult TE, Coetzee F, Ramesh V. Error analysis of background adaption. InProceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662) 2000 Jun 15 (Vol. 1, pp. 503-510). IEEE. 

	38. GDOT Traffic Analysis & Data Application webpage: https://gdottrafficdata.drakewell.com/publicmultinodemap.asp. 2021. 
	38. GDOT Traffic Analysis & Data Application webpage: https://gdottrafficdata.drakewell.com/publicmultinodemap.asp. 2021. 

	39. Ghasemzadeh, A., & Ahmed, M. M. (2019). Exploring factors contributing to injury severity at work zones considering adverse weather conditions. IATSS research, 43(3), 131-138. 
	39. Ghasemzadeh, A., & Ahmed, M. M. (2019). Exploring factors contributing to injury severity at work zones considering adverse weather conditions. IATSS research, 43(3), 131-138. 

	40. Sil G, Maji A. Video based data collection process for geometric design consistency evaluation of four-lane median divided horizontal curves. Transportation Research Procedia. 2017 Jan 1;27:672-9. 
	40. Sil G, Maji A. Video based data collection process for geometric design consistency evaluation of four-lane median divided horizontal curves. Transportation Research Procedia. 2017 Jan 1;27:672-9. 

	41. Hall DL, McMullen SA. Mathematical techniques in multisensor data fusion. Artech House; 2004. 
	41. Hall DL, McMullen SA. Mathematical techniques in multisensor data fusion. Artech House; 2004. 

	42. Hang, J., Yan, X., Ma, L., Duan, K., & Zhang, Y. (2018). Exploring the effects of the location of the lane-end sign and traffic volume on multistage lane-changing behaviors in work zone 
	42. Hang, J., Yan, X., Ma, L., Duan, K., & Zhang, Y. (2018). Exploring the effects of the location of the lane-end sign and traffic volume on multistage lane-changing behaviors in work zone 


	areas: A driving simulator-based study. Transportation research part F: traffic psychology and behaviour, 58, 980-993. 
	areas: A driving simulator-based study. Transportation research part F: traffic psychology and behaviour, 58, 980-993. 
	areas: A driving simulator-based study. Transportation research part F: traffic psychology and behaviour, 58, 980-993. 

	43. Haselhoff A, Schauland S, Kummert A. A signal theoretic approach to measure the influence of image resolution for appearance-based vehicle detection. In2008 IEEE Intelligent Vehicles Symposium 2008 Jun 4 (pp. 822-827). IEEE. 
	43. Haselhoff A, Schauland S, Kummert A. A signal theoretic approach to measure the influence of image resolution for appearance-based vehicle detection. In2008 IEEE Intelligent Vehicles Symposium 2008 Jun 4 (pp. 822-827). IEEE. 

	44. Haselhoff A, Kummert A. A vehicle detection system based on haar and triangle features. In2009 IEEE Intelligent Vehicles Symposium 2009 Jun 3 (pp. 261-266). IEEE. 
	44. Haselhoff A, Kummert A. A vehicle detection system based on haar and triangle features. In2009 IEEE Intelligent Vehicles Symposium 2009 Jun 3 (pp. 261-266). IEEE. 

	45. Hadi RA, Sulong G, George LE. Vehicle detection and tracking techniques: a concise review. arXiv preprint arXiv:1410.5894. 2014 Oct 22. 
	45. Hadi RA, Sulong G, George LE. Vehicle detection and tracking techniques: a concise review. arXiv preprint arXiv:1410.5894. 2014 Oct 22. 

	46. Haselhoff A, Kummert A. An evolutionary optimized vehicle tracker in collaboration with a detection system. In2009 12th International IEEE Conference on Intelligent Transportation Systems 2009 Oct 4 (pp. 1-6). IEEE. 
	46. Haselhoff A, Kummert A. An evolutionary optimized vehicle tracker in collaboration with a detection system. In2009 12th International IEEE Conference on Intelligent Transportation Systems 2009 Oct 4 (pp. 1-6). IEEE. 

	47. Haritaoglu I, Harwood D, Davis LS. W/sup 4: real-time surveillance of people and their activities. IEEE Transactions on pattern analysis and machine intelligence. 2000 Aug;22(8):809-30. 
	47. Haritaoglu I, Harwood D, Davis LS. W/sup 4: real-time surveillance of people and their activities. IEEE Transactions on pattern analysis and machine intelligence. 2000 Aug;22(8):809-30. 

	48. He, Y., Shu, Z., Ge, Y., & Daniel, J. (2 1 ). Drivers’ Lane Change Maneuver and Speed Behavior in Freeway Work Zones. In Proceedings of SAE-China Congress 2015: Selected Papers (pp. 229-241). Springer, Singapore. 
	48. He, Y., Shu, Z., Ge, Y., & Daniel, J. (2 1 ). Drivers’ Lane Change Maneuver and Speed Behavior in Freeway Work Zones. In Proceedings of SAE-China Congress 2015: Selected Papers (pp. 229-241). Springer, Singapore. 

	49. Heaslip K, Kondyli A, Arguea D, Elefteriadou L, Sullivan F. Estimation of freeway work zone capacity through simulation and field data. Transp Res Rec. 2009;2130(1):16–24. 
	49. Heaslip K, Kondyli A, Arguea D, Elefteriadou L, Sullivan F. Estimation of freeway work zone capacity through simulation and field data. Transp Res Rec. 2009;2130(1):16–24. 

