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ABSTRACT 
Short-term traffic flow/speed prediction is a significant and challenging research topic as it is 

closely related to the application of intelligent transportation systems. Due to the variable and 

random characteristics of the transportation system, raw traffic flow/speed data often contains 

noise, and predicting it directly may reduce the accuracy and effectiveness of the prediction 

models. Therefore, a novel hybrid method is established in this project which combines 

denoising schemes and deep learning model to improve prediction accuracy. The time series 

denoising schemes include two parts: the complete ensemble empirical mode decomposition 

with adaptive noise (CEEMDAN), and wavelet packet decomposition (WPD). Firstly, the raw 

traffic flow data are decomposed by CEEMDAN to gain intrinsic mode functions (IMFs) and a 

residual. Then the WPD algorithm conducts a secondary decomposition to part of the IMFs that 

still contains complex and high-frequency component signals of the volume series. Traditional 

deep learning models for time series prediction are usually based on recurrent neural networks, 

which have the disadvantages of being time-consuming and prone to problems such as gradient 

explosions or gradient vanishing. This project uses a relatively new approach, called deep echo 

state network (DeepESN), which can obtain good prediction results while circumventing the 

above problems. In the experiment, to investigate the prediction performance of the proposed 

CEEMDAN-WPD-DeepESN model, the LSTM, CEEMDAN-LSTM, CEEMDAN-WPD-LSTM, DeepESN, 

CEEMDAN-DeepESN, CEEMDAN-WPD-DeepESN and CEEMDAN-WPD6-DeepESN models are 

considered to be comparison models. 

In addition, network-wide traffic state forecasting is a more challenging task, due to the 

complex spatial dependencies and the time-varying traffic patterns on road networks. To 

address this challenge, we treat the traffic network as a graph. Combining graph convolution 

techniques with deep learning methods to capture the spatial and temporal dependencies of 

road networks, and eventually improve the prediction performance of network-wide traffic 

states. 

Keywords (up to 5): 

Secondary decomposition, DeepESN, traffic state prediction, graph convolution 
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EXECUTIVE SUMMARY 
Due to the wide application in public transportation scheduling, route planning and signal 

optimization to alleviate traffic congestion, short-term traffic flow/speed prediction has been a 

significant consideration in the intelligent transportation system. If there is an accurate short-

term traffic state prediction method, we can accurately describe and predict the evolution of 

traffic state over time through historical data, so that it would be possible to carry out effective 

traffic management and control methods, evacuate congestion, optimize routes, etc. Therefore, 

this project aims to propose effective models for short-term traffic state prediction. 

Task 1 focuses on traffic forecasting on key roads. Thus, a sensor on I-285, considered one of 

the busiest and most congested roads in Atlanta, has been selected for this study. We propose 

a novel hybrid model (CEEMDAN-WPD-DeepESN) that first decomposes the original traffic state 

series with noise, then processes the random component, and finally predicts each sub-series 

separately and aggregates to get the final results. The experimental results demonstrate that 

the proposed CEEMDAN-WPD-DeepESN model have much superior performance on both 

efficiency and accuracy. 

Task 2 focuses on traffic forecasting on the road network. Thus, 501 sensors among the city of 

Atlanta have been selected for this study. As we know, the traffic states on these 501 sensors 

are not isolated, they influence each other. But which sensors have influence, how and to what 

extent is a complicated issue. Therefore, when predicting the network-wide traffic state, it is 

also questionable whether to and how to consider the influence between the sensors. In this 

study, we apply the graph convolutional technique to mine the spatial relationships of traffic 

speed over multiple sensors, and then feed the output the deep learning models (e.g., LSTM, 

GRU, DeepESN) to extract temporal features embedded in traffic speed. The experiments 

produce two interesting findings: (1) the GC-LSTM model achieves better prediction 

performance than the individual LSTM model, but the GC-DeepESN model yields worse 

prediction performance than the individual DeepESN model. Therefore, when modeling the 

road network, its spatial structure needs to be treated with caution. (2) The DeepESN model 

produces the smallest MSE, even smaller than that of the GC-LSTM and GCN-GRU models. This 

phenomenon proves the superiority of the DeepESN model in predicting traffic network states. 

The findings derived from Task 1 and Task 2 can help traffic managers to quickly and accurately 

predict the future traffic status of congested roads so that controlling measures can be taken in 

advance to prevent the spread of congestion. 

ix 
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1.0 TASK 1: SHORT-TERM TRAFFIC FLOW PREDICTION BASED ON SECONDARY 
HYBRID DECOMPOSITION AND DEEP ECHO STATE NETWORKS 
1.1 INTRODUCTION 
Short-term traffic volume data are often corrupted by local noises, which may influence the 

prediction accuracy of short-term traffic volumes. Complete ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN) and wavelet packet decomposition (WPD) 

analysis are used in this study to decompose the original data into multiple components such 

that the deep echo state network (DeepESN) model can then be applied to the denoised data, 

and the forecasting accuracy can be improved. 

1.1.1 Objective 
This project proposes a hybrid model to forecast the short-term traffic flow. The objectives are 

to: (1) Extract and handle the nonstationary part of the traffic flow series. (2) Improve the 

accuracy and efficiency of short-term traffic flow forecasting. 

1.1.2 Scope 
This task focuses on sensor data in the city of Atlanta. The data attributes include traffic 

volume, speed, and occupancy. This project conducts traffic volume predictions and traffic 

speed predictions. 

1.2 LITERATURE REVIEW 
Significant efforts have been devoted to developing accurate and efficient methodologies for 

short-term traffic flow prediction. In general, there are three categories of traffic flow 

forecasting methods: (1) traditional statistical methods, (2) computational intelligence-based 

methods, and (3) hybrid methods. 

1.2.1 Statistical Methods 
The main idea of statistical methods is to regard traffic flow as time series data and employ 

statistical analysis tools as the basic model to investigate the intrinsic relationship between past 

and future time series values. The statistical methods include Kalman filter (Okutani and 

Stephanedes 1984, Whittaker et al. 1997, Stathopoulos and Karlaftis 2003, Ma et al. 2017), 

autoregressive integrated moving average (ARIMA) and its variants (Ahmed and Cook 1979, 

Levin et al. 1980, Hamed et al. 1995, Voort et al. 1996, Lee et al. 1999, Williams et al. 1998, 

Williams 2001, Williams and Hoel 2003, Chandra and Deek 2009), and spectral analysis 

(Nicholson and Swann 1974, Tchrakian 2012). Among these methods, ARIMA family has been 

the most popular and widely applied in traffic flow prediction due to its powerful linear fitting 

ability (Yao et al. 2020). However, due to the large amount of noise in traffic data (Yu et al. 

2021), transportation system is considered as a nonlinear and nonstationary system, which 

poses substantial challenges to ARIMA methods based on the linear assumption. 

1.2.2 Data-driven Machine Learning Methods 
To address the nonlinear traffic flow forecasting problem, many data-driven machine learning 

methods have been developed, such as support vector regression (SVR) (Wu et al. 2004, 

10 
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Manoel et al. 2009, Zhang and Liu 2009, Zhang and Xie 2007, Asif et al. 2013), artificial neural 

network (ANN) (Affiliation et al. 2015, Rilett and Park 2001, Jiang and Adeli 2005) and its variant 

- recurrent neural network (RNN) (Vlahogianni et al. 2005). In recent years, RNN has made great 

strides in traffic prediction for its capability of capturing temporal dependence of time series 

data. The two most popular RNN architectures for traffic state prediction are long short-term 

memory (LSTM) neural network (Ma et al. 2015, Tian et al. 2018) utilizing three gates: input, 

output, and forget gates, and gated recurrent unit (GRU) neural network (Jeong et al. 2021, Fu 

et al. 2016) with two gates: update and reset gates. However, due to the training process of 

backpropagation, the problem of vanishing gradient exists in LSTM and GRU. In addition, LSTM 

and GRU architectures adopt a gradient descent method to adapt input, recurrent, output 

connections, which renders low computational efficiency. To overcome the vanishing gradient 

and low efficiency problems, echo state network (ESN) has been noticed as a novel approach to 

model RNNs in recent years (Han and Xu 2017, Lin et al. 2009, Shi and Han 2007, Wang et al. 

2019). The advantage of ESN structure lies in that only the output weights need to be trained, 

and the training method is linear regression rather than backpropagation. These characteristics 

make ESN a highly efficient neural network for traffic flow prediction. A first attempt to apply 

ESN to traffic flow prediction was made by An, Song and Zhao (2011), they found that the ESN-

based short-term traffic flow prediction algorithm can achieve higher accuracy than the feed 

forward neural network. Then, a more complete study was conducted by Ser et al. (2019), they 

verified the advantages of the stacking ensembles of ESNs in improving traffic prediction 

performance and reducing training time. In 2018, deep echo state network (DeepESN) was 

designed by applying the deep learning framework to ESN (Gallicchio et al. 2018). Ser et al. 

(2020) continued to explore the suitability of DeepESN for short-term traffic forecasting and 

concluded that DeepESN achieved more accurate traffic forecasts than other considered 

counterparts. 

1.2.3 Hybrid Methods 
Recently, to further enhance the accuracy of traffic prediction, some researchers have applied a 

data denoising process before the application of machine learning/deep learning networks. The 

commonly used denoising techniques include empirical mode decomposition (EMD) family 

(Pholsena et al. 2019, Tang et al. 2019, Tian et al. 2019, Kim et al. 2019, Wang et al. 2014, Jiang 

et al. 2014) and wavelet-based decomposition method (Zhang et al. 2019, Liu et al. 2019, Zhang 

et al. 2019, Sun et al. 2019, Sun et al. 2015). The hybrid prediction methods that combine data 

denoising and machine learning/deep learning models have been proven to have better 

performance than single models (Tang et al. 2019, Kashi and Akbarzadeh 2019, Wei and Chen 

2012, Li et al. 2018, Diao et al. 2019). However, most of the existing hybrid methods adopt the 

traditional backpropagation-based deep learning models to forecast the denoised traffic data. 

As we mentioned before, such backpropagation-based methods may suffer from vanishing 

gradient and high computational cost, and DeepESN is an effective alternative. To the best of 

our knowledge, Kim and King are the only researchers to have developed a hybrid approach 

that uses DeepESN for time series prediction, the hybrid approach was verified to be efficient 

11 
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and accurate in forecasting S&P 500 data, parking data, chaos data, temperature data and bike 

sharing data (Kim and King 2020). In this study, we will continue along this research path by 

proposing a novel secondary hybrid model for short-term traffic flow prediction. The major 

contributions of this work are summarized as follows: 

(1) To deal with the non-stationary and uncertainty of the original traffic flow data, two 

different decomposition techniques, namely complete ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN) and wavelet packet decomposition (WPD), are 

used to decompose the traffic flow series into multiple predictable sub-series. 

(2) This is the first attempt in the field of traffic prediction to combine two decomposition 

techniques with DeepESN architecture (CEEMDAN-WPD-DeepESN) for fast and accurate 

prediction. 

(3) The proposed model is comprehensively compared, not only with the LSTM neural network, 

but also with LSTM-based ensemble models. 

1.3 METHODOLOGY 

1.3.1 Framework of Modelling 
The proposed hybrid approach for short-term traffic flow prediction has two main stages. 

Firstly, a secondary decomposition method (CEEMDAN-WPD) is applied to decompose the 

traffic flow series. The DeepESN model is then used to forecast all the sub-series generated by 

CEEMDAN-WPD. Finally, the prediction results of each sub-series are aggregated to reconstruct 

the traffic flow series. Figure 1 illustrates the proposed hybrid approach. The modelling steps 

are as follows. 

(1) Use CEEMDAN to decompose the original traffic flow series into a set of intrinsic mode 

functions (IMF1, IMF2…) and a residual. The modeling details of the CEEMDAN algorithm are 
illustrated in Section 1.3.2. 

(2) Apply a three-layer WPD to further decompose IMF1 into eight sub-series (IMF1-WPD1, 

IMF1-WPD2, …, IMF1-WPD8). The modeling details of the WPD algorithm are illustrated in 

Section 1.3.3. 

(3) Utilize DeepESN to predict each sub-series, and sum the predicted results of all sub-series to 

obtain the final forecasting results. The modeling details of the DeepESN algorithm are 

illustrated in Section 1.3.4. 

(4) To investigate the prediction performance of the proposed CEEMDAN-WPD-DeepESN 

framework, the same traffic flow series are also forecasted by other models, including 

DeepESN, CEEMDAN-DeepESN, LSTM, CEEMDAN-LSTM, CEEMDAN-WPD-LSTM. 

12 
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Original traffic flow series

Complete ensemble empirical mode decomposition

with adaptive noise(CEEMDAN)

IMF1 IMF2 IMF3 ... Residual

IMF1_

WPD1

IMF1_

WPD2
...

IMF1_

WPDn

Deep echo state network (DeepESN) prediction

Prediction 

results for 

IMF1_WPD1

Prediction 

results for 

IMF1_WPD2

Prediction 

results for 

IMF1_WPDn

Prediction 

results for 

IMF2

Prediction 

results for 

IMF3

Prediction 

results for 

residual

...

Aggregate calculation

Final forecasting results

Wavelet packet 

decomposition (WPD)

FIGURE 1 FRAMEWORK OF THE HYBRID CEEMDAN-WPD-DEEPESN MODEL. 

1.3.2 Empirical Mode Decomposition Family 
(1) Empirical mode decomposition (EMD) 

Empirical mode decomposition (EMD) is an adaptive time series decomposition technique, 

which utilizes the Hilbert-Huang transform (HHT) to sift the nonlinear signal until it becomes 

stationary (Huang et al. 1998). Due to the ability of EMD in analyzing nonlinear and non-

stationary signals (Liu et al. 2012, Wei and Chen 2012) and the nonlinear and non-stationary 

nature of traffic data, the EMD has been widely used in traffic flow/speed prediction. 

Given an original traffic flow/speed series 𝑥(𝑡), EMD decomposes the original data into a 

collection of IMFs and a residual according to the local features of the data itself, such as local 

maxima, local minima, and zero-crossing. The decomposition procedure of EMD is as follows: 

Step 1: Identify the local maxima and minima of the original data 𝑥(𝑡) , and fit the local 

extreme with cubic spline function to generate the upper envelope 𝑢(𝑡) and lower envelope 

𝑙(𝑡). 

13 
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𝑢(𝑡)+ 𝑙(𝑡)
Step 2: Calculate the mean of the upper and lower envelopes 𝑚(𝑡) = . 

2 

Step 3: Subtract the mean from the original data to get a new sequence 𝑑(𝑡) = 𝑥(𝑡) − 𝑚(𝑡). 

