
 

 

 

I 

Smartphone-Based Incentive 
Framework for Dynamic Network-Level 

Traffic Congestion Management 

Lili Du, Ph.D., University of Florida 

Srinivas Peeta, Ph.D., Georgia Institute of Technology 

Southeastern Transportation Resea rch, 

Innovation, Development and Education Center UF I Transportation Institute 
UNIVERSITY of FLORIDA 



TECHNICAL REPORT DOCUMENTATION PAGE 

 

1. Report No. 

 Project I 

2. Government Accession No. 3. Recipient’s Catalog No. 

4. Title and Subtitle 

Smartphone Based Incentive Framework for Dynamic Network Level 

Traffic Congestion Management  

5. Report Date 

8/24/2022 

6. Performing Organization Code 

7. Author(s) 

Lili Du, Ph.D., University of Florida 

Srinivas Peeta, Ph.D., Georgia Institute of Technology  

 

8. Performing Organization Report 

No.  

STRIDE Project H3 

9. Performing Organization Name and Address 

 

University of Florida/Department of Civil & Coastal Engineering,365 Weil 

Hall, PO Box 116580, Gainesville, FL 32611 

Georgia Institute of Technology, Civil & Environmental Engineering, 790 

Atlantic Drive, Atlanta, GA 30332  

 

10. Work Unit No. 

 

11. Contract or Grant No. 

Funding Agreement Number  

69A3551747104 

12. Sponsoring Agency Name and Address 

University of Florida Transportation Institute/ Southeastern Transportation 

Research, Innovation, Development and Education Center (STRIDE) 365 

Weil Hall, P.O. Box 116580 Gainesville, FL 32611 

U.S Department of Transportation/Office of Research, Development & Tech 

1200 New Jersey Avenue, SE 

Washington, DC 20590 

13. Type of Report and Period 

Covered 

1/15/2020 to 8/24/2022 

14. Sponsoring Agency Code 

 

15. Supplementary Notes   N/A 

16. Abstract - This study proposes to develop smartphone-based frameworks to develop/utilize real-time incentives 

(monetary, value-based, travel-related credits, information etc.) to influence drivers’ en route routing decisions to 

manage network-level system performance in congested dynamic traffic networks. The framework consists of: (i) 

analytical model and algorithm, (ii) driving simulator-based experiments to analyze drivers’ responses to the 

incentives, and (iii) a smartphone-based app. The analytical model and the algorithm determine the characteristics of 

the specific incentives to provide or utilize in real-time, including how, where, when, type and amount. The driving 

simulator-based experiments elicit contextual driver responses to the specific incentives provided in real time, which 

are used to understand driver behavior in this context, and to finetune the analytical model to be consistent with driver 

behavior/responses. The smartphone-based app is developed to populate incentives in real-time and identify incentives 

available en route to the specific driver using the app during his/her origin-destination trip. Accordingly, this study 

composes of two tasks. Task 1 of this study investigates the role of demand management techniques in generating 

system level benefits such as reduction in congestion or pollution. Task 2 of this study aims to alleviate traffic 

congestion by exploiting a novel information provision strategy. Specifically, it takes advantage of the information 

gaps between individuals and the central planner (CP) and developed a correlated equilibrium routing mechanism 

(CeRM), which suggests priorities to individual vehicles’ route choices and drives their route choices to an equilibrium 

with a systematically optimal traffic condition while still satisfying individuals’ selfish nature. Overall, the output of 

the two research tasks together will help understand how different types of incentives can be used to alleviate traffic 

congestion using smart phones/on-board smart devices. The completion of this study will help develop more efficient 

traffic congestion management tools. 

17. Key Words 

Transportation Network Companies (TNCs); MATSim 

Simulation Modeling; Model Calibration; Mode Integration; 

Digital Twin. 

18. Distribution Statement 

No restrictions  

19. Security Classif. (of this report) 

N/A 

20. Security Classif. (of this 

page) 

N/A 

21. No. of 

Pages 

129 pages 

22. Price 

N/A 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 

 



   
 

  
 

 
        

      

         

       

       

 

 
       

      

       

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

STRIDE I Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Smartphone-Based Incentive Framework for Dynamic Network-Level 
Traffic Congestion Management 

DISCLAIMER 
The contents of this report reflect the views of the authors, who are responsible for the facts and 

the accuracy of the information presented herein. This document is disseminated in the interest 

of information exchange. The report is funded, partially or entirely, by a grant from the U.S. 