	50. Hilario CH, Collado JM, Armingol JM, De La Escalera A. Pyramidal image analysis for vehicle detection. InIEEE Proceedings. Intelligent Vehicles Symposium, 2005. 2005 Jun 6 (pp. 88-93). IEEE. 
	50. Hilario CH, Collado JM, Armingol JM, De La Escalera A. Pyramidal image analysis for vehicle detection. InIEEE Proceedings. Intelligent Vehicles Symposium, 2005. 2005 Jun 6 (pp. 88-93). IEEE. 

	51. Ho TJ, Chung MJ. An approach to traffic flow detection improvements of non-contact microwave radar detectors. In2016 International Conference on Applied System Innovation (ICASI) 2016 May 26 (pp. 1-4). IEEE. 
	51. Ho TJ, Chung MJ. An approach to traffic flow detection improvements of non-contact microwave radar detectors. In2016 International Conference on Applied System Innovation (ICASI) 2016 May 26 (pp. 1-4). IEEE. 

	52. Hoffmann C. Fusing multiple 2D visual features for vehicle detection. In2006 IEEE Intelligent Vehicles Symposium 2006 Jun 13 (pp. 406-411). IEEE. 
	52. Hoffmann C. Fusing multiple 2D visual features for vehicle detection. In2006 IEEE Intelligent Vehicles Symposium 2006 Jun 13 (pp. 406-411). IEEE. 

	53. Hu X, Xu X, Xiao Y, Chen H, He S, Qin J, Heng PA. SINet: A scale-insensitive convolutional neural network for fast vehicle detection. IEEE transactions on intelligent transportation systems. 2018 Oct 1;20(3):1010-9. 
	53. Hu X, Xu X, Xiao Y, Chen H, He S, Qin J, Heng PA. SINet: A scale-insensitive convolutional neural network for fast vehicle detection. IEEE transactions on intelligent transportation systems. 2018 Oct 1;20(3):1010-9. 

	54. Hu J, Schroeder BJ, Rouphail NM. Rationale for incorporating queue discharge flow into Highway Capacity Manual procedure for analysis of freeway facilities. Transportation research record. 2012 Jan;2286(1):76-83. 
	54. Hu J, Schroeder BJ, Rouphail NM. Rationale for incorporating queue discharge flow into Highway Capacity Manual procedure for analysis of freeway facilities. Transportation research record. 2012 Jan;2286(1):76-83. 

	55. Idler C, Schweiger R, Paulus D, Mdhlisch M, Ritter W. Realtime vision based multi-target-tracking with particle filters in automotive applications. In2006 IEEE Intelligent Vehicles Symposium 2006 Jun 13 (pp. 188-193). IEEE. 
	55. Idler C, Schweiger R, Paulus D, Mdhlisch M, Ritter W. Realtime vision based multi-target-tracking with particle filters in automotive applications. In2006 IEEE Intelligent Vehicles Symposium 2006 Jun 13 (pp. 188-193). IEEE. 


	56. Iowa DOT Microsimulation Guidance: https://iowadot.gov/ijr/docs/MicrosimulationGuidance.pdf 
	56. Iowa DOT Microsimulation Guidance: https://iowadot.gov/ijr/docs/MicrosimulationGuidance.pdf 
	56. Iowa DOT Microsimulation Guidance: https://iowadot.gov/ijr/docs/MicrosimulationGuidance.pdf 

	57. Ito, T., & Kaneyasu, R. (2017). Predicting traffic congestion using driver behavior. Procedia computer science, 112, 1288-1297. 
	57. Ito, T., & Kaneyasu, R. (2017). Predicting traffic congestion using driver behavior. Procedia computer science, 112, 1288-1297. 

	58. Jacob A, Anjaneyulu MV. Operating speed of different classes of vehicles at horizontal curves on two-lane rural highways. Journal of Transportation Engineering. 2013 Mar 1;139(3):287-94. 
	58. Jacob A, Anjaneyulu MV. Operating speed of different classes of vehicles at horizontal curves on two-lane rural highways. Journal of Transportation Engineering. 2013 Mar 1;139(3):287-94. 

	59. Jehn NL, Turochy RE. Calibration of Vissim Models for Rural Freeway Lane Closures: Novel Approach to the Modification of Key Parameters. Transportation Research Record. 2019 May;2673(5):574-83. 
	59. Jehn NL, Turochy RE. Calibration of Vissim Models for Rural Freeway Lane Closures: Novel Approach to the Modification of Key Parameters. Transportation Research Record. 2019 May;2673(5):574-83. 

	60. Jehn NL, Turochy RE. Development of breakdown probability models and heavy vehicle passenger car equivalents for rural freeway work zones. Transp Res Rec. 2020;2674(12):144–54. 
	60. Jehn NL, Turochy RE. Development of breakdown probability models and heavy vehicle passenger car equivalents for rural freeway work zones. Transp Res Rec. 2020;2674(12):144–54. 

	61. Jehn NL, Turochy RE. Calibration of Vissim models for rural freeway Lane closures: Novel approach to the modification of key parameters. Transp Res Rec. 2019;2673(5):574–83. 
	61. Jehn NL, Turochy RE. Calibration of Vissim models for rural freeway Lane closures: Novel approach to the modification of key parameters. Transp Res Rec. 2019;2673(5):574–83. 

	62. Kallenbach I, Schweiger R, Palm G, Lohlein O. Multi-class object detection in vision systems using a hierarchy of cascaded classifiers. In2006 IEEE Intelligent Vehicles Symposium 2006 Jun 13 (pp. 383-387). IEEE. 
	62. Kallenbach I, Schweiger R, Palm G, Lohlein O. Multi-class object detection in vision systems using a hierarchy of cascaded classifiers. In2006 IEEE Intelligent Vehicles Symposium 2006 Jun 13 (pp. 383-387). IEEE. 