Step 4: If 𝑑(𝑡) and 𝑚(𝑡) satisfy one of the stopping criteria, then the first IMF 𝑐1(𝑡) = 𝑑(𝑡), the 

first residual 𝑟1(𝑡) = 𝑥(𝑡) − 𝑑(𝑡). The stopping criteria are: i) 𝑑(𝑡) approaches zero; ii) the 

number of extreme and zero-crossing value of 𝑑(𝑡) either equal or differ at most by one. 

Step 5: Else, replace 𝑥(𝑡) with 𝑑(𝑡), and repeat Steps 1-4 to obtain the 𝑐1(𝑡) and 𝑟1(𝑡). 

Step 6: Regard 𝑟1(𝑡) as the new time series, repeat Steps 1-5 n times until the residual 𝑟𝑛(𝑡) 
becomes a constant or a monotonic function that cannot be further decomposed into IMFs. 

Finally, the original data can be expressed as the sum of IMFs 𝑐𝑖(𝑡), 𝑖 = 1,2, … , 𝑛 and a residual: 

𝑛 

𝑥(𝑡) = ∑𝑐𝑖(𝑡) + 𝑟𝑛(𝑡) 
𝑖=1 

Where 𝑛 represents the number of IMFs. 

(2) Ensemble empirical mode decomposition (EEMD) 

EMD may fail in the denoising procedure when the to-be denoised data cannot meet certain 

prerequisites (Tong et al. 2012). The most serious problem in EMD is the mode mixing 

phenomenon. Mode mixing refers to the situation where the IMF produced by EMD 

decomposition has components with dramatically different frequencies. In order to alleviate 

the mode mixing problem, Wu and Huang (2009) proposed a noise-assisted data analysis 

method called ensemble empirical mode decomposition (EEMD). The white noise can provide 

uniformly distributed scales in the time-frequency space. The intrinsic oscillations in the signal 

with different scales will automatically correlate with a reference grid of similar scales provided 

by white noise. Therefore, the intrinsic local oscillations can be adaptively filtered to the 

appropriate scales by the natural filter bank of the EMD in relation to the added uniformly 

distributed white noise. The mode mixing problem is solved by this elegant use of noise. The 

EEMD algorithm can be described as follows: 

Step 1: Add a collection of white noise to the original data: 𝑥𝑖(𝑡) = 𝑥(𝑡) + 𝛽𝜀𝑖(𝑡), where 

𝜀𝑖(𝑡) (𝑖 = 1,2, … , 𝐼) is a zero mean unit variance white noise series, 𝐼 is the total number of 

trials, and 𝛽 > 0. 

Step 2: Decompose the noise-aided data 𝑥𝑖(𝑡) by EMD, obtaining the IMF 𝑐𝑘
𝑖 (𝑡) (𝑘 = 

1,2, … , 𝐾 is the mode), where 𝐾 is the total number of modes, and the residual can be 
𝐾 expressed as 𝑟𝑖(𝑡) = 𝑥𝑖(𝑡) − ∑ 𝑐𝑘

𝑖 (𝑡)𝑘=1 

1 𝐼 𝑖 Step 3: Obtain the 𝑘th 𝐼𝑀𝐹 ̃ (𝑡) = 𝑐𝑘 (𝑡), and the residual is 𝑟𝐾(𝑡) =̃ of EEMD as 𝑐𝑘 ∑𝑖=1𝐼 
1 𝐼∑ 𝑟𝑖(𝑡).𝑖=1𝐼 
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(3) Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) 

It can be noticed that in EEMD, every 𝑥𝑖(𝑡) is decomposed independently and a residual is 

obtained at each stage, with no connections between different trials. This situation can result in 

some EEMD shortcomings: i) decomposition is not complete, ii) different realization of signal 

plus noise might yield different number of modes. In order to further alleviate the mode mixing 

and reconstruction error problems, Torres et al. (2011) proposed the complete ensemble 

empirical mode decomposition with adaptive noise (CEEMDAN) by adding the adaptive white 

Gaussian noise at each decomposition. The computation of the CEEMDAN can be described as 

follows: 

Step 1: Add a collection of white Gaussian noise series to the original data: 𝑥𝑖(𝑡) = 𝑥(𝑡) + 
𝑤0𝜀

𝑖(𝑡), where 𝜀𝑖(𝑡) (𝑖 = 1,2, … , 𝐼) is the white Gaussian noise series, 𝐼 is the total number of 

trials, and 𝑤0 is a noise coefficient. 

Step 2: Decompose the noise-aided data 𝑥𝑖(𝑡) by EMD, obtaining the first IMF 𝑐1
𝑖(𝑡). 

1 𝐼 𝑖 Step 3: Obtain the first 𝐼𝑀𝐹̅̅ ̅̅ ̅̅  of CEEMDAN as 𝑐1(𝑡) = ∑ 𝑐1 (𝑡).𝑖=1𝐼 

Step 4: Calculate the 𝑘th residual as 𝑟𝑘(𝑡) = 𝑥(𝑡) − 𝑐𝑘(𝑡). 

̅̅ ̅̅ ̅̅Step 5: Decompose the noise-added residual 𝑟𝑘(𝑡) + 𝑤𝑘𝐸𝑘(𝜀
𝑖(𝑡)) to obtain the (𝑘 + 1)th 𝐼𝑀𝐹 

1 𝐼 as 𝑐̅̅𝑘+̅̅1̅(𝑡) = ∑𝑖=1𝐸𝑘(𝑟𝑘(𝑡) + 𝑤𝑘𝐸𝑘(𝜀
𝑖(𝑡))), where 𝐸𝑘(∙) is the operator that produces the 

𝐼 

𝑘th mode obtained by EMD. 

Step 6: Repeat step 4-step 5 for the remaining 𝐼𝑀𝐹̅̅ ̅̅ ̅̅ s until the obtained residual cannot be 

further decomposed by EMD, and the final residual can be expressed as 𝑟𝐾(𝑡) = 𝑥(𝑡) − 
𝐾∑𝑘=1 𝑐𝑘 (𝑘 = 1,2, … , 𝐾 is the mode), where 𝐾 is the total number of 𝐼𝑀𝐹 ̅ (𝑡) ̅̅ ̅̅ ̅̅ s, and the original 

𝐾 ̅̅ ̅̅ ̅̅data also can be expressed as the sum of 𝐼𝑀𝐹𝑘 plus a residual: 𝑥(𝑡) = ∑ ̅ (𝑡) + 𝑟𝐾(𝑡).𝑘=1 𝑐𝑘 

1.3.3 Wavelet Packet Decomposition (WPD) 
Wavelet decomposition (WD) (Aghajani et al. 2016) is widely used as an effective method to 

decompose the non-stationary signals into multiple frequencies. While WD can only 

decompose appropriate components, wavelet packet decomposition (WPD), as a special WD 

method, can decompose both the appropriate components and the detailed components (Zhao 

et al. 2010). For example, the three-layer binary tree of WD obtains four components (WD1-

WD4), and the three-layer binary tree of WPD obtains eight components (WPD1-WPD8), as 

seen in Figure 2. 
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(a) WD (b) WPD 

FIGURE 2 THE THREE-LAYER DECOMPOSITION TREES OF WD AND WPD. 

The WPD includes two types: continuous wavelet transform (CWT), and discrete wavelet 

transform (DWT). The CWT can be defined as: 

+∝ 

𝐶𝑊𝑇𝑓(𝑎, 𝑏) = 〈𝑓(𝑡), Ψ𝑎.𝑏(𝑡)〉 = ∫ 𝑓(𝑡)Ψ∗((𝑡 − 𝑏)/𝑎)/√𝑎 𝑑𝑡 
−∝ 

Where 𝑓(𝑡) is the signal, Ψ(𝑡) is the mother wavelet function, ∗ denotes the complex 

conjugate, 𝑎 and 𝑏 represent the scale coefficient and translation coefficient, respectively. In 

CWT, the scale and translation coefficients are continuous, which makes CWT quite slow. 

Therefore, CWT is seldom employed for prediction. Instead, the wavelet of DWT is scaled and 

translated using certain scales and positions that can provide the necessary information while 

reducing the calculation cost. In detail, DWT uses scale and position values based on powers of 

two, and the scale coefficient 𝑎 is discretely expressed as 𝑎 = 2𝑗 and translation coefficient 𝑏 is 

discretely described as 𝑏 = 𝑘 ∙ 2𝑗 , where 𝑗 and 𝑘 are integers that control the scale and 

translation, respectively. 

1.3.4 Deep Echo State Network (DeepESN) 
(1) Echo State Network (ESN) 

The traditional RNNs, such as LSTM and GRU, are trained by backpropagation (BP) of the error 

through the network. Due to the chain rule of BP, RNN training has the tendency to explode or 

vanish, requiring extensive computational resources to convergence, and can lead to poor local 

minima. Then the echo state network (ESN) proposes another trend toward training and 

employing RNNs. The core part of ESN is a single reservoir consisting of a large number of 

neurons that are randomly interconnected and/or self-connected. The architecture of a generic 

ESN model is shown in Figure 3, it consists of an input layer, a recurrent layer called reservoir, 

and an output layer. The input connections to the reservoir are randomly assigned and not 

trainable. The reservoir represents the hidden layer in the network with random and fixed 

recurrent connections. The only weights that need to be trained are the weights between the 

reservoir and the output layer, and the weights are trained through linear regression instead of 

16 
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BP. Because of these characteristics, ESN becomes an efficient and powerful approach to RNN 

training, especially suited for time series modeling. 

Nu

u(t)

θ 
Win

W
^ 

x(t)

Nr

Wout

θ out

y(t)

FIGURE 3 A GENERIC ESN MODEL. 

Following the notations and terminologies introduced by Gallicchio et al. (2017), an ESN is a 

recurrent network model that contains 𝑁𝑢 input units and 𝑁𝑟 reservoir units. Omitting the bias 

terms for the ease of notation, the state of the reservoir at time 𝑡 is updated according to the 

following recurrence function: 

𝑥(𝑡) = (1 − 𝑎) ∙ 𝑥(𝑡 − 1) + 𝑎 ∙ tanh(𝑊𝑖𝑛 ∙ 𝑢(𝑡) + 𝑊̂ ∙ 𝑥(𝑡 − 1)) 

Where 𝑥(𝑡) represents the reservoir state at time 𝑡, 𝑢(𝑡) is the input state at time 𝑡, 𝑊𝑖𝑛 

denotes the input-to-reservoir weight matrix, 𝑊̂ expresses the recurrent reservoir weight 

matrix, 𝑎 ∈ [0,1] is the leaking rate, and tanh represents the element-wise application of the 

hyperbolic tangent activation function. The reservoir parameters are assigned randomly and 

then left untrained. 𝑊𝑖𝑛 is randomly selected from a uniform distribution and then rescaled to 

have a maximum singular value equal to an input scaling parameter. 𝑊̂ is also randomly 

assigned from a uniform distribution and then rescaled. In conclusion, the current reservoir 

state depends on a linear combination of the previous reservoir state and the activation of the 

weighted current input state and weighted previous reservoir state. 

The output of the ESN network is computed as a linear combination of the activated reservoir 

states, as follows: 

𝑦(𝑡) = 𝑊𝑜𝑢𝑡 ∙ 𝑥(𝑡) 

Where 𝑦(𝑡) denotes the output value at time 𝑡, 𝑊𝑜𝑢𝑡 stands for the reservoir-to-output weight 

matrix. 𝑊𝑜𝑢𝑡 is the only part that gets trained, typically using pseudo-inversion or ridge 

regression methods (Lukosevicius and Jaeger 2009). 

(2) Deep Echo State Network 

17 
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By stacking multiple reservoir layers on top of each other, Gallicchio et al. (2018) introduced an 

ESN-based deep learning architecture, called a deep echo state network (DeepESN). The 

architecture of a DeepESN is shown in Figure 4, it consists of an input layer, a stacked hierarchy 

of reservoirs, and an output layer. The input connections to the first reservoir are randomly 

assigned and not trainable, and each successive reservoir-to-reservoir layer is fed by the output 

of the previous one in the stack. The reservoir represents the hidden layer in the network with 

random and fixed recurrent connections. The only weights that need to be trained are the 

weights between the reservoirs and the output layer. For the sake of simplicity, we consider a 

hierarchical reservoir setup with 𝑁𝐿 recurrent layers each of which contains the same number 

of units 𝑁𝑅. 

2nd reservoir layer

N -th reservoir layerL

1st reservoir layer

(t)X N 
L(   )

W
^ N 

L(   )

W
 N 

L(   )

X
(2)

(t)

X
(1)

(t)

y(t)

W
^ (1)

W
^ (2)

W (2)

Win
u(t)

Wout

Readout

Input layer

...

FIGURE 4 ILLUSTRATION OF A DEEP ECHO STATE NETWORK. 

Omitting the bias terms for the ease of notation, the state of the first reservoir at time 𝑡 is 

updated according to the following function: 

𝑥(1)(𝑡) = (1 − 𝑎(1)) ∙ 𝑥(1)(𝑡 − 1) + 𝑎(1) ∙ tanh(𝑊𝑖𝑛 ∙ 𝑢(𝑡) + 𝑊̂ (1) ∙ 𝑥(1)(𝑡 − 1)) 

While for every layer 𝑙 > 1, the state of the 𝑙th reservoir at time 𝑡 is updated according to the 

following recurrence function: 

𝑥(𝑙)(𝑡) = (1 − 𝑎(𝑙)) ∙ 𝑥(𝑙)(𝑡 − 1) + 𝑎(𝑙) ∙ tanh(𝑊(𝑙) ∙ 𝑥(𝑙−1)(𝑡) + 𝑊̂ (𝑙) ∙ 𝑥(𝑙)(𝑡 − 1)) 

Where 𝑢(𝑡) is the input state at time 𝑡, 𝑙 is the number of the reservoir layer (𝑙 = 1,2, … ,𝑁𝐿), 

𝑥(𝑙)(𝑡) denotes the state of reservoir layer 𝑙 at time 𝑡, 𝑊𝑖𝑛 refers to the input weight matrix, 

𝑊(𝑙) is the inter-layer connection weight matrix from layer (𝑙 − 1) to layer 𝑙, 𝑊̂ (𝑙) is the 
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recurrent weight matrix of reservoir layer 𝑙, 𝑎(𝑙) ∈ [0,1] represents the leaking rate at layer 𝑙, 

and tanh is the element-wise application of the hyperbolic tangent. The reservoir parameters 

are assigned randomly and then left untrained. The input weight matrix 𝑊𝑖𝑛 is randomly 

initialized from a uniform distribution and then rescaled to have a maximum singular value 

equal to an input scaling parameter 𝑤𝑖𝑛. The inter-layer weight matrix 𝑊(𝑙) is also 

randomly initialized from a uniform distribution and then rescaled to have a maximum 

singular value equal to an inter scaling parameter 𝑤𝑖𝑙. The recurrent weight matrix 𝑊̂ (𝑙) is 

randomly initialized from a uniform distribution and then rescaled to have a spectral 
radius equal to 𝜌. In conclusion, the current reservoir state at layer 𝑙 depends on a linear 

combination of the previous reservoir state at layer 𝑙 and the activation of the weighted 

current reservoir state at layer (𝑙 − 1) and weighted previous reservoir state at layer 𝑙. 