Department of Transportation’s University Transportation Centers Program. However, the U.S. 
Government assumes no liability for the contents or use thereof. 

ACKNOWLEDGEMENT OF SPONSORSHIP AND STAKEHOLDERS 
This work was sponsored by a contract from the Southeastern Transportation Research, 

Innovation, Development and Education Center (STRIDE), a Regional University Transportation 

Center sponsored by a grant from the U.S. Department of Transportation's University 

Transportation Centers Program. 

Funding Agreement Number - 69A3551747104 

ii 



   
 

  
 

 
  

 
   

 
  

 

 

 

      

   

    

     

   

 

  

 

  

  
   

 
  

 

   

   

   

 

 

 

  

STRIDE I Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Smartphone-Based Incentive Framework for Dynamic Network-Level 
Traffic Congestion Management 

LIST OF AUTHORS 
Lead PI: 

Lili Du, Ph.D. 
University of Florida 
lilidu@ufl.edu 
ORCID Number: 0000-0003-1740-1209 

Co-PI: 

Srinivas Peeta, Ph.D. 

Frederik R. Dickerson Chair and Professor, 

School of Civil and Environmental Engineering, 

H. Milton Stewart School of Industrial and Systems Engineering, 

Principal Research Scientist, Georgia Tech Research Institute, 

Georgia Institute of Technology 

peeta@gatech.edu 

ORCID Number: 0000-0002-4146-6793 

Additional Researchers: 

Yuqiang Ning 
University of Florida 
y.ning@ufl.edu 
ORCID Number: 0000-0002-7948-0865 

Viswa Sri Rupa Anne 

School of Civil and Environmental Engineering, 

Georgia Institute of Technology 

vanne3@gatech.edu 

iii 

mailto:lilidu@ufl.edu
mailto:peeta@gatech.edu
mailto:y.ning@ufl.edu
mailto:vanne3@gatech.edu


   
 

  
 

 
 

    

   

   

   

   

   

        

  

    

   

  

   

     

    

       

       

     

    

     

        

    

       

    

    

       

    

    

         

        

STRIDE I Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Smartphone-Based Incentive Framework for Dynamic Network-Level 
Traffic Congestion Management 

TABLE OF CONTENTS 
DISCLAIMER......................................................................................................................................ii 

ACKNOWLEDGEMENT OF SPONSORSHIP AND STAKEHOLDERS......................................................ii 

LIST OF AUTHORS............................................................................................................................iii 

LIST OF FIGURES..............................................................................................................................vi 

LIST OF TABLES...............................................................................................................................vii 

ABSTRACT......................................................................................................................................viii 

EXECUTIVE SUMMARY ....................................................................................................................ix 

1.0 Task 1: Smart-Phone Based Real-Time Incentive Framework for Travel Behavior Change 

10 

1.1 INTRODUCTION................................................................................................................... 10 

1.1.1 Background .................................................................................................................. 10 

1.1.2 Objectives..................................................................................................................... 10 

1.1.3 Scope............................................................................................................................ 10 

1.1.4 Report organization ..................................................................................................... 11 

1.2 LITERATURE REVIEW ........................................................................................................... 11 

1.2.1 Research studies using behavioral intervention strategies......................................... 11 

1.3 Behavior Change Strategies and their Characteristics........................................................ 13 

1.3.1 Characteristics of tangible incentives .......................................................................... 13 

1.3.2 Characteristics of nudges............................................................................................. 13 

1.4 Problem Formulation.......................................................................................................... 14 

1.4.1 Overview of the reinforcement learning problem ...................................................... 14 

1.4.2 Problem formulation ................................................................................................... 14 

1.4.3 Incentive usage and route generation......................................................................... 16 

1.4.4 Traffic Environment ..................................................................................................... 17 

1.4.5 Training Algorithm ....................................................................................................... 17 

1.5 Real-time Deployment Solutions Framework..................................................................... 18 

1.6 Numerical Experiments....................................................................................................... 19 

1.7 REFERENCE LIST .................................................................................................................. 20 