	63. Kämpchen N. Feature-level fusion of laser scanner and video data for advanced driver assistance systems (Doctoral dissertation, Universität Ulm). 
	63. Kämpchen N. Feature-level fusion of laser scanner and video data for advanced driver assistance systems (Doctoral dissertation, Universität Ulm). 

	64. Kan XD, Ramezani H, Benekohal RF. Calibration of VISSIM for freeway work zones with time-varying capacity. 2014. 
	64. Kan XD, Ramezani H, Benekohal RF. Calibration of VISSIM for freeway work zones with time-varying capacity. 2014. 

	65. Ke R, Li Z, Kim S, Ash J, Cui Z, Wang Y. Real-time bidirectional traffic flow parameter estimation from aerial videos. IEEE Transactions on Intelligent Transportation Systems. 2016 Aug 17;18(4):890-901. 
	65. Ke R, Li Z, Kim S, Ash J, Cui Z, Wang Y. Real-time bidirectional traffic flow parameter estimation from aerial videos. IEEE Transactions on Intelligent Transportation Systems. 2016 Aug 17;18(4):890-901. 

	66. Khammari A, Nashashibi F, Abramson Y, Laurgeau C. Vehicle detection combining gradient analysis and AdaBoost classification. InProceedings. 2005 IEEE Intelligent Transportation Systems, 2005. 2005 Sep 16 (pp. 66-71). IEEE. 
	66. Khammari A, Nashashibi F, Abramson Y, Laurgeau C. Vehicle detection combining gradient analysis and AdaBoost classification. InProceedings. 2005 IEEE Intelligent Transportation Systems, 2005. 2005 Sep 16 (pp. 66-71). IEEE. 

	67. Khammari A, Nashashibi F, Abramson Y, Laurgeau C. Vehicle detection combining gradient analysis and AdaBoost classification. InProceedings. 2005 IEEE Intelligent Transportation Systems, 2005. 2005 Sep 16 (pp. 66-71). IEEE. 
	67. Khammari A, Nashashibi F, Abramson Y, Laurgeau C. Vehicle detection combining gradient analysis and AdaBoost classification. InProceedings. 2005 IEEE Intelligent Transportation Systems, 2005. 2005 Sep 16 (pp. 66-71). IEEE. 

	68. Kockelman, K. M., & Ma, J. (2007). Freeway speeds and speed variations preceding crashes, within and across lanes. In Journal of the Transportation Research Forum (Vol. 46, No. 1424-2016-117787, pp. 43-61). 
	68. Kockelman, K. M., & Ma, J. (2007). Freeway speeds and speed variations preceding crashes, within and across lanes. In Journal of the Transportation Research Forum (Vol. 46, No. 1424-2016-117787, pp. 43-61). 

	69. Kondyli A, Elefteriadou L, Brilon W, Hall FL, Persaud B, Washburn S. Development and evaluation of methods for constructing breakdown probability models. Journal of Transportation Engineering. 2013 Sep 1;139(9):931-40. 
	69. Kondyli A, Elefteriadou L, Brilon W, Hall FL, Persaud B, Washburn S. Development and evaluation of methods for constructing breakdown probability models. Journal of Transportation Engineering. 2013 Sep 1;139(9):931-40. 


	70. Lam WW, Pang CC, Yung NH. Highly accurate texture-based vehicle segmentation method. OPTICAL ENGINEERING-BELLINGHAM-INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING-. 2004 Mar 1;43(3):591-603. 
	70. Lam WW, Pang CC, Yung NH. Highly accurate texture-based vehicle segmentation method. OPTICAL ENGINEERING-BELLINGHAM-INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING-. 2004 Mar 1;43(3):591-603. 
	70. Lam WW, Pang CC, Yung NH. Highly accurate texture-based vehicle segmentation method. OPTICAL ENGINEERING-BELLINGHAM-INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING-. 2004 Mar 1;43(3):591-603. 

	71. Li, Y., & Bai, Y. (2009). Highway work zone risk factors and their impact on crash severity. Journal of Transportation engineering, 135(10), 694-701. 
	71. Li, Y., & Bai, Y. (2009). Highway work zone risk factors and their impact on crash severity. Journal of Transportation engineering, 135(10), 694-701. 

	72. Li S, Yu H, Zhang J, Yang K, Bin R. Video-based traffic data collection system for multiple vehicle types. IET Intelligent Transport Systems. 2013 Aug 16;8(2):164-74. 
	72. Li S, Yu H, Zhang J, Yang K, Bin R. Video-based traffic data collection system for multiple vehicle types. IET Intelligent Transport Systems. 2013 Aug 16;8(2):164-74. 

	73. Li C, Dobler G, Feng X, Wang Y. TrackNet: Simultaneous Object Detection and Tracking and Its Application in Traffic Video Analysis. arXiv preprint arXiv:1902.01466. 2019 Feb 4. 
	73. Li C, Dobler G, Feng X, Wang Y. TrackNet: Simultaneous Object Detection and Tracking and Its Application in Traffic Video Analysis. arXiv preprint arXiv:1902.01466. 2019 Feb 4. 

	74. Lin BF, Chan YM, Fu LC, Hsiao PY, Chuang LA, Huang SS, Lo MF. Integrating appearance and edge features for sedan vehicle detection in the blind-spot area. IEEE Transactions on Intelligent Transportation Systems. 2012 Feb 3;13(2):737-47. 
	74. Lin BF, Chan YM, Fu LC, Hsiao PY, Chuang LA, Huang SS, Lo MF. Integrating appearance and edge features for sedan vehicle detection in the blind-spot area. IEEE Transactions on Intelligent Transportation Systems. 2012 Feb 3;13(2):737-47. 