The output of the DeepESN is computed as a linear combination of the recurrent units over all 

of the recurrent layers, as follows: 

𝑇 
𝑦(𝑡) = 𝑊𝑜𝑢𝑡 ∙ [𝑥

(1)(𝑡) ∙ 𝑥(2)(𝑡)⋯𝑥(𝑁𝐿)(𝑡)] 

Where 𝑊𝑜𝑢𝑡 denotes the weight matrix between reservoirs to output, which connects the 

reservoir units in all layers to the units in the output. The training of 𝑊𝑜𝑢𝑡 out is conducted with 

ridge regression. 

1.3.5 Evaluation Metrics 
In order to evaluate the prediction performance for different models, three commonly used 

metrics are adopted, that are, the mean absolute error (MAE), the mean absolute percentage 

error (MAPE) and the root mean square error (RMSE). The formulas of MAE, MAPE and RMSE 

are expressed as follows: 

𝑁 
1 

𝑀𝐴𝐸 = ∑|𝑦̂𝑖 − 𝑦𝑖|𝑁 
𝑖=1 

𝑁 
1 𝑦̂𝑖 − 𝑦𝑖 

𝑀𝐴𝑃𝐸 = ∑ | |
𝑁 𝑦𝑖 

𝑖=1 

𝑁 
1 

𝑅𝑀𝑆𝐸 = √ ∑(𝑦̂𝑖 − 𝑦𝑖)2 
𝑁 

𝑖=1 

Where, 𝑁 is the number of samples used in evaluation, 𝑦𝑖 is the observed traffic volume in time 

step 𝑖 at different stations, and 𝑦̂𝑖 represents the predicted volume. Furthermore, it should be 

noted that the unit of MAE and RMSE for data collected under different time intervals is the 

number of vehicles per time scales (5 min). In the experiments, aiming to further evaluate the 

long-term prediction performance of all models, one-step ahead prediction is estimated. The 
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one-step ahead prediction is to forecast the traffic volume in the next 5 min from current time 

point. 

1.4 RESULT 

1.4.1 Data Set 
The experimental data used in this project are collected from Regional Intelligent 

Transportation Information System (RITIS). The dataset includes traffic volume, speed and 

occupancy detected from microwave sensors in freeway network of Atlanta city. The data 

collection time starts from January 1st to January 15th in 2019. The time scale for the raw data 

samples is 1 minute, that is, 21600 raw data samples were accumulated for each sensor. In this 

project, the raw dataset is aggregated into 5 minutes, and thus, there were 4320 observations. 

By discarding the last 12 observations, a total of 4308 data samples were used in this 

experimental study. One sensor is selected in the city of Atlanta, as seen in Figure 5. Sensor A, 

located at latitude 33.7427 and longitude -84.4981, utilizes microwaves to detect traffic data 

northward on Interstate I-285(Western), which is a perimeter highway encircling the city of 

Atlanta. I-285 is recognized as one of the busiest and most congested roads in Atlanta. 

FIGURE 5 THE SELECTED SENSOR A IN THE CITY OF ATLANTA. 
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1.4.2 Forecasting Results 

FIGURE 6 ORIGINAL TRAFFIC FLOW TIME SERIES OF SENSOR A. 

Figure 6 shows the 4320 traffic volume series on I-285 detected from sensor A. From Figure 6, 

we can find that the original volume series exerts randomness and nonstationary in nature. 

Thus, to reduce the complexity of the volume series for better prediction, a second-

decomposition method is proposed. Specifically, the CEEMDAN and WPD algorithms will be 

applied successively in the volume series decomposition. 

(1) CEEMDAN Decomposition 

The first step is to decompose the original volume series into multiple components through the 

CEEMDAN method. Following the CEEMDAN procedures outlined in the section 1.3.2, a total of 

11 IMFs and one residual were obtained from the original volume data series, as seen in Figure 

7. We can observe that the original volume series is decomposed into a series of relatively 

stationary data sets. The IMF with higher frequency represents the pattern of a shorter period, 

whereas the IMF with lower frequency represents the pattern of a longer period. Thus, the 

highly stochastic variations in the volume series are represented by the first few components 

(IMF1-IMF6), while the last few IMFs (IMF7-IMF11) describe the cyclical components in the 

volume series. The last component is the residual of the sifting process, which represents the 

overall trend of the volume series. 
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FIGURE 7 THE ORIGINAL TRAFFIC FLOW SERIES DECOMPOSED TO IMF1-IMF11 AND RESIDUAL BY THE CEEMDAN 
METHOD. 

The trend persistence of decomposed components can be measured by the Hurst Exponent. If 

the Hurst value ranges between [0,0.5), it indicates a time series with long-term switching 

between high and low values in adjacent pairs, called anti-persistence in time series. If the 

Hurst value ranges between (0.5,1], it indicates a time series with long-term positive 

autocorrelation, called persistence in time series. When the Hurst Exponent value is equal to 

0.5, it means the time series move in a random walk. The Hurst Exponent of each component 

decomposed by CEEMDAN is listed in Table 1. We can see that the Hurst Exponent values of 

IMF1, IMF2, IMF3, IMF4, IMF5 and IMF6 are between [0,0.5), indicating that these components 
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have anti-persistence features and will be further decomposed. The Hurst Exponent values of 

IMF7, IMF8, IMF9, IMF10, IMF11 and Residual are between (0.5,1], indicating that these 

components have persistence features. 

TABLE 1 HURST EXPONENT OF EACH COMPONENT DECOMPOSED BY CEEMDAN. 

Component Hurst 

Exponent 

value 

Component Hurst exponent 

value 

IMF1 0.29 IMF7 0.58 
IMF2 0.27 IMF8 0.75 
IMF3 0.13 IMF9 0.79 
IMF4 0.16 IMF10 0.92 
IMF5 0.32 IMF11 0.96 
IMF6 0.45 Residual 1.00 

(2) WPD Decomposition 

Note that IMF1, IMF2, IMF3, IMF4, IMF5 and IMF6 obtained by CEEDMAN consist of the 

complex and high-frequency component signals of the volume series. So in the second step, 

WPD algorithm is used to further decompose these components, and the three-level WPD 

algorithm is adopted in this study. For example, Figure 8 shows the decomposition result of 

IMF1. Through the WPD method, IMF1 is further decomposed into 8 groups of wavelet packet 

coefficients, called IMF1_WPD1, IMF1_WPD2, IMF1_WPD3, IMF1_WPD4, IMF1_WPD5, 

IMF1_WPD6, IMF1_WPD7 and IMF1_WPD8. The same WPD decomposition procedure for IMF2 

to IMF6. Therefore, the original volume series has been decomposed to a total of 54 

components. 
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FIGURE 8 IMF1 DECOMPOSED TO IMF1_WPD1-IMF1_WPD8 COMPONENTS BY THE WPD METHOD. 

(3) DeepESN Prediction 

After the secondory decomposition procedure, the intrinsic characteristics of traffic volume 

series are decomposed to a batch of components, which should be more useful for prediction. 

In the third step, each of the 54 components obtained by the the CEEMDAN-WPD secondary 

decomposition method are divided into two subsets. The first 90% of data are used to train the 

forecasting model, and the last 10% are used to test the performance of the proposed 

forecasting model. 

Following explanations in Section 1.3.4, we need to set up some parameters to train the 

DeepESN model. The pamameters include the number of reservoir units, the number of 

recurrent layers, spectral radius, input scaling, inter-layer scaling, leaking rate, and the readout 

regularization parameter of ridge regression. In addition, for simplification, all the layers share 

the same spectral radius 𝜌 and the same inter-layer scaling 𝑤𝑖𝑙. Refering to the parameter 

configurations in Gallicchio et al. (2018) and Song et al. (2020), in this experiment, we choose 

the parameter selection set presented in Table 2 column 2, and the grid search technique is 

employed to select proper parameter values. The final parameter selection result is shown in 

Table 2 column 3. During the parameter selection process, we found that the prediction 

performance was more sensitive to the number of reservoir units, the number of recurrent 
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layers, spectral radius and leaking rate, while other parameters did not make a large difference 

in the prediction results. 

TABLE 2 SELECTION OF HYPERMETERS USED IN DEEPESN MODEL. 

Parameter Selection Set Final Selection 
Number of reservoir units (𝑁𝑟) {10, 20, 50, 100} 20 
Number of recurrent layers (𝑁𝑙) {3, 5, 7, 9, 15, 20} 5 

Spectral radius (𝜌) {0.2, 0.4, 0.6, 0.8, 1.0} 0.8 
Input scaling (𝑤𝑖𝑛) {0.1, 0.2, 0.5, 1, 2, 5, 10} 0.5 

Inter-layer scaling (𝑤𝑖𝑙) {0.1, 0.2, 0.5, 1, 2, 5, 10} 0.5 
Leaking rate (𝑎) {0.1, 0.3, 0.5, 0.7, 0.9} 0.9 

Readout regularization (𝜆) {0.1, 0.001, 1e-5, 1e-10} 1e-5 
The DeepESN model is implemented on each of the 54 components, and adding the 54 

predictions together formed the final prediction result. As shown in Figure 9, the observations 

and predictions of the test dataset fit almost perfectly, with MAPE of only 0.0007, illustrating 

the accuracy of the proposed method in this project. The exact numbers of errors are 

presented in Figure 10 and Table 3. 

FIGURE 9 THE PREDICTION RESULT OF THE TEST DATA. 

(4) Result Comparison with Base Models 
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In order to validate the effectiveness of the proposed model, seven predictive models are 

selected for comparative experiments on the same dataset. The seven predictive models 

include LSTM model, hybrid CEEMDAN-LSTM model, hybrid CEEMDAN-WPD-LSTM model, 

DeepESN model, hybrid CEEMDAN-DeepESN model, hybrid CEEMDAN-WPD-DeepESN model, 

and hybrid CEEMDAN-WPD6-DeepESN model. Specifically, the hybrid CEEMDAN-LSTM model 

means that the original traffic volume series is first decomposed to multiple IMFs, each of 

which is forecasted by the LSTM model, and then summing the predicted results of all the IMFs 

to obtain the final prediction result. In addition, the difference between CEEMDAN-WPD-

DeepESN and CEEMDAN-WPD6-DeepESN is that in the secondary decomposition step, 

CEEMDAN-WPD-DeepESN utilizes WPD to decompose only the first IMF (IMF1), while 

CEEMDAN-WPD6-DeepESN utilizes WPD to decompose the first six IMFs (IMF1, IMF2, IMF3, 

IMF4, IMF5, IMF6). 

The comprehensive comparisons were implemented based on four evaluation criteria, that are 

MAE, MAPE, RMSE and elapsed time. The detailed prediction results of different models are 

presented in Figure 10, and the prediction evaluation results of different models are provided in 

Table 3. 

(a) Prediction result of the LSTM model. 
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(b) Prediction result of the CEEMDAN-LSTM model. 

(c) Prediction result of the CEEMDAN-WPD-LSTM model. 
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(d) Prediction result of the DeepESN model. 

(e) Prediction result of the CEEMDAN-DeepESN model. 
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(f) Prediction result of the CEEMDAN-WPD-DeepESN model 

(f) Prediction result of the CEEMDAN-WPD-DeepESN model. 

(g) Prediction result of the CEEMDAN-WPD6-DeepESN model. 
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FIGURE 10 PREDICTION RESULTS OF DIFFERENT MODELS. 

TABLE 3 PERFORMANCE EVALUATION RESULTS OF DIFFERENT MODELS. 

Models Computational 
Time(s) 

MAE MAPE RMSE 

LSTM 73 13.0 0.0299 18.6 

CEEMDAN-LSTM 538 8.8 0.0091 11.0 

CEEMDAN-WPD-LSTM 1309 5.1 0.0276 7.1 

DeepESN 4 12.9 0.0284 18.2 

CEEMDAN-DeepESN 5 5.6 0.0128 7.5 

CEEMDAN-WPD-DeepESN 10 3.5 0.0075 5.2 

CEEMDAN-WPD6-DeepESN 90 3.6 0.0007 5.8 

From the observation of prediction results in Table 3 and Figure 10, several interesting finding 

can be summarized as follows: 

(1) Both of the hybrid CEEMDAN-LSTM and CEEMDAN-WPD-LSTM models have smaller MAE, 

MAPE and RMSE values than those of the LSTM model, and all of the hybrid CEEMDAN-

DeepESN, CEEMDAN-WPD-DeepESN and CEEMDAN-WPD6-DeepESN models have smaller MAE, 

MAPE and RMSE values than those of the DeepESN model. Smaller values for MAE, MAPE and 

RMSE indicate higher prediction accuracy. Therefore, we can conclude that the prediction 

results of models that incorporate decomposition techniques are superior to that without 

decomposition techniques. The main reason is that after the implementation of the data 

decomposition process, the high-frequency part in the original data are re-presented, and then 

the variation trend of the data is more obviously expressed. As a result, the model becomes 

more stable during training, resulting in higher prediction accuracy. 

(2) The CEEMDAN-WPD-LSTM model has smaller MAE, MAPE and RMSE values than those of 

the CEEMDAN-LSTM model, and both of the CEEMDAN-WPD-DeepESN and CEEMDAN-WPD6-

DeepESN models have smaller MAE, MAPE and RMSE values than those of the CEEMDAN-

DeepESN model. The results demonstrate that the second-order decomposition technique has 

higher predictive accuracy than the first-order decomposition technique. 

(3) The prediction accuracy of LSTM and DeepESN models is similar, while the CEEMDAN-

DeepESN model has smaller MAE, MAPE and RMSE values than those of the CEEMDAN-LSTM 

model, and CEEMDAN-WPD-DeepESN model has smaller MAE, MAPE and RMSE values than 

those of the CEEMDAN-WPD-LSTM model. As a result, deep learning prediction methods 

combined with decomposition techniques to forecast traffic flow have proven feasible and 

effective. Moreover, the combination of DeepESN and decomposition techniques produces 

higher accuracy in predicting traffic flow than the combination of LSTM and decomposition 

techniques. 

(4) The CEEMDAN-WPD-DeepESN and CEEMDAN-WPD6-DeepESN models have very similar 

MAE, MAPE and RMSE values. This phenomenon illustrates that in the second step of the 
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decomposition process, it is not that the more components to be decomposed, the better. 

Decomposing IMF1 alone not only yields the same prediction accuracy as decomposing IMF1, 

IMF2, IMF3, IMF4, IMF5 and IMF6, but also reduces the calculation time by a factor of nine. 