2.0 Task 2: An Equilibrium Routing Mechanism for Traffic Congestion Mitigation Built upon 

Mixed Strategy Correlated Game and Distributed Optimization............................................... 22 

iv 



   
 

  
 

    

   

   

    

    

    

    

     

   

       

     

    

     

    

    

     

    

    

    

    

    

    

    

    

 

  

STRIDE I Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Smartphone-Based Incentive Framework for Dynamic Network-Level 
Traffic Congestion Management 

2.1 INTRODUCTION................................................................................................................... 22 

2.1.1 OBJECTIVE .................................................................................................................... 25 

2.1.2 SCOPE........................................................................................................................... 25 

2.2 LITERATURE REVIEW ........................................................................................................... 25 

2.3 Preliminary.......................................................................................................................... 27 

2.3.1 Mathematic notations ................................................................................................. 27 

2.3.2 Correlated Equilibrium (CE) ......................................................................................... 28 

2.4 Correlated equilibrium Routing Mechanism (CeRM) ......................................................... 29 

2.4.1 Modeling CeRM ........................................................................................................... 30 

2.5 Distributed Augmented Lagrangian (D-AL) algorithm ........................................................ 32 

2.5.1 The Augmented Lagrangian Transformation............................................................... 35 

2.5.2 Distribution scheme..................................................................................................... 36 

2.5.3 Projection onto the 𝝐-probability simplex................................................................... 38 

2.6 Numerical Experiment ........................................................................................................ 42 

2.6.1 Experiment Settings ..................................................................................................... 42 

2.6.2 Computation performance of D-AL ............................................................................. 44 

2.6.3 System Performance of the CeRM............................................................................... 46 

2.7 Conclusion........................................................................................................................... 48 

2.8 Appendix ............................................................................................................................. 48 

Appendix A............................................................................................................................ 48 

Appendix B ............................................................................................................................ 51 

Appendix C ............................................................................................................................ 51 

2.9 REFERENCE LIST .................................................................................................................. 53 

3.0 RECOMMENDATIONS ......................................................................................................... 55 

v 



   
 

  
 

 
        

       

     

      

         

         

     

          

         

          

         
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STRIDE I Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Smartphone-Based Incentive Framework for Dynamic Network-Level 
Traffic Congestion Management 

LIST OF FIGURES 
Figure 1 Overview of the reinforcement learning problem ......................................................... 14 
Figure 2 Route generation in the presence of incentives............................................................. 16 
Figure 3 Training algorithm........................................................................................................... 18 
Figure 4 Real-time incentive deployment framework.................................................................. 18 
Figure 5 Reward value for different app penetration levels ........................................................ 20 
Figure 6 The flow chart of the D-AL solution algorithm ............................................................... 34 
Figure 7 Sioux Falls city network................................................................................................... 43 
Figure 8 Convergence pattern under different number of vehicles............................................. 44 
Figure 9 Computation time under different number of vehicles ................................................. 45 
Figure 10 System cost comparison between IR and CeRM .......................................................... 46 
Figure 11 System Cost comparison between uoER and CeRM..................................................... 47 

vi 

file://///ad.ufl.edu/essie/Research/UFTI/UTC/STRIDE%20Center%202016/Research%20Projects/2019%20Projects%20(YR%203)/Final%20Reports/H3%20-%20Peeta-Du/STRIDE%20Final%20Report%20Project%20H3.docx%23_Toc118714664
file://///ad.ufl.edu/essie/Research/UFTI/UTC/STRIDE%20Center%202016/Research%20Projects/2019%20Projects%20(YR%203)/Final%20Reports/H3%20-%20Peeta-Du/STRIDE%20Final%20Report%20Project%20H3.docx%23_Toc118714666


   
 

  
 

 
       

   

      

    

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STRIDE I Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Smartphone-Based Incentive Framework for Dynamic Network-Level 
Traffic Congestion Management 

LIST OF TABLES 
Table 1 Different type of incentives explored in literature .......................................................... 11 
Table 2 Incentive characteristics................................................................................................... 14 
Table 3 Deep Deterministic Policy Gradient Algorithm Parameters ............................................ 19 
Table 4 Experiment parameters ................................................................................................... 43 
Table 5 System performance under different number of vehicles .............................................. 48 

vii 



   
 

  
 

 
      

     