	75. Liu T, Zheng N, Zhao L, Cheng H. Learning based symmetric features selection for vehicle detection. InIEEE Proceedings. Intelligent Vehicles Symposium, 2005. 2005 Jun 6 (pp. 124-129). IEEE. 
	75. Liu T, Zheng N, Zhao L, Cheng H. Learning based symmetric features selection for vehicle detection. InIEEE Proceedings. Intelligent Vehicles Symposium, 2005. 2005 Jun 6 (pp. 124-129). IEEE. 

	76. Liu W, Wen X, Duan B, Yuan H, Wang N. Rear vehicle detection and tracking for lane change assist. In2007 IEEE intelligent vehicles symposium 2007 Jun 13 (pp. 252-257). IEEE. 
	76. Liu W, Wen X, Duan B, Yuan H, Wang N. Rear vehicle detection and tracking for lane change assist. In2007 IEEE intelligent vehicles symposium 2007 Jun 13 (pp. 252-257). IEEE. 

	77. Liu C, Huynh DQ, Sun Y, Reynolds M, Atkinson S. A Vision-Based Pipeline for Vehicle Counting, Speed Estimation, and Classification. IEEE Transactions on Intelligent Transportation Systems. 2020 Jul 1. 
	77. Liu C, Huynh DQ, Sun Y, Reynolds M, Atkinson S. A Vision-Based Pipeline for Vehicle Counting, Speed Estimation, and Classification. IEEE Transactions on Intelligent Transportation Systems. 2020 Jul 1. 

	78. Lowe DG. Object recognition from local scale-invariant features. InProceedings of the seventh IEEE international conference on computer vision 1999 Sep 20 (Vol. 2, pp. 1150-1157). Ieee. 
	78. Lowe DG. Object recognition from local scale-invariant features. InProceedings of the seventh IEEE international conference on computer vision 1999 Sep 20 (Vol. 2, pp. 1150-1157). Ieee. 

	79. Lownes N, Machemehl R. Sensitivity of simulated capacity to modification of VISSIM driver behavior parameters. Transp Res Rec. 2006;1988:102–10. 
	79. Lownes N, Machemehl R. Sensitivity of simulated capacity to modification of VISSIM driver behavior parameters. Transp Res Rec. 2006;1988:102–10. 

	80. Luo, Y., Jia, B., Liu, J., Lam, W. H., Li, X., & Gao, Z. (2015). Modeling the interactions between car and bicycle in heterogeneous traffic. Journal of advanced transportation, 49(1), 29-47. 
	80. Luo, Y., Jia, B., Liu, J., Lam, W. H., Li, X., & Gao, Z. (2015). Modeling the interactions between car and bicycle in heterogeneous traffic. Journal of advanced transportation, 49(1), 29-47. 

	81. Maryland DOT Vissim Modeling Guidance: https://www.roads.maryland.gov/OPPEN/MDOT%20SHA%20TFAD%20VISSIM%20Modeling%20Guidance%2011-21-2016.pdf 
	81. Maryland DOT Vissim Modeling Guidance: https://www.roads.maryland.gov/OPPEN/MDOT%20SHA%20TFAD%20VISSIM%20Modeling%20Guidance%2011-21-2016.pdf 

	82. Machida T, Naito T. GPU & CPU cooperative accelerated pedestrian and vehicle detection. In2011 IEEE international conference on computer vision workshops (ICCV workshops) 2011 Nov 6 (pp. 506-513). IEEE. 
	82. Machida T, Naito T. GPU & CPU cooperative accelerated pedestrian and vehicle detection. In2011 IEEE international conference on computer vision workshops (ICCV workshops) 2011 Nov 6 (pp. 506-513). IEEE. 

	83. Mashhadi, A., M. Farhadmanesh, A. Rashidi, and N. Markovic. Review of Methods for Estimating Construction Work Zone Capacity. Transportation Research Record, Journal of the Transportation Research Board, Vol. 2675(??) (2021). 
	83. Mashhadi, A., M. Farhadmanesh, A. Rashidi, and N. Markovic. Review of Methods for Estimating Construction Work Zone Capacity. Transportation Research Record, Journal of the Transportation Research Board, Vol. 2675(??) (2021). 


	84. Mekker, M., Y. Lin, M. Elbahnasaway, T. Shamseldin, H. Li, A. Habib, and D. Bullock. Application of LiDAR and Connected Vehicle Data to Evaluate the Impact of Work Zone Geometry on Freeway Traffic Operations. Transportation Research Record, Journal of the Transportation Research Board, Vol. 2672(16), pp. 1-13. (2018). 
	84. Mekker, M., Y. Lin, M. Elbahnasaway, T. Shamseldin, H. Li, A. Habib, and D. Bullock. Application of LiDAR and Connected Vehicle Data to Evaluate the Impact of Work Zone Geometry on Freeway Traffic Operations. Transportation Research Record, Journal of the Transportation Research Board, Vol. 2672(16), pp. 1-13. (2018). 
	84. Mekker, M., Y. Lin, M. Elbahnasaway, T. Shamseldin, H. Li, A. Habib, and D. Bullock. Application of LiDAR and Connected Vehicle Data to Evaluate the Impact of Work Zone Geometry on Freeway Traffic Operations. Transportation Research Record, Journal of the Transportation Research Board, Vol. 2672(16), pp. 1-13. (2018). 