(5) The DeepESN related models are much superior to the LSTM related models in calculating 

time consumption. For example, when predicting the same dataset, DeepESN only took 4 

seconds while LSTM took 73 seconds, CEEMDAN-DeepESN only took 5 seconds while 

CEEMDAN-LSTM took 538 seconds, and CEEMDAN-WPD-DeepESN only took 10 seconds while 

CEEMDAN-WPD-LSTM took 1309 seconds. The DeepESN related models have proven to be 

powerfully efficient. The hybrid models of DeepESN and decomposition techniques have 

verified to be both accurate and efficient. 

1.5 CONCLUSION 
In this project, a novel hybrid prediction model, CEEMDAN-WPD-DeepESN, has been proposed 

for short-term traffic flow prediction. First, with consideration of the intrinsic characteristics of 

traffic flow series, the raw dataset is decomposed to IMFs by CEEMDAN. Then, the high 

frequency IMFs are decomposed to sub-series by WPD. Next, DeepESN is adopted to forecast 

each of the decomposed components. Finally, the forecasting results of the sub-series are 

aggregated to obtain the final prediction result. Experimental results show that, compared with 

the LSTM, CEEMDAN-LSTM, CEEMDAN-WPD-LSTM, DeepESN, and CEEMDAN-DeepESN models, 

the proposed CEEMDAN-WPD-DeepESN model has obvious advantages in improving the 

accuracy and efficiency of traffic flow prediction. Several findings are summarized. (1) The 

hybrid models have better prediction performance than the individual models. (2) The second-

order decomposition technique CEEMDAN-WPD has higher predictive accuracy than the first-

order decomposition technique CEEMDAN. (3) The DeepESN-related hybrid models produce 

higher accuracy than the LSTM-related hybrid models in traffic flow prediction. (4) It is not that 

the more components that are decomposed, the higher the prediction accuracy obtained, and 

the fast and good prediction results can be obtained by simply decomposing IMF1 in the second 

decomposition step. (5) DeepESN-related models has demonstrated strong abilities in efficient 

traffic flow forecasting. 
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2.0 TASK 2: SHORT-TERM TRAFFIC SPEED PREDICTION ON A ROAD NETWORK 
2.1 INTRODUCTION 
Traffic prediction is an important topic due to its potential in various intelligent applications. 

However, network-wide traffic state prediction is challenging due to the complicated spatial 

structure and temporal dependencies in road networks. Typically, traffic conditions at nearby 

locations affect each other. To capture such spatial structure feature in the road network, this 

study adopts the graph convolution technique. In addition, deep learning recurrent neural 

networks are employed to mine the temporal dependencies of traffic data. 

2.1.1 Objective 
This project compares several graph convolutional based deep learning models to forecast the 

network-wide traffic speed. The objectives are to: (1) Evaluate performance of graph 

convolutional methods in capturing the spatial dependency of the road network. (2) Evaluate 

the feasibility and superiority of the DeepESN model in predicting the traffic state of the road 

network. (3) Improve the accuracy and efficiency of short-term network-wide traffic speed 

forecasting. 

2.1.2 Scope 
The study focuses on the Atlanta Road network. The experiment studied 15 days of data from 

01/01/2019 to 01/15/2019 with a total of 501 sensors. 

2.2 LITERATURE REVIEW 
Although deep learning models have shown their superior capability for traffic flow prediction 

in the above task, these methods ignore the spatial dependencies, so that the traffic state 

prediction is not constrained by the structure of the road network, which may lead to failure in 

forecasting the entire road network. Aiming at this problem, recent studies have focused on 

graph-structured data, which can be applied to capture the spatial relationships present in a 

traffic network. For example, Yu, Lee, and Sohn (2020) designed a graph-based traffic 

prediction learning model, which simulates real traffic propagation based on a variable 

adjacency matrix. Lv et al. (2021) used graphs to encode non-Euclidean spatial and semantic 

correlations between roads and captured the correlations in conjunction with graph 

convolutional networks. Cui, Henrickson, and Ke (2020) treated the road network as a graph 

and proposed a Graph Convolutional Long Short-Term Memory Neural Network (GC-LSTM) to 

learn the spatiotemporal connections between roads for further prediction. Zhao et al. (2018) 

proposed a traffic forecasting method T-GCN that combines the graph convolutional network 

(GCN) with the gated recurrent unit (GRU) to capture the spatial and temporal dependences. 

Therefore, in this study, we also learn the traffic network as a graph and conduct convolution 

on the traffic network-based graph. Different deep learning models combined with the graph 

convolution are applied to the network-wide traffic state prediction, to observe the 

effectiveness and limitations of the graph convolutional deep learning models. 
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2.3 METHODOLOGY 

2.3.1 Graph Convolutional Long Short Term Memory (GC-LSTM) 
The architecture of the Graph Convolutional LSTM (GC-LSTM) recurrent neural network is 

presented in Figure 11, which learns both the spatial dependencies and the dynamic temporal 

dependencies in traffic series. In this model, the gates structure in the LSTM and the hidden 

state are unchanged, but the cell state from the previous time step is incorporated by the graph 

convolution features. The forget gate 𝑓𝑡, the input gate 𝑖𝑡, the output gate 𝑜𝑡, and the input cell 

state 𝐶̃𝑡 in terms of time step 𝑡 are defined as follows. 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

𝐶̃ = tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)𝑡 

Where ∙ denotes the matrix multiplication operator. 𝑊𝑓, 𝑊𝑖, 𝑊𝑜, and 𝑊𝐶 are the weight 

matrices, mapping the input to the three gates and the input cell state. 𝑏𝑓, 𝑏𝑖, 𝑏𝑜, and 𝑏𝐶 

represent bias vectors. 𝜎 is the gate activation function, and tanh is the hyperbolic tangent 

function. 

Due to each node in a traffic network graph is influenced by the preceding states of itself and its 

neighboring nodes, the LSTM cell state of each node in the graph should also be affected by 

neighboring cell states. Thus, a cell state gate is designed and added in the LSTM cell. The cell 

state gate, as shown in Figure 11, is defined as follows. 

∗𝐶𝑡−1 = 𝑊 ∗ 𝐴 ∙ 𝐶𝑡−1 

Where 𝑊 is a weight matrix to measure the contributions of neighboring cell states. To 

correctly reflect the traffic network structure, 𝑊 is constrained by multiplying an adjacency 

matrix 𝐴. With this gate, the influence of neighboring cell states will be considered when the 

cell state is recurrently input to the subsequent time step. Then, the final cell state and the 

hidden state are calculated as follows. 

∗ ̃𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) 
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FIGURE 11 THE ARCHITECTURE OF THE GC-LSTM MODEL. 

2.3.2 Graph Convolutional Neural Network with Gated Recurrent Unit (GCN-GRU) 
GCN was proposed by Kipf and Welling (2016), and its origin is the spectral-graph CNN 

introduced by Bruna et al. (2013). In general, GCN generalizes convolutional operations to non-

Euclidean domains based on the spectral graph theory. The working principle of GCN can be 

briefly described as follows. 

Given a graph 𝐺 = (𝑉, 𝐸), 𝑉 represents the set of vertices, and 𝐸 is the set of edges. A GCN 

requires two matrices as input, they are the feature matrix 𝑋 and the adjacency matrix 𝐴. The 

hidden layer of a GCN is denoted as 𝐻𝑙 = 𝑓(𝐻𝑙−1, 𝐴) where the initial hidden layer 𝐻0 is set to 

𝑋 and 𝑓 indicates the propagation rule. The simplest form of a layer propagation rule is: 𝐻𝑙 = 
𝜎(𝐴𝐻𝑙−1𝑊𝑙−1), where 𝜎 represents an activation function, and 𝑊𝑙−1 is a weight parameter 

matrix. However, the simplest layer propagation rule has two typical problems. First, only the 

features of neighboring nodes can be transferred to the next layer, while the node’s own 
features cannot be passed to the next layer. To address this limitation, a new adjacency matrix 

𝐴̃ is created by adding an identity matrix 𝐼 to the given adjacency matrix 𝐴. Second, feature 

values are amplified as they propagate layer by layer. To circumvent this problem, the spectral 

normalization (𝐷−2
1

𝐴̃𝐷−2
1 

) serves as a feasible solution. Therefore, the final propagation rule of 

GCN established by Kipf and Welling (2016) takes the form of the following equation. 

1 1 
𝐻𝑙 = 𝜎(𝐷−2𝐴̃𝐷−2𝐻𝑙−1𝑊𝑙−1) 

34 



   
   

  
 

       

       

             

         

 

     

       

 

 

 

 

      

              

        

       

      

  
          

           

        

        

 

STRIDE I Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Traffic Congestion Identification and Prediction Based on Image 
Processing and Deep Learning Methods 

This study will combine GCN and GRU models to capture the spatial and temporal features from 

the road network data. Figure 12 illustrates the architecture of the GCN-GRU model, where 

ℎ𝑡−1 is the old hidden state output at time (𝑡 − 1), 𝑧𝑡 and 𝑟𝑡 denote the update and reset gates 

at time 𝑡, and ℎ𝑡 is the new hidden state output at time 𝑡. 

GCN

x t

A

X 1-

X +

Xγ
t

z
t h

t

~

 

h
t

h
t-1

σ σ tan h 

FIGURE 12 THE ARCHITECTURE OF THE GCN-GRU MODEL. 

Each of the parameters in the GCN-GRU model is calculated as follows. 

𝑧𝑡 = 𝜎(𝑊𝑧[ℎ𝑡−1, 𝑓(𝐴, 𝑥𝑡)] + 𝑏𝑧) 

𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡−1, 𝑓(𝐴, 𝑥𝑡)] + 𝑏𝑟) 

ℎ̃ = tanh(𝑊ℎ[𝑟𝑡 ∗ ℎ𝑡−1, 𝑓(𝐴, 𝑥𝑡)] + 𝑏ℎ)𝑡 

̃ℎ𝑡 = 𝑧𝑡 ∗ ℎ𝑡 + (1 − 𝑧𝑡) ∗ ℎ𝑡−1 

Where 𝑓 represents the process of GCN, 𝑊𝑧, 𝑊𝑟, and 𝑊ℎ are the weight matrices, mapping the 

input to the two gates and the input cell state. 𝑏𝑧, 𝑏𝑟, and 𝑏ℎ are bias vectors. 𝜎 is the gate 

activation function, and tanh is the hyperbolic tangent function. The equations can be used to 

capture the spatiotemporal dependencies of the road network, and then realize the network-

wide traffic state prediction based on the extracted spatiotemporal features. 

2.3.3 Loss Function 
During the training process of the GC-LSTM and GCN-GRU models, there will be some error 

between the actual value 𝑦𝑡 and predicted output 𝑦̂𝑡. To minimize the error, a loss function 

needs to be defined, and then an algorithm used to optimize the weights, thereby optimizing 

the model. In this study, mean squared error (MSE) is adopted as the loss function, as shown 

below. 
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𝑇 
1 

𝐿 = ∑(𝑦̂𝑡 − 𝑦𝑡)
2 

𝑁 ∙ 𝑇 
𝑡=1 

2.4 RESULT 

2.4.1 Data Set 
The experimental data used in this study mainly consists of two parts. The first part is the traffic 

speed series, which were collected from Regional Intelligent Transportation Information System 

(RITIS). The data collection time period starts from January 1st to January 15th in 2019. The 

time sale for the raw data samples is 1 minute, that is, 21600 raw data samples were 

accumulated for each sensor. In this project, the raw dataset is aggregated into 5 minutes, and 

thus, there are 4320 observations for each sensor. By discarding the last 11 observations, 4309 

data samples of each sensor are remained for study. Moreover, after discarding some sensors 

that have many empty values, a total of 501 sensors in the city of Atlanta are selected for this 

experimental study, as seen in Figure 13. The data is normalized via the min-max normalization 

method. We use 70% of the data for training, and 30% for testing. 

FIGURE 13 THE SELECTED 501 SENSORS IN THE CITY OF ATLANTA. 

The second part of the data is the adjacency matrix of the 501 sensors. In this study, the widely 

used distance matrix is adopted to represent the spatial closeness between sensors. The 

distance-based adjacency matrix is defined as: 
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𝑑𝑖𝑗
2� 𝑑𝑖𝑗

2�

exp (−� ) , 𝑖𝑓�exp (−� ) ≥ 𝜖, 𝑖 ≠ 𝑗�
𝜎2� 𝜎2�=𝐴𝑖𝑗�

1, 𝑖𝑓 𝑖�= 𝑗�
0,�𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒�{�

Where 𝑑𝑖𝑗�is the road network distance from sensor 𝑖�to sensor 𝑗, 𝜎�is the standard deviation 

(set as 0.1 in this experiment), and 𝜖�(set as 0.001 in this experiment) is the threshold to control 

the sparsity of the adjacency matrix 𝐴. 𝐴𝑖𝑗�depicts the spatial relationship between sensor 𝑖�and 

sensor 𝑗. 𝐴𝑖𝑗�=�0�indicates speed data of sensor 𝑖�and sensor 𝑗�are uncorrelated, while 𝐴𝑖𝑗�=�1�

indicates sensor 𝑖�and sensor 𝑗�are neighborhoods and the speed of sensor 𝑖�is related to the 

previous speeds of itself and its neighbors, including sensor 𝑗. 

2.4.2 Simulation Environment 
The environment configuration of the simulation experiment is as follows: (1) Hardware 

platform. Processor: 2.4GHz Quad-Core Intel Core i5; Memory: 16GB 2133MHz LPDDR3; 

Graphics: Intel Iris Plus Graphics 655 1536MB; Operating system: 64-bit operating system. (2) 

Software environment. Python 3.9.4 and PyTorch 1.7.1 deep learning frameworks are used to 

simulate the GC-LSTM, GCN-GRU and DeepESN models. 

2.4.3 Model Parameter Selection 
The parameters of the GC-LSTM model are learning rate, training epoch batch, size and number 

of hidden layers. In this experiment, the learning rate was set at 0.001, the batch size was 20, 

the training epoch was 3, and the number of hidden layers was set as 20. 

The parameters of GCN-GRU model are learning rate, training epoch batch, size and number of 

hidden layers. In this experiment, the learning rate was set at 0.001, the batch size was 20, the 

training epoch was 3, and the number of hidden layers was set as 20. The activation function of 

the first layer is a rectified linear unit (ReLU), and the activation function of the second layer is 

Softmax. 

The parameters of DeepESN model include the number of reservoir units, the number of 

recurrent layers, spectral radius, input scaling, inter-layer scaling, leaking rate, and the readout 

regularization parameter of ridge regression. In this experiment, the number of reservoir units 

is set as 5, the number of recurrent layers is 2, the spectral radius is 0.8, the input scaling is 0.3, 

the inter-layer scaling is 0.3, the leaking rate is 0.9, and the readout regularization parameter is 

0.0001. 