      

         

     

     

    

       

      

      

            

      

      

       

      

            

            

              

          

            

             

          

       

          

        

        

      

         

         

       

      

      

          

           

     

     

      

STRIDE I Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Smartphone-Based Incentive Framework for Dynamic Network-Level 
Traffic Congestion Management 

ABSTRACT 
In recent years, dynamic traffic data from multiple entities (public transportation agencies, 

Google, transportation network companies, etc.) and sensor types is available. This study 

proposes to develop smartphone-based frameworks to develop/utilize real-time incentives 

(monetary, value-based, travel-related credits, information etc.) to influence drivers’ en route 
routing decisions to manage network-level system performance in congested dynamic traffic 

networks. The framework consists of: (i) analytical model and algorithm, (ii) driving simulator-

based experiments to analyze drivers’ responses to the incentives, and (iii) a smartphone-based 

app. The analytical model and the algorithm determine the characteristics of the specific 

incentives to provide or utilize in real-time, including how, where, when, type and amount. The 

driving simulator-based experiments elicit contextual driver responses to the specific incentives 

provided in real time, which are used to understand driver behavior in this context, and to 

finetune the analytical model to be consistent with driver behavior/responses. The 

smartphone-based app is developed to populate incentives in real-time and identify incentives 

available en route to the specific driver using the app during his/her origin-destination trip. 

Accordingly, this study composes of two tasks. Task 1 of this study investigates the role of 

demand management techniques in generating system level benefits such as reduction in 

congestion or pollution. This study explored two such techniques, namely tangible incentives, 

and nudges. Both incentives and nudges were modeled in the context of network-level traffic 

congestion to be behavior consistent, real-time, and market-based. A reinforcement learning-

based approach is employed to design and generate the incentives. A conceptual smartphone-

based framework is illustrated to disseminate these techniques in the real world. 

Task 2 of this study aims to alleviate traffic congestion by exploiting a novel information 

provision strategy. Specifically, it takes advantage of the information gaps between individuals 

and the central planner (CP) and developed a correlated equilibrium routing mechanism 

(CeRM), which suggests priorities to individual vehicles’ route choices and drives their route 

choices to an equilibrium with a systematically optimal traffic condition while still satisfying 

individuals’ selfish nature. A distributed Augmented Lagrangian algorithm (D-AL) is developed 

to efficiently solve the CeRM to provide online real-time navigation services, taking advantage 

of the smart phones and/or on-board computation resources of individual vehicles. The 

simulation experiments show that the CeRM results in better system performance (have less 

system cost) compared with the existing Independent Routing (IR) mechanism and user-

oriented Equilibrium Routing (uoER) mechanism. Overall, the output of the two research tasks 

together will help understand how different types of incentives can be used to alleviate traffic 

congestion using smart phones/on-board smart devices. The completion of this study will help 

develop more efficient traffic congestion management tools. 

Keywords (up to 5): 

Congestion mitigation; Driver behavior; Travel demand; Real-time incentive; Big data analysis 
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EXECUTIVE SUMMARY 
By leveraging advances in smartphone-based personalization, big data availability for traffic, 

network-level integration through information-based connectivity, this study proposes to 

manage congestion in real-time in traffic networks, especially during peak period commutes 

and under debilitating incidents. 

Task 1 investigates two demand management techniques, i.e., tangible incentives and nudges, 

in generating system level benefits such as reduction in congestion or pollution. Both incentives 

and nudges are designed and generated dynamically according to system-level congestion. Task 

1 employs a reinforcement learning-based approach to design and generate the incentives and 

illustrates a ubiquitous smartphone-based framework to present the incentives to the users. 

Such a solution is practical in its real-world solution as the models can be trained offline and 

later implemented online. 

Task 2 investigates the use of information incentives and designs a correlated routing 

mechanism that calculates and provides online routing guidance for vehicles with smart phones 

and/or onboard computing and communication devices. By exploiting information 

discrepancies between individual vehicles and the Central Planner (CP), the proposed 

mechanism drives the snapshot equilibrium route choice of a group of vehicles toward a more 

systematic optimal condition while still preserving the individual’s selfish nature. The simulation 

experiments show that the proposed routing mechanism in Task 2 can significantly reduce 

traffic congestion and system travel time by 55% and 3.6% compared to the existing 

Independent Routing Mechanism and User-oriented Equilibrium Routing Mechanism. 