	85. National Highway Traffic Safety Administ. Fatality Analysis Reporting System (Fars): Analytical Users Manual, 1975-2010. North Charleston, SC: Createspace Independent Publishing Platform; 2013. 
	85. National Highway Traffic Safety Administ. Fatality Analysis Reporting System (Fars): Analytical Users Manual, 1975-2010. North Charleston, SC: Createspace Independent Publishing Platform; 2013. 

	86. Negri P, Clady X, Hanif SM, Prevost L. A cascade of boosted generative and discriminative classifiers for vehicle detection. EURASIP Journal on Advances in Signal Processing. 2008 Dec;2008:1-2. 
	86. Negri P, Clady X, Hanif SM, Prevost L. A cascade of boosted generative and discriminative classifiers for vehicle detection. EURASIP Journal on Advances in Signal Processing. 2008 Dec;2008:1-2. 

	87. Niknejad HT, Mita S, McAllester D, Naito T. Vision-based vehicle detection for nighttime with discriminately trained mixture of weighted deformable part models. In2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC) 2011 Oct 5 (pp. 1560-1565). IEEE. 
	87. Niknejad HT, Mita S, McAllester D, Naito T. Vision-based vehicle detection for nighttime with discriminately trained mixture of weighted deformable part models. In2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC) 2011 Oct 5 (pp. 1560-1565). IEEE. 

	88. Niknejad HT, Takeuchi A, Mita S, McAllester D. On-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimation. IEEE Transactions on Intelligent Transportation Systems. 2012 Mar 22;13(2):748-58.  
	88. Niknejad HT, Takeuchi A, Mita S, McAllester D. On-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimation. IEEE Transactions on Intelligent Transportation Systems. 2012 Mar 22;13(2):748-58.  

	89. Nuevo J, Parra I, Sjöberg J, Bergasa LM. Estimating surrounding vehicles' pose using computer vision. In13th International IEEE Conference on Intelligent Transportation Systems 2010 Sep 19 (pp. 1863-1868). IEEE. 
	89. Nuevo J, Parra I, Sjöberg J, Bergasa LM. Estimating surrounding vehicles' pose using computer vision. In13th International IEEE Conference on Intelligent Transportation Systems 2010 Sep 19 (pp. 1863-1868). IEEE. 

	90. Pang CC, Lam WW, Yung NH. A novel method for resolving vehicle occlusion in a monocular traffic-image sequence. IEEE Transactions on Intelligent Transportation Systems. 2004 Sep 3;5(3):129-41. 
	90. Pang CC, Lam WW, Yung NH. A novel method for resolving vehicle occlusion in a monocular traffic-image sequence. IEEE Transactions on Intelligent Transportation Systems. 2004 Sep 3;5(3):129-41. 

	91. Pang CC, Lam WW, Yung NH. A method for vehicle count in the presence of multiple-vehicle occlusions in traffic images. IEEE Transactions on Intelligent Transportation Systems. 2007 Sep 4;8(3):441-59. 
	91. Pang CC, Lam WW, Yung NH. A method for vehicle count in the presence of multiple-vehicle occlusions in traffic images. IEEE Transactions on Intelligent Transportation Systems. 2007 Sep 4;8(3):441-59. 

	92. Ponsa D, López A, Lumbreras F, Serrat J, Graf T. 3D vehicle sensor based on monocular vision. InProceedings. 2005 IEEE Intelligent Transportation Systems, 2005. 2005 Sep 16 (pp. 1096-1101). IEEE. 
	92. Ponsa D, López A, Lumbreras F, Serrat J, Graf T. 3D vehicle sensor based on monocular vision. InProceedings. 2005 IEEE Intelligent Transportation Systems, 2005. 2005 Sep 16 (pp. 1096-1101). IEEE. 

	93. Ponsa D, López A, Serrat J, Lumbreras F, Graf T. Multiple vehicle 3D tracking using an unscented Kalman. InProceedings. 2005 IEEE Intelligent Transportation Systems, 2005. 2005 Sep 16 (pp. 1108-1113). IEEE. 
	93. Ponsa D, López A, Serrat J, Lumbreras F, Graf T. Multiple vehicle 3D tracking using an unscented Kalman. InProceedings. 2005 IEEE Intelligent Transportation Systems, 2005. 2005 Sep 16 (pp. 1108-1113). IEEE. 

	94. PTV Vissim 2 21 User Manual: “PTV Vissim 2 21 User Manual.” (2 2 ). PTV Group,  arlsruhe, Germany. 
	94. PTV Vissim 2 21 User Manual: “PTV Vissim 2 21 User Manual.” (2 2 ). PTV Group,  arlsruhe, Germany. 

	95. Rad R, Jamzad M. Real time classification and tracking of multiple vehicles in highways. Pattern Recognition Letters. 2005 Jul 15;26(10):1597-607. 
	95. Rad R, Jamzad M. Real time classification and tracking of multiple vehicles in highways. Pattern Recognition Letters. 2005 Jul 15;26(10):1597-607. 


	96. Ramachandran RP, Arr G, Sun C, Ritchie SG. A pattern recognition and feature fusion formulation for vehicle reidentification in intelligent transportation systems. In2002 IEEE International Conference on Acoustics, Speech, and Signal Processing 2002 May 13 (Vol. 4, pp. IV-3840). IEEE. 
	96. Ramachandran RP, Arr G, Sun C, Ritchie SG. A pattern recognition and feature fusion formulation for vehicle reidentification in intelligent transportation systems. In2002 IEEE International Conference on Acoustics, Speech, and Signal Processing 2002 May 13 (Vol. 4, pp. IV-3840). IEEE. 
	96. Ramachandran RP, Arr G, Sun C, Ritchie SG. A pattern recognition and feature fusion formulation for vehicle reidentification in intelligent transportation systems. In2002 IEEE International Conference on Acoustics, Speech, and Signal Processing 2002 May 13 (Vol. 4, pp. IV-3840). IEEE. 