2.4.4 Forecasting Results 
TABLE 4 COMPARISON RESULTS OF DIFFERENT MODELS. 

Models MSE Computational Time(s) 
LSTM 0.0313 10.0 

DeepESN 0.0045 37.8 
GC-LSTM 0.0056 10.5 
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GCN-GRU 0.0058 882.1 
GC-DeepESN 0.0138 52.6 

In this experiment, five predictive models are selected on the same dataset and adjacency 

matrix. The five predictive models include the LSTM model, the DeepESN model, the GC-LSTM 

model, the GCN-GRU model, and the GC-DeepESN model. The comprehensive comparisons are 

implemented based on the evaluation index MSE. The prediction evaluation results of different 

models are provided in Table 4. From Table 4, several interesting findings can be summarized as 

follows. 

(1) The MSE produced by the GC-LSTM model is smaller than that of the individual LSTM model. 

Therefore, we can say that considering the spatial dependence of the road network is beneficial 

for traffic speed forecasting, which can improve the accuracy of prediction. 

(2) The MSE produced by the individual DeepESN model is smallest, even smaller than that of 

the GC-LSTM and GCN-GRU models. This phenomenon once again proves the superiority of the 

DeepESN method in predicting traffic states, both for an individual sensor and for the entire 

road network. 

(3) A strange phenomenon is that when the DeepESN model takes into account the spatial 

dependence of the road network, the prediction effect becomes worse. This shows that for 

different forecasting models, it is necessary to consider the connection matrix of the road 

network with caution. For different models, the selection of connection matrix needs to be 

studied more systematically. 

2.5 CONCLUSION 
In this task, the prediction of traffic state is extended to the network wide. In order to improve 

the prediction accuracy of the road network, the deep learning models are combined with the 

graph convolutional networks to capture the spatial-temporal characteristics of the traffic state 

in the road network. The traffic speed data collected from 501 sensors in the city of Atlanta are 

used for the experimental study. Five predictive models, including the LSTM model, the 

DeepESN model, the GC-LSTM model, the GCN-GRU model and the GC-DeepESN model, are 

implemented in the traffic speed data. The experimental results reveal the superiority of the 

DeepESN model in predicting the traffic speed of the road network. In addition, the LSTM 

model combined with the graph convolutional network achieves better prediction performance 

than the individual LSTM model. However, the DeepESN model combined with the graph 

convolutional neural network yields worse prediction performance than the individual DeepESN 

model. 

3.0 RECOMMENDATIONS 
This study can be extended in a number of directions. For task 1, the secondary decomposing 

components needs to be selected more systematically and accurately in the future. For task 2, 

DeepESN is a relatively new model, fully exploiting its potential especially in combination with 
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graph convolution methods is important. The success in this regard will bring large-scale 

network-level spatiotemporal prediction a step forward. 

In addition, the data used in this report are from RITIS, located in the city of Atlanta. In the 

future, we can apply the methodology proposed in this report to other datasets. There are 

some open data resources, for example, METR-LA dataset containing traffic speed and volume 

collected from the highway of the Los Angeles County Road network, with 207 loop detectors, 

and Performance Measurement System (PeMS) dataset containing over 18,000 sensors (e.g., 

inductive loops, side-fire radar, magnetometers) among the metropolitan areas of California. 

Real-time traffic state prediction is of great importance in ITS, because accurately forecasting 

traffic states can help drivers better plan their routes, shorten travel time and improve traffic 

conditions, and thus alleviate the issues of traffic congestion. The methodologies proposed in 

this report can be applied to navigation map companies. When the driver navigates through the 

map APP, based on the map’s function of predicting the future traffic state in real time, it will 

recommend the fastest route for the driver to avoid the congested road. 
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	Short-term traffic flow/speed prediction is a significant and challenging research topic as it is closely related to the application of intelligent transportation systems. Due to the variable and random characteristics of the transportation system, raw traffic flow/speed data often contains noise, and predicting it directly may reduce the accuracy and effectiveness of the prediction models. Therefore, a novel hybrid method is established in this project which combines denoising schemes and deep learning mod
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	EXECUTIVE SUMMARY 
	Due to the wide application in public transportation scheduling, route planning and signal optimization to alleviate traffic congestion, short-term traffic flow/speed prediction has been a significant consideration in the intelligent transportation system. If there is an accurate short-term traffic state prediction method, we can accurately describe and predict the evolution of traffic state over time through historical data, so that it would be possible to carry out effective traffic management and control
	Task 1 focuses on traffic forecasting on key roads. Thus, a sensor on I-285, considered one of the busiest and most congested roads in Atlanta, has been selected for this study. We propose a novel hybrid model (CEEMDAN-WPD-DeepESN) that first decomposes the original traffic state series with noise, then processes the random component, and finally predicts each sub-series separately and aggregates to get the final results. The experimental results demonstrate that the proposed CEEMDAN-WPD-DeepESN model have 
	Task 2 focuses on traffic forecasting on the road network. Thus, 501 sensors among the city of Atlanta have been selected for this study. As we know, the traffic states on these 501 sensors are not isolated, they influence each other. But which sensors have influence, how and to what extent is a complicated issue. Therefore, when predicting the network-wide traffic state, it is also questionable whether to and how to consider the influence between the sensors. In this study, we apply the graph convolutional
	The findings derived from Task 1 and Task 2 can help traffic managers to quickly and accurately predict the future traffic status of congested roads so that controlling measures can be taken in advance to prevent the spread of congestion. 
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	1.1 INTRODUCTION 
	1.1 INTRODUCTION 
	Short-term traffic volume data are often corrupted by local noises, which may influence the prediction accuracy of short-term traffic volumes. Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and wavelet packet decomposition (WPD) analysis are used in this study to decompose the original data into multiple components such that the deep echo state network (DeepESN) model can then be applied to the denoised data, and the forecasting accuracy can be improved. 
	1.1.1 Objective 
	1.1.1 Objective 
	This project proposes a hybrid model to forecast the short-term traffic flow. The objectives are to: (1) Extract and handle the nonstationary part of the traffic flow series. (2) Improve the accuracy and efficiency of short-term traffic flow forecasting. 

	1.1.2 Scope 
	1.1.2 Scope 
	This task focuses on sensor data in the city of Atlanta. The data attributes include traffic volume, speed, and occupancy. This project conducts traffic volume predictions and traffic speed predictions. 


	1.2 LITERATURE REVIEW 
	1.2 LITERATURE REVIEW 
	Significant efforts have been devoted to developing accurate and efficient methodologies for short-term traffic flow prediction. In general, there are three categories of traffic flow forecasting methods: (1) traditional statistical methods, (2) computational intelligence-based methods, and (3) hybrid methods. 
	1.2.1 Statistical Methods 
	1.2.1 Statistical Methods 
	The main idea of statistical methods is to regard traffic flow as time series data and employ statistical analysis tools as the basic model to investigate the intrinsic relationship between past and future time series values. The statistical methods include Kalman filter (Okutani and Stephanedes 1984, Whittaker et al. 1997, Stathopoulos and Karlaftis 2003, Ma et al. 2017), autoregressive integrated moving average (ARIMA) and its variants (Ahmed and Cook 1979, Levin et al. 1980, Hamed et al. 1995, Voort et a

	1.2.2 Data-driven Machine Learning Methods 
	1.2.2 Data-driven Machine Learning Methods 
	To address the nonlinear traffic flow forecasting problem, many data-driven machine learning methods have been developed, such as support vector regression (SVR) (Wu et al. 2004, 
	To address the nonlinear traffic flow forecasting problem, many data-driven machine learning methods have been developed, such as support vector regression (SVR) (Wu et al. 2004, 
	Manoel et al. 2009, Zhang and Liu 2009, Zhang and Xie 2007, Asif et al. 2013), artificial neural network (ANN) (Affiliation et al. 2015, Rilett and Park 2001, Jiang and Adeli 2005) and its variant -recurrent neural network (RNN) (Vlahogianni et al. 2005). In recent years, RNN has made great strides in traffic prediction for its capability of capturing temporal dependence of time series data. The two most popular RNN architectures for traffic state prediction are long short-term memory (LSTM) neural network 
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	1.2.3 Hybrid Methods 
	1.2.3 Hybrid Methods 
	Recently, to further enhance the accuracy of traffic prediction, some researchers have applied a data denoising process before the application of machine learning/deep learning networks. The commonly used denoising techniques include empirical mode decomposition (EMD) family (Pholsena et al. 2019, Tang et al. 2019, Tian et al. 2019, Kim et al. 2019, Wang et al. 2014, Jiang et al. 2014) and wavelet-based decomposition method (Zhang et al. 2019, Liu et al. 2019, Zhang et al. 2019, Sun et al. 2019, Sun et al. 
	Recently, to further enhance the accuracy of traffic prediction, some researchers have applied a data denoising process before the application of machine learning/deep learning networks. The commonly used denoising techniques include empirical mode decomposition (EMD) family (Pholsena et al. 2019, Tang et al. 2019, Tian et al. 2019, Kim et al. 2019, Wang et al. 2014, Jiang et al. 2014) and wavelet-based decomposition method (Zhang et al. 2019, Liu et al. 2019, Zhang et al. 2019, Sun et al. 2019, Sun et al. 
	and accurate in forecasting S&P 500 data, parking data, chaos data, temperature data and bike sharing data (Kim and King 2020). In this study, we will continue along this research path by proposing a novel secondary hybrid model for short-term traffic flow prediction. The major contributions of this work are summarized as follows: 
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	(1) 
	(1) 
	(1) 
	To deal with the non-stationary and uncertainty of the original traffic flow data, two different decomposition techniques, namely complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and wavelet packet decomposition (WPD), are used to decompose the traffic flow series into multiple predictable sub-series. 

	(2) 
	(2) 
	This is the first attempt in the field of traffic prediction to combine two decomposition techniques with DeepESN architecture (CEEMDAN-WPD-DeepESN) for fast and accurate prediction. 

	(3) 
	(3) 
	The proposed model is comprehensively compared, not only with the LSTM neural network, but also with LSTM-based ensemble models. 




	1.3 METHODOLOGY 
	1.3 METHODOLOGY 
	1.3.1 Framework of Modelling 
	1.3.1 Framework of Modelling 
	The proposed hybrid approach for short-term traffic flow prediction has two main stages. Firstly, a secondary decomposition method (CEEMDAN-WPD) is applied to decompose the traffic flow series. The DeepESN model is then used to forecast all the sub-series generated by CEEMDAN-WPD. Finally, the prediction results of each sub-series are aggregated to reconstruct the traffic flow series. Figure 1 illustrates the proposed hybrid approach. The modelling steps are as follows. 
	(1) Use CEEMDAN to decompose the original traffic flow series into a set of intrinsic mode 
	functions (IMF1, IMF2…) and a residual. The modeling details of the CEEMDAN algorithm are 
	illustrated in Section 1.3.2. 
	(2) 
	(2) 
	(2) 
	Apply a three-layer WPD to further decompose IMF1 into eight sub-series (IMF1-WPD1, IMF1-WPD2, …, IMF1-WPD8). The modeling details of the WPD algorithm are illustrated in Section 1.3.3. 

	(3) 
	(3) 
	Utilize DeepESN to predict each sub-series, and sum the predicted results of all sub-series to obtain the final forecasting results. The modeling details of the DeepESN algorithm are illustrated in Section 1.3.4. 

	(4) 
	(4) 
	To investigate the prediction performance of the proposed CEEMDAN-WPD-DeepESN framework, the same traffic flow series are also forecasted by other models, including DeepESN, CEEMDAN-DeepESN, LSTM, CEEMDAN-LSTM, CEEMDAN-WPD-LSTM. 
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	Figure
	FIGURE 1 FRAMEWORK OF THE HYBRID CEEMDAN-WPD-DEEPESN MODEL. 

	1.3.2 Empirical Mode Decomposition Family 
	1.3.2 Empirical Mode Decomposition Family 
	(1) Empirical mode decomposition (EMD) 
	Empirical mode decomposition (EMD) is an adaptive time series decomposition technique, which utilizes the Hilbert-Huang transform (HHT) to sift the nonlinear signal until it becomes stationary (Huang et al. 1998). Due to the ability of EMD in analyzing nonlinear and non-stationary signals (Liu et al. 2012, Wei and Chen 2012) and the nonlinear and non-stationary nature of traffic data, the EMD has been widely used in traffic flow/speed prediction. 
	Given an original traffic flow/speed series 𝑥(𝑡), EMD decomposes the original data into a collection of IMFs and a residual according to the local features of the data itself, such as local maxima, local minima, and zero-crossing. The decomposition procedure of EMD is as follows: 
	Step 1: Identify the local maxima and minima of the original data 𝑥(𝑡) , and fit the local extreme with cubic spline function to generate the upper envelope 𝑢(𝑡) and lower envelope 𝑙(𝑡). 
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	𝑢(𝑡)+ 𝑙(𝑡)
	Step 2: Calculate the mean of the upper and lower envelopes 𝑚(𝑡) = . 
	2 
	Step 3: Subtract the mean from the original data to get a new sequence 𝑑(𝑡) = 𝑥(𝑡) − 𝑚(𝑡). 
	Step 4: If 𝑑(𝑡) and 𝑚(𝑡) satisfy one of the stopping criteria, then the first IMF 𝑐(𝑡) = 𝑑(𝑡), the first residual 𝑟(𝑡) = 𝑥(𝑡) − 𝑑(𝑡). The stopping criteria are: i) 𝑑(𝑡) approaches zero; ii) the number of extreme and zero-crossing value of 𝑑(𝑡) either equal or differ at most by one. 
	1
	1

	Step 5: Else, replace 𝑥(𝑡) with 𝑑(𝑡), and repeat Steps 1-4 to obtain the 𝑐(𝑡) and 𝑟(𝑡). 
	1
	1

	Step 6: Regard 𝑟(𝑡) as the new time series, repeat Steps 1-5 n times until the residual 𝑟(𝑡) becomes a constant or a monotonic function that cannot be further decomposed into IMFs. 
	1
	𝑛

	Finally, the original data can be expressed as the sum of IMFs 𝑐(𝑡),𝑖 = 1,2,…,𝑛 and a residual: 
	𝑖

	𝑛 𝑥(𝑡) = ∑𝑐𝑖(𝑡)+𝑟𝑛(𝑡) 𝑖=1 
	Where 𝑛 represents the number of IMFs. 
	(2) Ensemble empirical mode decomposition (EEMD) 
	EMD may fail in the denoising procedure when the to-be denoised data cannot meet certain prerequisites (Tong et al. 2012). The most serious problem in EMD is the mode mixing phenomenon. Mode mixing refers to the situation where the IMF produced by EMD decomposition has components with dramatically different frequencies. In order to alleviate the mode mixing problem, Wu and Huang (2009) proposed a noise-assisted data analysis method called ensemble empirical mode decomposition (EEMD). The white noise can pro
	Step 1: Add a collection of white noise to the original data: 𝑥(𝑡) = 𝑥(𝑡) + 𝛽𝜀(𝑡), where 𝜀(𝑡)(𝑖 = 1,2,…,𝐼) is a zero mean unit variance white noise series, 𝐼 is the total number of trials, and 𝛽 >0. 
	𝑖
	𝑖
	𝑖

	Step 2: Decompose the noise-aided data 𝑥(𝑡) by EMD, obtaining the IMF 𝑐(𝑡) (𝑘 = 1,2, … , 𝐾 is the mode), where 𝐾 is the total number of modes, and the residual can be 
	𝑖
	𝑘
	𝑖 

	𝐾 
	expressed as 𝑟(𝑡)=𝑥(𝑡)−∑ 𝑐(𝑡)
	𝑖
	𝑖
	𝑘
	𝑖

	𝑘=1 
	1 
	𝐼 𝑖 
	Step 3: Obtain the 𝑘th 𝐼𝑀𝐹 ̃ (𝑡) = 𝑐(𝑡), and the residual is 𝑟̃(𝑡) =
	𝑘 
	𝐾

	of EEMD as 𝑐∑
	̃ 
	𝑘 

	𝑖=1
	𝐼 
	1 
	𝐼
	∑ 𝑟(𝑡).
	𝑖

	𝑖=1
	𝐼 
	Artifact
	Traffic Congestion Identification and Prediction Based on Image 
	(3) Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) 
	It can be noticed that in EEMD, every 𝑥(𝑡) is decomposed independently and a residual is obtained at each stage, with no connections between different trials. This situation can result in some EEMD shortcomings: i) decomposition is not complete, ii) different realization of signal plus noise might yield different number of modes. In order to further alleviate the mode mixing and reconstruction error problems, Torres et al. (2011) proposed the complete ensemble empirical mode decomposition with adaptive no
	𝑖

	Step 1: Add a collection of white Gaussian noise series to the original data: 𝑥(𝑡) = 𝑥(𝑡) + 𝑤𝜀(𝑡), where 𝜀(𝑡)(𝑖 = 1,2,…,𝐼) is the white Gaussian noise series, 𝐼 is the total number of trials, and 𝑤is a noise coefficient. 
	𝑖
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	Step 2: Decompose the noise-aided data 𝑥(𝑡) by EMD, obtaining the first IMF 𝑐(𝑡). 
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	𝑖

	1 
	𝐼 𝑖 
	Step 3: Obtain the first 𝐼𝑀𝐹of CEEMDAN as 𝑐̅(𝑡) = ∑ 𝑐(𝑡).
	̅̅̅̅̅̅ 
	1
	1 
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	𝐼 
	Step 4: Calculate the 𝑘th residual as 𝑟̅(𝑡) = 𝑥(𝑡) − 𝑐̅(𝑡). 
	𝑘
	𝑘

	̅̅̅̅̅̅
	Step 5: Decompose the noise-added residual 𝑟̅(𝑡) + 𝑤𝐸(𝜀(𝑡)) to obtain the (𝑘 +1)th 𝐼𝑀𝐹 
	𝑘
	𝑘
	𝑘
	𝑖
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	𝐼 
	as 𝑐̅̅̅̅̅̅(𝑡)= ∑𝐸(𝑟̅(𝑡)+𝑤𝐸(𝜀(𝑡))), where 𝐸(∙) is the operator that produces the 
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	+
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	𝑘
	𝑘
	𝑘
	𝑖
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	𝐼 
	𝑘th mode obtained by EMD. 
	Step 6: Repeat step 4-step 5 for the remaining 𝐼𝑀𝐹
	s until the obtained residual cannot be further decomposed by EMD, and the final residual can be expressed as 𝑟̅(𝑡) = 𝑥(𝑡) − 
	̅̅̅̅̅̅
	𝐾

	𝐾
	∑𝑐(𝑘 = 1,2, … , 𝐾 is the mode), where 𝐾 is the total number of 𝐼𝑀𝐹 
	𝑘=1 
	𝑘 

	̅ (𝑡) s, and the original 
	̅̅̅̅̅̅

	𝐾 
	̅̅̅̅̅̅
	data also can be expressed as the sum of 𝐼𝑀𝐹plus a residual: 𝑥(𝑡)=∑ ̅(𝑡)+𝑟̅(𝑡).
	𝑘 
	𝐾

	𝑘=1 𝑘 
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	1.3.3 Wavelet Packet Decomposition (WPD) 
	1.3.3 Wavelet Packet Decomposition (WPD) 
	Wavelet decomposition (WD) (Aghajani et al. 2016) is widely used as an effective method to decompose the non-stationary signals into multiple frequencies. While WD can only decompose appropriate components, wavelet packet decomposition (WPD), as a special WD method, can decompose both the appropriate components and the detailed components (Zhao et al. 2010). For example, the three-layer binary tree of WD obtains four components (WD1WD4), and the three-layer binary tree of WPD obtains eight components (WPD1-
	-
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	(a) WD (b) WPD 
	FIGURE 2 THE THREE-LAYER DECOMPOSITION TREES OF WD AND WPD. 
	The WPD includes two types: continuous wavelet transform (CWT), and discrete wavelet transform (DWT). The CWT can be defined as: 
	+∝ 
	𝐶𝑊𝑇(𝑎,𝑏)=〈𝑓(𝑡),Ψ(𝑡)〉=∫ 𝑓(𝑡)Ψ((𝑡−𝑏)/𝑎)/√𝑑𝑡 
	𝑓
	𝑎.𝑏
	∗
	𝑎

	−∝ 
	Where 𝑓(𝑡) is the signal, Ψ(𝑡) is the mother wavelet function, ∗ denotes the complex conjugate, 𝑎 and 𝑏 represent the scale coefficient and translation coefficient, respectively. In CWT, the scale and translation coefficients are continuous, which makes CWT quite slow. Therefore, CWT is seldom employed for prediction. Instead, the wavelet of DWT is scaled and translated using certain scales and positions that can provide the necessary information while reducing the calculation cost. In detail, DWT uses
	𝑗 
	𝑗 


	1.3.4 Deep Echo State Network (DeepESN) 
	1.3.4 Deep Echo State Network (DeepESN) 
	(1) Echo State Network (ESN) 
	The traditional RNNs, such as LSTM and GRU, are trained by backpropagation (BP) of the error through the network. Due to the chain rule of BP, RNN training has the tendency to explode or vanish, requiring extensive computational resources to convergence, and can lead to poor local minima. Then the echo state network (ESN) proposes another trend toward training and employing RNNs. The core part of ESN is a single reservoir consisting of a large number of neurons that are randomly interconnected and/or self-c
	The traditional RNNs, such as LSTM and GRU, are trained by backpropagation (BP) of the error through the network. Due to the chain rule of BP, RNN training has the tendency to explode or vanish, requiring extensive computational resources to convergence, and can lead to poor local minima. Then the echo state network (ESN) proposes another trend toward training and employing RNNs. The core part of ESN is a single reservoir consisting of a large number of neurons that are randomly interconnected and/or self-c
	BP. Because of these characteristics, ESN becomes an efficient and powerful approach to RNN training, especially suited for time series modeling. 
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	Figure
	FIGURE 3 A GENERIC ESN MODEL. 
	FIGURE 3 A GENERIC ESN MODEL. 
	Following the notations and terminologies introduced by Gallicchio et al. (2017), an ESN is a recurrent network model that contains 𝑁input units and 𝑁reservoir units. Omitting the bias terms for the ease of notation, the state of the reservoir at time 𝑡 is updated according to the following recurrence function: 
	𝑢 
	𝑟 

	𝑥(𝑡) = (1 − 𝑎) ∙ 𝑥(𝑡 − 1) + 𝑎 ∙ tanh(𝑊∙ 𝑢(𝑡) + 𝑊∙ 𝑥(𝑡 − 1)) 
	𝑖𝑛 
	̂ 

	Where 𝑥(𝑡) represents the reservoir state at time 𝑡, 𝑢(𝑡) is the input state at time 𝑡, 𝑊denotes the input-to-reservoir weight matrix, 𝑊expresses the recurrent reservoir weight matrix, 𝑎 ∈ [0,1] is the leaking rate, and tanh represents the element-wise application of the hyperbolic tangent activation function. The reservoir parameters are assigned randomly and then left untrained. 𝑊is randomly selected from a uniform distribution and then rescaled to have a maximum singular value equal to an input
	𝑖𝑛 
	̂ 
	𝑖𝑛 
	̂ 

	The output of the ESN network is computed as a linear combination of the activated reservoir states, as follows: 
	𝑜𝑢𝑡 Where 𝑦(𝑡) denotes the output value at time 𝑡, 𝑊stands for the reservoir-to-output weight matrix. 𝑊is the only part that gets trained, typically using pseudo-inversion or ridge regression methods (Lukosevicius and Jaeger 2009). 
	𝑦
	(
	𝑡
	) 
	= 𝑊
	∙ 𝑥
	(
	𝑡
	) 
	𝑜𝑢𝑡 
	𝑜𝑢𝑡 

	(2) Deep Echo State Network 
	(2) Deep Echo State Network 
	By stacking multiple reservoir layers on top of each other, Gallicchio et al. (2018) introduced an ESN-based deep learning architecture, called a deep echo state network (DeepESN). The architecture of a DeepESN is shown in Figure 4, it consists of an input layer, a stacked hierarchy of reservoirs, and an output layer. The input connections to the first reservoir are randomly assigned and not trainable, and each successive reservoir-to-reservoir layer is fed by the output of the previous one in the stack. Th
	𝐿 
	𝑅
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	FIGURE 4 ILLUSTRATION OF A DEEP ECHO STATE NETWORK. 
	FIGURE 4 ILLUSTRATION OF A DEEP ECHO STATE NETWORK. 
	Omitting the bias terms for the ease of notation, the state of the first reservoir at time 𝑡 is updated according to the following function: 
	𝑥(𝑡) = (1 − 𝑎) ∙ 𝑥(𝑡 − 1) + 𝑎∙ tanh(𝑊∙ 𝑢(𝑡) + 𝑊∙ 𝑥(𝑡 − 1)) 
	(1)
	(1)
	(1)
	(1) 
	𝑖𝑛 
	̂ 
	(1) 
	(1)

	While for every layer 𝑙 > 1, the state of the 𝑙th reservoir at time 𝑡 is updated according to the following recurrence function: 
	𝑥(𝑡) = (1 − 𝑎) ∙ 𝑥(𝑡 − 1) + 𝑎∙ tanh(𝑊∙ 𝑥(𝑡) + 𝑊∙ 𝑥(𝑡 − 1)) 
	(𝑙)
	(𝑙)
	(𝑙)
	(𝑙) 
	(𝑙) 
	(𝑙−1)
	̂ 
	(𝑙) 
	(𝑙)

	Where 𝑢(𝑡) is the input state at time 𝑡, 𝑙 is the number of the reservoir layer (𝑙 = 1,2,…,𝑁), 𝑥(𝑡) denotes the state of reservoir layer 𝑙 at time 𝑡, 𝑊refers to the input weight matrix, 𝑊is the inter-layer connection weight matrix from layer (𝑙 −1) to layer 𝑙, 𝑊is the 
	𝐿
	(𝑙)
	𝑖𝑛 
	(𝑙) 
	̂ 
	(𝑙) 

	Artifact
	Traffic Congestion Identification and Prediction Based on Image 
	recurrent weight matrix of reservoir layer 𝑙, 𝑎∈ [0,1] represents the leaking rate at layer 𝑙, and tanh is the element-wise application of the hyperbolic tangent. The reservoir parameters are assigned randomly and then left untrained. The input weight matrix 𝑊is randomly initialized from a uniform distribution and then rescaled to have a maximum singular value equal to an input scaling parameter 𝑤. The inter-layer weight matrix 𝑊is also randomly initialized from a uniform distribution and then rescale
	(𝑙) 
	𝑖𝑛 
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	The output of the DeepESN is computed as a linear combination of the recurrent units over all of the recurrent layers, as follows: 
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	Where 𝑊denotes the weight matrix between reservoirs to output, which connects the reservoir units in all layers to the units in the output. The training of 𝑊out is conducted with ridge regression. 
	𝑜𝑢𝑡 
	𝑜𝑢𝑡 



	1.3.5 Evaluation Metrics 
	1.3.5 Evaluation Metrics 
	In order to evaluate the prediction performance for different models, three commonly used metrics are adopted, that are, the mean absolute error (MAE), the mean absolute percentage error (MAPE) and the root mean square error (RMSE). The formulas of MAE, MAPE and RMSE are expressed as follows: 
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	𝑅𝑀𝑆𝐸 = √ ∑(𝑦̂− 𝑦)
	𝑖 
	𝑖
	2 

	𝑁 
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	Where, 𝑁 is the number of samples used in evaluation, 𝑦is the observed traffic volume in time step 𝑖 at different stations, and 𝑦̂represents the predicted volume. Furthermore, it should be noted that the unit of MAE and RMSE for data collected under different time intervals is the number of vehicles per time scales (5 min). In the experiments, aiming to further evaluate the long-term prediction performance of all models, one-step ahead prediction is estimated. The 
	Where, 𝑁 is the number of samples used in evaluation, 𝑦is the observed traffic volume in time step 𝑖 at different stations, and 𝑦̂represents the predicted volume. Furthermore, it should be noted that the unit of MAE and RMSE for data collected under different time intervals is the number of vehicles per time scales (5 min). In the experiments, aiming to further evaluate the long-term prediction performance of all models, one-step ahead prediction is estimated. The 
	𝑖 
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	one-step ahead prediction is to forecast the traffic volume in the next 5 min from current time point. 
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	1.4 RESULT 
	1.4 RESULT 
	1.4.1 Data Set 
	1.4.1 Data Set 
	The experimental data used in this project are collected from Regional Intelligent Transportation Information System (RITIS). The dataset includes traffic volume, speed and occupancy detected from microwave sensors in freeway network of Atlanta city. The data collection time starts from January 1st to January 15th in 2019. The time scale for the raw data samples is 1 minute, that is, 21600 raw data samples were accumulated for each sensor. In this project, the raw dataset is aggregated into 5 minutes, and t
	Figure
	FIGURE 5 THE SELECTED SENSOR A IN THE CITY OF ATLANTA. 
	Artifact
	Traffic Congestion Identification and Prediction Based on Image 
	1.4.2 Forecasting Results 
	Figure
	FIGURE 6 ORIGINAL TRAFFIC FLOW TIME SERIES OF SENSOR A. 
	FIGURE 6 ORIGINAL TRAFFIC FLOW TIME SERIES OF SENSOR A. 
	Figure 6 shows the 4320 traffic volume series on I-285 detected from sensor A. From Figure 6, we can find that the original volume series exerts randomness and nonstationary in nature. Thus, to reduce the complexity of the volume series for better prediction, a second-decomposition method is proposed. Specifically, the CEEMDAN and WPD algorithms will be applied successively in the volume series decomposition. 
	(1) CEEMDAN Decomposition 
	The first step is to decompose the original volume series into multiple components through the CEEMDAN method. Following the CEEMDAN procedures outlined in the section 1.3.2, a total of 11 IMFs and one residual were obtained from the original volume data series, as seen in Figure 
	7. We can observe that the original volume series is decomposed into a series of relatively stationary data sets. The IMF with higher frequency represents the pattern of a shorter period, whereas the IMF with lower frequency represents the pattern of a longer period. Thus, the highly stochastic variations in the volume series are represented by the first few components (IMF1-IMF6), while the last few IMFs (IMF7-IMF11) describe the cyclical components in the volume series. The last component is the residual 
	Artifact
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	Figure