	97. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. InProceedings of the IEEE conference on computer vision and pattern recognition 2017 (pp. 7263-7271). 
	97. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. InProceedings of the IEEE conference on computer vision and pattern recognition 2017 (pp. 7263-7271). 

	98. Robert K. Video-based traffic monitoring at day and night vehicle features detection tracking. In2009 12th International IEEE Conference on Intelligent Transportation Systems 2009 Oct 4 (pp. 1-6). IEEE. 
	98. Robert K. Video-based traffic monitoring at day and night vehicle features detection tracking. In2009 12th International IEEE Conference on Intelligent Transportation Systems 2009 Oct 4 (pp. 1-6). IEEE. 

	99. Sarasua, W. A., Davis, W. J., Clarke, D. B., Kottapally, J., & Mulukutla, P. (2004). Evaluation of interstate highway capacity for short-term work zone lane closures. Transportation Research Record, 1877(1), 85-94. 
	99. Sarasua, W. A., Davis, W. J., Clarke, D. B., Kottapally, J., & Mulukutla, P. (2004). Evaluation of interstate highway capacity for short-term work zone lane closures. Transportation Research Record, 1877(1), 85-94. 

	100. Sarasua W, Davis W, Chowdhury M, Ogle J. Estimating interstate highway capacity for short-term work zone Lane closures: Development of methodology. Transp Res Rec. 2006;1948:45–57. 
	100. Sarasua W, Davis W, Chowdhury M, Ogle J. Estimating interstate highway capacity for short-term work zone Lane closures: Development of methodology. Transp Res Rec. 2006;1948:45–57. 

	101. Sil G, Maji A. Video based data collection process for geometric design consistency evaluation of four-lane median divided horizontal curves. Transportation Research Procedia. 2017 Jan 1;27:672-9. 
	101. Sil G, Maji A. Video based data collection process for geometric design consistency evaluation of four-lane median divided horizontal curves. Transportation Research Procedia. 2017 Jan 1;27:672-9. 

	102. Sivaraman S, Trivedi MM. A general active-learning framework for on-road vehicle recognition and tracking. IEEE Transactions on Intelligent Transportation Systems. 2010 Feb 17;11(2):267-76. 
	102. Sivaraman S, Trivedi MM. A general active-learning framework for on-road vehicle recognition and tracking. IEEE Transactions on Intelligent Transportation Systems. 2010 Feb 17;11(2):267-76. 

	103. Sivaraman S, Trivedi MM. Active learning for on-road vehicle detection: A comparative study. Machine vision and applications. 2014 Apr 1;25(3):599-611. 
	103. Sivaraman S, Trivedi MM. Active learning for on-road vehicle detection: A comparative study. Machine vision and applications. 2014 Apr 1;25(3):599-611. 

	104. Sivaraman S, Trivedi MM. Real-time vehicle detection using parts at intersections. In2012 15th international ieee conference on intelligent transportation systems 2012 Sep 16 (pp. 1519-1524). IEEE. 
	104. Sivaraman S, Trivedi MM. Real-time vehicle detection using parts at intersections. In2012 15th international ieee conference on intelligent transportation systems 2012 Sep 16 (pp. 1519-1524). IEEE. 

	105. Sivaraman S, Trivedi MM. Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE transactions on intelligent transportation systems. 2013 Jul 18;14(4):1773-95. 
	105. Sivaraman S, Trivedi MM. Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE transactions on intelligent transportation systems. 2013 Jul 18;14(4):1773-95. 

	106. Sivaraman S, Trivedi MM. Vehicle detection by independent parts for urban driver assistance. IEEE Transactions on Intelligent Transportation Systems. 2013 Jun 14;14(4):1597-608. 
	106. Sivaraman S, Trivedi MM. Vehicle detection by independent parts for urban driver assistance. IEEE Transactions on Intelligent Transportation Systems. 2013 Jun 14;14(4):1597-608. 

	107. Son TT, Mita S. Car detection using multi-feature selection for varying poses. In2009 IEEE Intelligent Vehicles Symposium 2009 Jun 3 (pp. 507-512). IEEE. 
	107. Son TT, Mita S. Car detection using multi-feature selection for varying poses. In2009 IEEE Intelligent Vehicles Symposium 2009 Jun 3 (pp. 507-512). IEEE. 

	108. Song GY, Lee KY, Lee JW. Vehicle detection by edge-based candidate generation and appearance-based classification. In2008 IEEE Intelligent Vehicles Symposium 2008 Jun 4 (pp. 428-433). IEEE. 
	108. Song GY, Lee KY, Lee JW. Vehicle detection by edge-based candidate generation and appearance-based classification. In2008 IEEE Intelligent Vehicles Symposium 2008 Jun 4 (pp. 428-433). IEEE. 


	109. Song H, Liang H, Li H, Dai Z, Yun X. Vision-based vehicle detection and counting system using deep learning in highway scenes. European Transport Research Review. 2019 Dec 1;11(1):51. 
	109. Song H, Liang H, Li H, Dai Z, Yun X. Vision-based vehicle detection and counting system using deep learning in highway scenes. European Transport Research Review. 2019 Dec 1;11(1):51. 
	109. Song H, Liang H, Li H, Dai Z, Yun X. Vision-based vehicle detection and counting system using deep learning in highway scenes. European Transport Research Review. 2019 Dec 1;11(1):51. 

	110. Steux B, Laurgeau C, Salesse L, Wautier D. Fade: A vehicle detection and tracking system featuring monocular color vision and radar data fusion. InIntelligent Vehicle Symposium, 2002. IEEE 2002 Jun 17 (Vol. 2, pp. 632-639). IEEE. 
	110. Steux B, Laurgeau C, Salesse L, Wautier D. Fade: A vehicle detection and tracking system featuring monocular color vision and radar data fusion. InIntelligent Vehicle Symposium, 2002. IEEE 2002 Jun 17 (Vol. 2, pp. 632-639). IEEE. 

	111. Sun Z, Bebis G, Miller R. Monocular precrash vehicle detection: features and classifiers. IEEE transactions on image processing. 2006 Jun 19;15(7):2019-34. 
	111. Sun Z, Bebis G, Miller R. Monocular precrash vehicle detection: features and classifiers. IEEE transactions on image processing. 2006 Jun 19;15(7):2019-34. 

	112. Sun D, Elefteriadou L. Research and implementation of lane-changing model based on driver behavior. Transportation Research Record. 2010 Jan;2161(1):1-0. 
	112. Sun D, Elefteriadou L. Research and implementation of lane-changing model based on driver behavior. Transportation Research Record. 2010 Jan;2161(1):1-0. 

	113. Takeuchi A, Mita S, McAllester D. On-road vehicle tracking using deformable object model and particle filter with integrated likelihoods. In2010 IEEE Intelligent Vehicles Symposium 2010 Jun 21 (pp. 1014-1021). IEEE. 
	113. Takeuchi A, Mita S, McAllester D. On-road vehicle tracking using deformable object model and particle filter with integrated likelihoods. In2010 IEEE Intelligent Vehicles Symposium 2010 Jun 21 (pp. 1014-1021). IEEE. 

	114. Teoh SS, Bräunl T. Symmetry-based monocular vehicle detection system. Machine Vision and Applications. 2012 Sep 1;23(5):831-42. 
	114. Teoh SS, Bräunl T. Symmetry-based monocular vehicle detection system. Machine Vision and Applications. 2012 Sep 1;23(5):831-42. 

	115. Texas A&M Transportation Institute, TTI Urban Mobility Report: https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-report-2019.pdf, 2019 
	115. Texas A&M Transportation Institute, TTI Urban Mobility Report: https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-report-2019.pdf, 2019 

	116. Toledo T, Zohar D. Modeling duration of Lane changes. Transp Res Rec. 2007. 
	116. Toledo T, Zohar D. Modeling duration of Lane changes. Transp Res Rec. 2007. 

	117. Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: Principles and practice of background maintenance. InProceedings of the seventh IEEE international conference on computer vision 1999 Sep 20 (Vol. 1, pp. 255-261). IEEE. 
	117. Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: Principles and practice of background maintenance. InProceedings of the seventh IEEE international conference on computer vision 1999 Sep 20 (Vol. 1, pp. 255-261). IEEE. 

	118. Tsai, Y. J., Wang, C. R., & Wu, Y. (2011). A vision-based approach to study driver behavior in work zone areas. In 3rd International Conference on Road Safety and Simulation. 
	118. Tsai, Y. J., Wang, C. R., & Wu, Y. (2011). A vision-based approach to study driver behavior in work zone areas. In 3rd International Conference on Road Safety and Simulation. 

	119. VDOT TOSAM: 
	119. VDOT TOSAM: 
	119. VDOT TOSAM: 
	http://www.virginiadot.org/business/resources/TOSAM.pdf
	http://www.virginiadot.org/business/resources/TOSAM.pdf

	 


	120. VDOT Vissim User Guide: http://www.virginiadot.org/business/resources/VDOT_Vissim_UserGuide_Version2.0_Final_2020-01-10.pdf. 2020. 
	120. VDOT Vissim User Guide: http://www.virginiadot.org/business/resources/VDOT_Vissim_UserGuide_Version2.0_Final_2020-01-10.pdf. 2020. 

	121. Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. InProceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001 2001 Dec 8 (Vol. 1, pp. I-I). IEEE. 
	121. Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. InProceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001 2001 Dec 8 (Vol. 1, pp. I-I). IEEE. 

	122. Viola P, Jones MJ. Robust real-time face detection. International journal of computer vision. 2004 May 1;57(2):137-54. 
	122. Viola P, Jones MJ. Robust real-time face detection. International journal of computer vision. 2004 May 1;57(2):137-54. 

	123. Wang J, Bebis G, Miller R. Overtaking vehicle detection using dynamic and quasi-static background modeling. In2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)-Workshops 2005 Sep 21 (pp. 64-64). IEEE. 
	123. Wang J, Bebis G, Miller R. Overtaking vehicle detection using dynamic and quasi-static background modeling. In2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)-Workshops 2005 Sep 21 (pp. 64-64). IEEE. 


	124. Wang CC, Lien JJ. Automatic vehicle detection using local features—A statistical approach. IEEE Transactions on Intelligent Transportation Systems. 2008 Feb 26;9(1):83-96. 
	124. Wang CC, Lien JJ. Automatic vehicle detection using local features—A statistical approach. IEEE Transactions on Intelligent Transportation Systems. 2008 Feb 26;9(1):83-96. 
	124. Wang CC, Lien JJ. Automatic vehicle detection using local features—A statistical approach. IEEE Transactions on Intelligent Transportation Systems. 2008 Feb 26;9(1):83-96. 

	125. Washington DOT Protocol for Vissim Simulation: Washington State Department of Transportation. (2014). Protocol for VISSIM Simulation. 
	125. Washington DOT Protocol for Vissim Simulation: Washington State Department of Transportation. (2014). Protocol for VISSIM Simulation. 