	FIGURE 7 THE ORIGINAL TRAFFIC FLOW SERIES DECOMPOSED TO IMF1-IMF11 AND RESIDUAL BY THE CEEMDAN METHOD. 
	FIGURE 7 THE ORIGINAL TRAFFIC FLOW SERIES DECOMPOSED TO IMF1-IMF11 AND RESIDUAL BY THE CEEMDAN METHOD. 
	The trend persistence of decomposed components can be measured by the Hurst Exponent. If the Hurst value ranges between [0,0.5), it indicates a time series with long-term switching between high and low values in adjacent pairs, called anti-persistence in time series. If the Hurst value ranges between (0.5,1], it indicates a time series with long-term positive autocorrelation, called persistence in time series. When the Hurst Exponent value is equal to 0.5, it means the time series move in a random walk. The
	The trend persistence of decomposed components can be measured by the Hurst Exponent. If the Hurst value ranges between [0,0.5), it indicates a time series with long-term switching between high and low values in adjacent pairs, called anti-persistence in time series. If the Hurst value ranges between (0.5,1], it indicates a time series with long-term positive autocorrelation, called persistence in time series. When the Hurst Exponent value is equal to 0.5, it means the time series move in a random walk. The
	have anti-persistence features and will be further decomposed. The Hurst Exponent values of IMF7, IMF8, IMF9, IMF10, IMF11 and Residual are between (0.5,1], indicating that these components have persistence features. 
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	TABLE 1 HURST EXPONENT OF EACH COMPONENT DECOMPOSED BY CEEMDAN. 
	Component 
	Component 
	Component 
	Hurst Exponent value 
	Component 
	Hurst exponent value 

	IMF1 
	IMF1 
	0.29 
	IMF7 
	0.58 

	IMF2 
	IMF2 
	0.27 
	IMF8 
	0.75 

	IMF3 
	IMF3 
	0.13 
	IMF9 
	0.79 

	IMF4 
	IMF4 
	0.16 
	IMF10 
	0.92 

	IMF5 
	IMF5 
	0.32 
	IMF11 
	0.96 

	IMF6 
	IMF6 
	0.45 
	Residual 
	1.00 


	(2) WPD Decomposition 
	Note that IMF1, IMF2, IMF3, IMF4, IMF5 and IMF6 obtained by CEEDMAN consist of the complex and high-frequency component signals of the volume series. So in the second step, WPD algorithm is used to further decompose these components, and the three-level WPD algorithm is adopted in this study. For example, Figure 8 shows the decomposition result of IMF1. Through the WPD method, IMF1 is further decomposed into 8 groups of wavelet packet coefficients, called IMF1_WPD1, IMF1_WPD2, IMF1_WPD3, IMF1_WPD4, IMF1_WPD
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	FIGURE 8 IMF1 DECOMPOSED TO IMF1_WPD1-IMF1_WPD8 COMPONENTS BY THE WPD METHOD. 
	FIGURE 8 IMF1 DECOMPOSED TO IMF1_WPD1-IMF1_WPD8 COMPONENTS BY THE WPD METHOD. 
	(3) DeepESN Prediction 
	After the secondory decomposition procedure, the intrinsic characteristics of traffic volume series are decomposed to a batch of components, which should be more useful for prediction. In the third step, each of the 54 components obtained by the the CEEMDAN-WPD secondary decomposition method are divided into two subsets. The first 90% of data are used to train the forecasting model, and the last 10% are used to test the performance of the proposed forecasting model. 
	Following explanations in Section 1.3.4, we need to set up some parameters to train the DeepESN model. The pamameters include the number of reservoir units, the number of recurrent layers, spectral radius, input scaling, inter-layer scaling, leaking rate, and the readout regularization parameter of ridge regression. In addition, for simplification, all the layers share the same spectral radius 𝜌 and the same inter-layer scaling 𝑤. Refering to the parameter configurations in Gallicchio et al. (2018) and So
	Following explanations in Section 1.3.4, we need to set up some parameters to train the DeepESN model. The pamameters include the number of reservoir units, the number of recurrent layers, spectral radius, input scaling, inter-layer scaling, leaking rate, and the readout regularization parameter of ridge regression. In addition, for simplification, all the layers share the same spectral radius 𝜌 and the same inter-layer scaling 𝑤. Refering to the parameter configurations in Gallicchio et al. (2018) and So
	𝑖𝑙

	layers, spectral radius and leaking rate, while other parameters did not make a large difference in the prediction results. 
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	TABLE 2 SELECTION OF HYPERMETERS USED IN DEEPESN MODEL. 
	Parameter 
	Parameter 
	Parameter 
	Selection Set 
	Final Selection 

	Number of reservoir units (𝑁𝑟) 
	Number of reservoir units (𝑁𝑟) 
	{10, 20, 50, 100} 
	20 

	Number of recurrent layers (𝑁𝑙) 
	Number of recurrent layers (𝑁𝑙) 
	{3, 5, 7, 9, 15, 20} 
	5 

	Spectral radius (𝜌) 
	Spectral radius (𝜌) 
	{0.2, 0.4, 0.6, 0.8, 1.0} 
	0.8 

	Input scaling (𝑤𝑖𝑛) 
	Input scaling (𝑤𝑖𝑛) 
	{0.1, 0.2, 0.5, 1, 2, 5, 10} 
	0.5 

	Inter-layer scaling (𝑤𝑖𝑙) 
	Inter-layer scaling (𝑤𝑖𝑙) 
	{0.1, 0.2, 0.5, 1, 2, 5, 10} 
	0.5 

	Leaking rate (𝑎) 
	Leaking rate (𝑎) 
	{0.1, 0.3, 0.5, 0.7, 0.9} 
	0.9 

	Readout regularization (𝜆) 
	Readout regularization (𝜆) 
	{0.1, 0.001, 1e-5, 1e-10} 
	1e-5 


	The DeepESN model is implemented on each of the 54 components, and adding the 54 predictions together formed the final prediction result. As shown in Figure 9, the observations and predictions of the test dataset fit almost perfectly, with MAPE of only 0.0007, illustrating the accuracy of the proposed method in this project. The exact numbers of errors are presented in Figure 10 and Table 3. 
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	FIGURE 9 THE PREDICTION RESULT OF THE TEST DATA. 
	FIGURE 9 THE PREDICTION RESULT OF THE TEST DATA. 
	(4) Result Comparison with Base Models 
	Artifact
	Traffic Congestion Identification and Prediction Based on Image 
	In order to validate the effectiveness of the proposed model, seven predictive models are selected for comparative experiments on the same dataset. The seven predictive models include LSTM model, hybrid CEEMDAN-LSTM model, hybrid CEEMDAN-WPD-LSTM model, DeepESN model, hybrid CEEMDAN-DeepESN model, hybrid CEEMDAN-WPD-DeepESN model, and hybrid CEEMDAN-WPD6-DeepESN model. Specifically, the hybrid CEEMDAN-LSTM model means that the original traffic volume series is first decomposed to multiple IMFs, each of whic
	The comprehensive comparisons were implemented based on four evaluation criteria, that are MAE, MAPE, RMSE and elapsed time. The detailed prediction results of different models are presented in Figure 10, and the prediction evaluation results of different models are provided in Table 3. 
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	(a) Prediction result of the LSTM model. 
	(a) Prediction result of the LSTM model. 
	(b) Prediction result of the CEEMDAN-LSTM model. 
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	(c)
	(c)
	(c)
	(c)
	 Prediction result of the CEEMDAN-WPD-LSTM model. 

	(d) Prediction result of the DeepESN model. 

	(e) 
	(e) 
	Prediction result of the CEEMDAN-DeepESN model. 
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	(f) Prediction result of the CEEMDAN-WPD-DeepESN model 
	Figure
	(f)
	(f)
	(f)
	 Prediction result of the CEEMDAN-WPD-DeepESN model. 

	(g) 
	(g) 
	Prediction result of the CEEMDAN-WPD6-DeepESN model. 
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	FIGURE 10 PREDICTION RESULTS OF DIFFERENT MODELS. TABLE 3 PERFORMANCE EVALUATION RESULTS OF DIFFERENT MODELS. 
	FIGURE 10 PREDICTION RESULTS OF DIFFERENT MODELS. TABLE 3 PERFORMANCE EVALUATION RESULTS OF DIFFERENT MODELS. 
	FIGURE 10 PREDICTION RESULTS OF DIFFERENT MODELS. TABLE 3 PERFORMANCE EVALUATION RESULTS OF DIFFERENT MODELS. 

	Models 
	Models 
	Computational Time(s) 
	MAE 
	MAPE 
	RMSE 

	LSTM 
	LSTM 
	73 
	13.0 
	0.0299 
	18.6 

	CEEMDAN-LSTM 
	CEEMDAN-LSTM 
	538 
	8.8 
	0.0091 
	11.0 

	CEEMDAN-WPD-LSTM 
	CEEMDAN-WPD-LSTM 
	1309 
	5.1 
	0.0276 
	7.1 

	DeepESN 
	DeepESN 
	4 
	12.9 
	0.0284 
	18.2 

	CEEMDAN-DeepESN 
	CEEMDAN-DeepESN 
	5 
	5.6 
	0.0128 
	7.5 

	CEEMDAN-WPD-DeepESN 
	CEEMDAN-WPD-DeepESN 
	10 
	3.5 
	0.0075 
	5.2 

	CEEMDAN-WPD6-DeepESN 
	CEEMDAN-WPD6-DeepESN 
	90 
	3.6 
	0.0007 
	5.8 


	From the observation of prediction results in Table 3 and Figure 10, several interesting finding can be summarized as follows: 
	(1) 
	(1) 
	(1) 
	Both of the hybrid CEEMDAN-LSTM and CEEMDAN-WPD-LSTM models have smaller MAE, MAPE and RMSE values than those of the LSTM model, and all of the hybrid CEEMDAN-DeepESN, CEEMDAN-WPD-DeepESN and CEEMDAN-WPD6-DeepESN models have smaller MAE, MAPE and RMSE values than those of the DeepESN model. Smaller values for MAE, MAPE and RMSE indicate higher prediction accuracy. Therefore, we can conclude that the prediction results of models that incorporate decomposition techniques are superior to that without decomposi

	(2) 
	(2) 
	The CEEMDAN-WPD-LSTM model has smaller MAE, MAPE and RMSE values than those of the CEEMDAN-LSTM model, and both of the CEEMDAN-WPD-DeepESN and CEEMDAN-WPD6DeepESN models have smaller MAE, MAPE and RMSE values than those of the CEEMDAN-DeepESN model. The results demonstrate that the second-order decomposition technique has higher predictive accuracy than the first-order decomposition technique. 
	-


	(3) 
	(3) 
	The prediction accuracy of LSTM and DeepESN models is similar, while the CEEMDAN-DeepESN model has smaller MAE, MAPE and RMSE values than those of the CEEMDAN-LSTM model, and CEEMDAN-WPD-DeepESN model has smaller MAE, MAPE and RMSE values than those of the CEEMDAN-WPD-LSTM model. As a result, deep learning prediction methods combined with decomposition techniques to forecast traffic flow have proven feasible and effective. Moreover, the combination of DeepESN and decomposition techniques produces higher acc

	(4) 
	(4) 
	(4) 
	The CEEMDAN-WPD-DeepESN and CEEMDAN-WPD6-DeepESN models have very similar MAE, MAPE and RMSE values. This phenomenon illustrates that in the second step of the 

	decomposition process, it is not that the more components to be decomposed, the better. Decomposing IMF1 alone not only yields the same prediction accuracy as decomposing IMF1, IMF2, IMF3, IMF4, IMF5 and IMF6, but also reduces the calculation time by a factor of nine. 

	(5) 
	(5) 
	The DeepESN related models are much superior to the LSTM related models in calculating time consumption. For example, when predicting the same dataset, DeepESN only took 4 seconds while LSTM took 73 seconds, CEEMDAN-DeepESN only took 5 seconds while CEEMDAN-LSTM took 538 seconds, and CEEMDAN-WPD-DeepESN only took 10 seconds while CEEMDAN-WPD-LSTM took 1309 seconds. The DeepESN related models have proven to be powerfully efficient. The hybrid models of DeepESN and decomposition techniques have verified to be
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	1.5 CONCLUSION 
	1.5 CONCLUSION 
	In this project, a novel hybrid prediction model, CEEMDAN-WPD-DeepESN, has been proposed for short-term traffic flow prediction. First, with consideration of the intrinsic characteristics of traffic flow series, the raw dataset is decomposed to IMFs by CEEMDAN. Then, the high frequency IMFs are decomposed to sub-series by WPD. Next, DeepESN is adopted to forecast each of the decomposed components. Finally, the forecasting results of the sub-series are aggregated to obtain the final prediction result. Experi
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	2.0 TASK 2: SHORT-TERM TRAFFIC SPEED PREDICTION ON A ROAD NETWORK 
	2.0 TASK 2: SHORT-TERM TRAFFIC SPEED PREDICTION ON A ROAD NETWORK 
	2.1 INTRODUCTION 
	2.1 INTRODUCTION 
	Traffic prediction is an important topic due to its potential in various intelligent applications. However, network-wide traffic state prediction is challenging due to the complicated spatial structure and temporal dependencies in road networks. Typically, traffic conditions at nearby locations affect each other. To capture such spatial structure feature in the road network, this study adopts the graph convolution technique. In addition, deep learning recurrent neural networks are employed to mine the tempo
	2.1.1 Objective 
	2.1.1 Objective 
	This project compares several graph convolutional based deep learning models to forecast the network-wide traffic speed. The objectives are to: (1) Evaluate performance of graph convolutional methods in capturing the spatial dependency of the road network. (2) Evaluate the feasibility and superiority of the DeepESN model in predicting the traffic state of the road network. (3) Improve the accuracy and efficiency of short-term network-wide traffic speed forecasting. 

	2.1.2 Scope 
	2.1.2 Scope 
	The study focuses on the Atlanta Road network. The experiment studied 15 days of data from 01/01/2019 to 01/15/2019 with a total of 501 sensors. 


	2.2 LITERATURE REVIEW 
	2.2 LITERATURE REVIEW 
	Although deep learning models have shown their superior capability for traffic flow prediction in the above task, these methods ignore the spatial dependencies, so that the traffic state prediction is not constrained by the structure of the road network, which may lead to failure in forecasting the entire road network. Aiming at this problem, recent studies have focused on graph-structured data, which can be applied to capture the spatial relationships present in a traffic network. For example, Yu, Lee, and
	Therefore, in this study, we also learn the traffic network as a graph and conduct convolution on the traffic network-based graph. Different deep learning models combined with the graph convolution are applied to the network-wide traffic state prediction, to observe the effectiveness and limitations of the graph convolutional deep learning models. 
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	2.3 METHODOLOGY 
	2.3 METHODOLOGY 
	2.3.1 Graph Convolutional Long Short Term Memory (GC-LSTM) 
	2.3.1 Graph Convolutional Long Short Term Memory (GC-LSTM) 
	The architecture of the Graph Convolutional LSTM (GC-LSTM) recurrent neural network is presented in Figure 11, which learns both the spatial dependencies and the dynamic temporal dependencies in traffic series. In this model, the gates structure in the LSTM and the hidden state are unchanged, but the cell state from the previous time step is incorporated by the graph convolution features. The forget gate 𝑓, the input gate 𝑖, the output gate 𝑜, and the input cell state 𝐶in terms of time step 𝑡 are defin
	𝑡
	𝑡
	𝑡
	̃
	𝑡 

	𝑓𝑡 =𝜎(𝑊𝑓∙[ℎ𝑡−1,𝑥𝑡]+𝑏𝑓) 
	𝑖𝑡 =𝜎(𝑊𝑖∙[ℎ𝑡−1,𝑥𝑡]+𝑏𝑖) 
	𝑜𝑡 =𝜎(𝑊𝑜∙[ℎ𝑡−1,𝑥𝑡]+𝑏𝑜) 
	𝐶=tanh(𝑊∙[ℎ,𝑥]+𝑏)
	̃ 
	𝐶
	𝑡−1
	𝑡
	𝐶

	𝑡 
	Where ∙ denotes the matrix multiplication operator. 𝑊, 𝑊, 𝑊, and 𝑊are the weight matrices, mapping the input to the three gates and the input cell state. 𝑏, 𝑏, 𝑏, and 𝑏represent bias vectors. 𝜎 is the gate activation function, and tanh is the hyperbolic tangent function. 
	𝑓
	𝑖
	𝑜
	𝐶 
	𝑓
	𝑖
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	Due to each node in a traffic network graph is influenced by the preceding states of itself and its neighboring nodes, the LSTM cell state of each node in the graph should also be affected by neighboring cell states. Thus, a cell state gate is designed and added in the LSTM cell. The cell state gate, as shown in Figure 11, is defined as follows. 
	∗
	𝐶𝑡−1 = 𝑊 ∗ 𝐴 ∙ 𝐶𝑡−1 
	Where 𝑊 is a weight matrix to measure the contributions of neighboring cell states. To correctly reflect the traffic network structure, 𝑊 is constrained by multiplying an adjacency matrix 𝐴. With this gate, the influence of neighboring cell states will be considered when the cell state is recurrently input to the subsequent time step. Then, the final cell state and the hidden state are calculated as follows. 
	∗ 
	∗ 

	̃
	𝑡 𝑡 𝑡−1 𝑡 𝑡 ℎ= 𝑜∗ tanh(𝐶) 
	𝐶
	= 𝑓
	∗ 𝐶
	+ 𝑖
	∗ 𝐶
	𝑡 
	𝑡 
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	Figure
	FIGURE 11 THE ARCHITECTURE OF THE GC-LSTM MODEL. 
	FIGURE 11 THE ARCHITECTURE OF THE GC-LSTM MODEL. 



	2.3.2 Graph Convolutional Neural Network with Gated Recurrent Unit (GCN-GRU) 
	2.3.2 Graph Convolutional Neural Network with Gated Recurrent Unit (GCN-GRU) 
	GCN was proposed by Kipf and Welling (2016), and its origin is the spectral-graph CNN introduced by Bruna et al. (2013). In general, GCN generalizes convolutional operations to non-Euclidean domains based on the spectral graph theory. The working principle of GCN can be briefly described as follows. 
	Given a graph 𝐺 = (𝑉, 𝐸), 𝑉 represents the set of vertices, and 𝐸 is the set of edges. A GCN requires two matrices as input, they are the feature matrix 𝑋 and the adjacency matrix 𝐴. The hidden layer of a GCN is denoted as 𝐻= 𝑓(𝐻, 𝐴) where the initial hidden layer 𝐻is set to 𝑋 and 𝑓 indicates the propagation rule. The simplest form of a layer propagation rule is: 𝐻= 𝜎(𝐴𝐻𝑊), where 𝜎 represents an activation function, and 𝑊is a weight parameter matrix. However, the simplest layer propagat
	𝑙 
	𝑙−1
	0 
	𝑙 
	𝑙−1
	𝑙−1
	𝑙−1 

	features of neighboring nodes can be transferred to the next layer, while the node’s own 
	features cannot be passed to the next layer. To address this limitation, a new adjacency matrix 𝐴is created by adding an identity matrix 𝐼 to the given adjacency matrix 𝐴. Second, feature values are amplified as they propagate layer by layer. To circumvent this problem, the spectral 
	̃ 

	normalization (𝐷2𝐴𝐷2) serves as a feasible solution. Therefore, the final propagation rule of GCN established by Kipf and Welling (2016) takes the form of the following equation. 
	−
	1
	̃
	−
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	This study will combine GCN and GRU models to capture the spatial and temporal features from the road network data. Figure 12 illustrates the architecture of the GCN-GRU model, where ℎis the old hidden state output at time (𝑡 −1), 𝑧and 𝑟denote the update and reset gates at time 𝑡, and ℎis the new hidden state output at time 𝑡. 
	𝑡−1 
	𝑡 
	𝑡 
	𝑡 

	Figure
	FIGURE 12 THE ARCHITECTURE OF THE GCN-GRU MODEL. 
	FIGURE 12 THE ARCHITECTURE OF THE GCN-GRU MODEL. 


	Each of the parameters in the GCN-GRU model is calculated as follows. 
	𝑧𝑡 =𝜎(𝑊𝑧[ℎ𝑡−1,𝑓(𝐴,𝑥𝑡)]+𝑏𝑧) 
	𝑟𝑡 =𝜎(𝑊𝑟[ℎ𝑡−1,𝑓(𝐴,𝑥𝑡)]+𝑏𝑟) ̃
	ℎ =tanh(𝑊[𝑟∗ℎ,𝑓(𝐴,𝑥)]+𝑏)
	ℎ
	𝑡
	𝑡−1
	𝑡
	ℎ

	𝑡 
	̃
	𝑡 𝑡 𝑡 𝑡𝑡−1 Where 𝑓 represents the process of GCN, 𝑊, 𝑊, and 𝑊are the weight matrices, mapping the input to the two gates and the input cell state. 𝑏, 𝑏, and 𝑏are bias vectors. 𝜎 is the gate activation function, and tanh is the hyperbolic tangent function. The equations can be used to capture the spatiotemporal dependencies of the road network, and then realize the network-wide traffic state prediction based on the extracted spatiotemporal features. 
	ℎ
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	2.3.3 Loss Function 
	2.3.3 Loss Function 
	During the training process of the GC-LSTM and GCN-GRU models, there will be some error between the actual value 𝑦and predicted output 𝑦̂. To minimize the error, a loss function needs to be defined, and then an algorithm used to optimize the weights, thereby optimizing the model. In this study, mean squared error (MSE) is adopted as the loss function, as shown below. 
	𝑡 
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	2.4 RESULT 
	2.4 RESULT 
	2.4.1 Data Set 
	2.4.1 Data Set 
	The experimental data used in this study mainly consists of two parts. The first part is the traffic speed series, which were collected from Regional Intelligent Transportation Information System (RITIS). The data collection time period starts from January 1st to January 15th in 2019. The time sale for the raw data samples is 1 minute, that is, 21600 raw data samples were accumulated for each sensor. In this project, the raw dataset is aggregated into 5 minutes, and thus, there are 4320 observations for eac
	Figure
	FIGURE 13 THE SELECTED 501 SENSORS IN THE CITY OF ATLANTA. 
	FIGURE 13 THE SELECTED 501 SENSORS IN THE CITY OF ATLANTA. 


	The second part of the data is the adjacency matrix of the 501 sensors. In this study, the widely used distance matrix is adopted to represent the spatial closeness between sensors. The distance-based adjacency matrix is defined as: 
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	𝑖𝑗
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	1,𝑖𝑓𝑖=𝑗0,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	{Where 𝑑is the road network distance from sensor 𝑖to sensor 𝑗, 𝜎is the standard deviation (set as 0.1 in this experiment), and 𝜖(set as 0.001 in this experiment) is the threshold to control the sparsity of the adjacency matrix 𝐴. 𝐴depicts the spatial relationship between sensor 𝑖and sensor 𝑗. 𝐴=0indicates speed data of sensor 𝑖and sensor 𝑗are uncorrelated, while 𝐴=1indicates sensor 𝑖and sensor 𝑗are neighborhoods and the speed of sensor 𝑖is related to the previous speeds of itself and its nei
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	2.4.2 Simulation Environment 
	2.4.2 Simulation Environment 
	The environment configuration of the simulation experiment is as follows: (1) Hardware platform. Processor: 2.4GHz Quad-Core Intel Core i5; Memory: 16GB 2133MHz LPDDR3; Graphics: Intel Iris Plus Graphics 655 1536MB; Operating system: 64-bit operating system. (2) Software environment. Python 3.9.4 and PyTorch 1.7.1 deep learning frameworks are used to simulate the GC-LSTM, GCN-GRU and DeepESN models. 

	2.4.3 Model Parameter Selection 
	2.4.3 Model Parameter Selection 
	The parameters of the GC-LSTM model are learning rate, training epoch batch, size and number of hidden layers. In this experiment, the learning rate was set at 0.001, the batch size was 20, the training epoch was 3, and the number of hidden layers was set as 20. 
	The parameters of GCN-GRU model are learning rate, training epoch batch, size and number of hidden layers. In this experiment, the learning rate was set at 0.001, the batch size was 20, the training epoch was 3, and the number of hidden layers was set as 20. The activation function of the first layer is a rectified linear unit (ReLU), and the activation function of the second layer is Softmax. 
	The parameters of DeepESN model include the number of reservoir units, the number of recurrent layers, spectral radius, input scaling, inter-layer scaling, leaking rate, and the readout regularization parameter of ridge regression. In this experiment, the number of reservoir units is set as 5, the number of recurrent layers is 2, the spectral radius is 0.8, the input scaling is 0.3, the inter-layer scaling is 0.3, the leaking rate is 0.9, and the readout regularization parameter is 0.0001. 

	2.4.4 Forecasting Results 
	2.4.4 Forecasting Results 
	TABLE 4 COMPARISON RESULTS OF DIFFERENT MODELS. 
	TABLE 4 COMPARISON RESULTS OF DIFFERENT MODELS. 
	Models 
	Models 
	Models 
	MSE 
	Computational Time(s) 

	LSTM 
	LSTM 
	0.0313 
	10.0 

	DeepESN 
	DeepESN 
	0.0045 
	37.8 

	GC-LSTM 
	GC-LSTM 
	0.0056 
	10.5 
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	GCN-GRU 
	GCN-GRU 
	GCN-GRU 
	0.0058 
	882.1 

	GC-DeepESN 
	GC-DeepESN 
	0.0138 
	52.6 


	In this experiment, five predictive models are selected on the same dataset and adjacency matrix. The five predictive models include the LSTM model, the DeepESN model, the GC-LSTM model, the GCN-GRU model, and the GC-DeepESN model. The comprehensive comparisons are implemented based on the evaluation index MSE. The prediction evaluation results of different models are provided in Table 4. From Table 4, several interesting findings can be summarized as follows. 
	(1) 
	(1) 
	(1) 
	The MSE produced by the GC-LSTM model is smaller than that of the individual LSTM model. Therefore, we can say that considering the spatial dependence of the road network is beneficial for traffic speed forecasting, which can improve the accuracy of prediction. 

	(2) 
	(2) 
	The MSE produced by the individual DeepESN model is smallest, even smaller than that of the GC-LSTM and GCN-GRU models. This phenomenon once again proves the superiority of the DeepESN method in predicting traffic states, both for an individual sensor and for the entire road network. 

	(3) 
	(3) 
	A strange phenomenon is that when the DeepESN model takes into account the spatial dependence of the road network, the prediction effect becomes worse. This shows that for different forecasting models, it is necessary to consider the connection matrix of the road network with caution. For different models, the selection of connection matrix needs to be studied more systematically. 





	2.5 CONCLUSION 
	2.5 CONCLUSION 
	In this task, the prediction of traffic state is extended to the network wide. In order to improve the prediction accuracy of the road network, the deep learning models are combined with the graph convolutional networks to capture the spatial-temporal characteristics of the traffic state in the road network. The traffic speed data collected from 501 sensors in the city of Atlanta are used for the experimental study. Five predictive models, including the LSTM model, the DeepESN model, the GC-LSTM model, the 


	3.0 RECOMMENDATIONS 
	3.0 RECOMMENDATIONS 
	This study can be extended in a number of directions. For task 1, the secondary decomposing components needs to be selected more systematically and accurately in the future. For task 2, DeepESN is a relatively new model, fully exploiting its potential especially in combination with 
	This study can be extended in a number of directions. For task 1, the secondary decomposing components needs to be selected more systematically and accurately in the future. For task 2, DeepESN is a relatively new model, fully exploiting its potential especially in combination with 
	graph convolution methods is important. The success in this regard will bring large-scale network-level spatiotemporal prediction a step forward. 
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	In addition, the data used in this report are from RITIS, located in the city of Atlanta. In the future, we can apply the methodology proposed in this report to other datasets. There are some open data resources, for example, METR-LA dataset containing traffic speed and volume collected from the highway of the Los Angeles County Road network, with 207 loop detectors, and Performance Measurement System (PeMS) dataset containing over 18,000 sensors (e.g., inductive loops, side-fire radar, magnetometers) among
	Real-time traffic state prediction is of great importance in ITS, because accurately forecasting traffic states can help drivers better plan their routes, shorten travel time and improve traffic conditions, and thus alleviate the issues of traffic congestion. The methodologies proposed in this report can be applied to navigation map companies. When the driver navigates through the map APP, based on the map’s function of predicting the future traffic state in real time, it will recommend the fastest route fo
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