	126. Weng, J., & Meng, Q. (2 15). Incorporating work zone configuration factors into speed flow and capacity models. Journal of advanced transportation, 49(3), 371-384. 
	126. Weng, J., & Meng, Q. (2 15). Incorporating work zone configuration factors into speed flow and capacity models. Journal of advanced transportation, 49(3), 371-384. 

	127. Wijnhoven RG, de With PH. Unsupervised sub-categorization for object detection: Finding cars from a driving vehicle. In2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops) 2011 Nov 6 (pp. 2077-2083). IEEE. 
	127. Wijnhoven RG, de With PH. Unsupervised sub-categorization for object detection: Finding cars from a driving vehicle. In2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops) 2011 Nov 6 (pp. 2077-2083). IEEE. 

	128. Withopf D, Jahne B. Learning algorithm for real-time vehicle tracking. In2006 IEEE Intelligent Transportation Systems Conference 2006 Sep 17 (pp. 516-521). IEEE. 
	128. Withopf D, Jahne B. Learning algorithm for real-time vehicle tracking. In2006 IEEE Intelligent Transportation Systems Conference 2006 Sep 17 (pp. 516-521). IEEE. 

	129. Wren CR, Azarbayejani A, Darrell T, Pentland AP. Pfinder: Real-time tracking of the human body. IEEE Transactions on pattern analysis and machine intelligence. 1997 Jul;19(7):780-5. 
	129. Wren CR, Azarbayejani A, Darrell T, Pentland AP. Pfinder: Real-time tracking of the human body. IEEE Transactions on pattern analysis and machine intelligence. 1997 Jul;19(7):780-5. 

	130. Yang G, Xu H, Wang Z, Tian Z. Truck acceleration behavior study and acceleration lane length recommendations for metered on-ramps. International journal of transportation science and technology. 2016 Oct 1;5(2):93-102. 
	130. Yang G, Xu H, Wang Z, Tian Z. Truck acceleration behavior study and acceleration lane length recommendations for metered on-ramps. International journal of transportation science and technology. 2016 Oct 1;5(2):93-102. 

	131. Yeom C, Hajbabaie A, Schroeder BJ, Vaughan C, Xuan X, Rouphail NM. Innovative work zone capacity models from nationwide field and archival sources. Transportation Research Record. 2015 Jan;2485(1):51-60. 
	131. Yeom C, Hajbabaie A, Schroeder BJ, Vaughan C, Xuan X, Rouphail NM. Innovative work zone capacity models from nationwide field and archival sources. Transportation Research Record. 2015 Jan;2485(1):51-60. 

	132. Yeom C, Rouphail NM, Rasdorf W, Schroeder BJ. Simulation guidance for calibration of freeway lane closure capacity. Transportation Research Record. 2016;2553(1):82-9. 
	132. Yeom C, Rouphail NM, Rasdorf W, Schroeder BJ. Simulation guidance for calibration of freeway lane closure capacity. Transportation Research Record. 2016;2553(1):82-9. 

	133. Yuan Q, Thangali A, Ablavsky V, Sclaroff S. Learning a family of detectors via multiplicative kernels. IEEE transactions on pattern analysis and machine intelligence. 2010 Jun 17;33(3):514-30. 
	133. Yuan Q, Thangali A, Ablavsky V, Sclaroff S. Learning a family of detectors via multiplicative kernels. IEEE transactions on pattern analysis and machine intelligence. 2010 Jun 17;33(3):514-30. 

	134. Zhang Y, Kiselewich SJ, Bauson WA. Legendre and Gabor moments for vehicle recognition in forward collision warning. In2006 IEEE Intelligent Transportation Systems Conference 2006 Sep 17 (pp. 1185-1190). IEEE. 
	134. Zhang Y, Kiselewich SJ, Bauson WA. Legendre and Gabor moments for vehicle recognition in forward collision warning. In2006 IEEE Intelligent Transportation Systems Conference 2006 Sep 17 (pp. 1185-1190). IEEE. 

	135. Zhang J, Chen D, Kruger U. Adaptive constraint K-segment principal curves for intelligent transportation systems. IEEE transactions on intelligent transportation systems. 2008 Nov 7;9(4):666-77. 
	135. Zhang J, Chen D, Kruger U. Adaptive constraint K-segment principal curves for intelligent transportation systems. IEEE transactions on intelligent transportation systems. 2008 Nov 7;9(4):666-77. 

	136. Zhang X, Zheng N, He Y, Wang F. Vehicle detection using an extended hidden random field model. In2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC) 2011 Oct 5 (pp. 1555-1559). IEEE. 
	136. Zhang X, Zheng N, He Y, Wang F. Vehicle detection using an extended hidden random field model. In2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC) 2011 Oct 5 (pp. 1555-1559). IEEE. 

	137. Zhou J, Gao D, Zhang D. Moving vehicle detection for automatic traffic monitoring. IEEE transactions on vehicular technology. 2007 Jan 22;56(1):51-9. 
	137. Zhou J, Gao D, Zhang D. Moving vehicle detection for automatic traffic monitoring. IEEE transactions on vehicular technology. 2007 Jan 22;56(1):51-9. 


	138. Zhu, J., & Saccomanno, F. F. (2004). Safety Implications of Freeway Work Zone Lane Closures. Transportation Research Record, 1877(1), 53–61. 
	138. Zhu, J., & Saccomanno, F. F. (2004). Safety Implications of Freeway Work Zone Lane Closures. Transportation Research Record, 1877(1), 53–61. 
	138. Zhu, J., & Saccomanno, F. F. (2004). Safety Implications of Freeway Work Zone Lane Closures. Transportation Research Record, 1877(1), 53–61. 


	 