Furthermore, this study proposes the D-AL, an effective distributed algorithm that could quickly 

solve the routing problem for an online real-time navigation service with the help of smart 

phones and/or individual vehicles’ on-board smart devices. 

The results and insights provided by this study can be used by state/local transportation 

agencies as new complementary tools in their portfolio to dynamically manage traffic 

congestion at the network level. It may help transit agencies and planners in understanding the 

potential of using smart-phones and different types of incentives to alleviate traffic 

congestions. In the future, Task 1 could be conducted on real-world networks such as the city of 

Atlanta to build and test the smartphone-based framework with human subjects to understand 

the effect of the behavioral change solutions. For task 2, this study assumes drivers make 

decisions purely based on information provided by the CP without using their prior knowledge. 

However, in reality, drivers’ ex-ante knowledge may affect their compliance to the routing 

guidance. Therefore, a possible future work is to incorporate individual drivers' ex-ante beliefs 

into the correlated routing game. 
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1.0 Task 1: Smart-Phone Based Real-Time Incentive Framework 
for Travel Behavior Change 

1.1 INTRODUCTION 
1.1.1 Background 
Traffic congestion and pollution are some of the major transportation related problems 

faced by the Urban areas. Traffic congestion further leads to loss in productivity and has 

economic cost to it. INRIX (1) study showed that the Average American spends almost 

100 hours in congestion and leads to $1350 in economic cost per American. Majority of 

urban travel in the United States is through single occupancy personal vehicles. Such 

travel patterns severely contributed to the pollution in the urban areas. Study 

conducted by the US EPA (2) study shows that the transportation sector alone 

contributes to 40% of greenhouse gas emissions, highest among all the sectors. Rapid 

urbanization in the past few years and the decades to come is expected to increase the 

demand in the transportation network. Such an increase in demand would lead to 

further increase in congestion to the current transportation system. 

To tackle urban congestion, both supply and demand side solutions were explored. 

Supply side solutions include infrastructure developments and investments, traffic 

management devices, ITS solutions and increasing the capacity of existing roadways. 

These solutions are not sustainable, expensive and time consuming. 

Demand side solutions uses tools to target and influence individuals' travel behavior. 

These tools included tolls, congestion pricing, incentives, and tradeable credit schemes. 

Incentives are intended to influence their travel decisions subtly. Incentives based 

solutions are more acceptable and equitable than tolls. Incentive based solutions fall 

under a broader research of behavioral change strategies within behavioral psychology. 

1.1.2 Objectives 
The main objective of this study is two-fold. The first objective is to list, characterize and 

classify behavioral change strategies that can be used to influence travel related 

decisions. The second objective is to model the behavioral changes strategies in the 

context of a dynamic traffic network. 

1.1.3 Scope 
The scope of this research is limited to studying the effect of behavioral change 

strategies on route choice behavior. Specifically, the research addresses the effect of 

behavioral change strategies on initial route choice and subsequent en-route choices. 

While the behavioral change strategies can be applied to the various aspects of 

individual trip making such as choice of mode, route, departure time, etc., this study 

does not model its effects on mode choice and departure time choice. 

10 
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1.1.4 Report organization 
This report includes five sections. Section 2 covers literature review. Section 3 classifies 

and characterizes the incentives. Section 4 presents the problem formulation and 

solution methods. Section 5 presents the real-time solution deployment framework. 

Section 6 presents the numerical studies. 

1.2 LITERATURE REVIEW 
A review of published literature and practices on the use of incentives and nudges in the 

context of travel behavior is presented below. 

1.2.1 Research studies using behavioral intervention strategies 
Behavioral change strategies operate on the motivation behind user actions. Often the 

research studies target the users economic, health or environmental values to influence 

their decisions. For example, by providing environmental incentives the users that are 

concerned with global warming, or their carbon footprint would be motivated to change 

behavior. Among the past travel-based studies, most studies target mode choice 

behavior and encourage users to shift to public transit. The behavioral intervention tools 

utilized in the literature can be classified into benefits such as tangible or in-tangible 

incentives or gamification techniques such as points, badges, etc. Benefits are further 

classified into value-based incentives, monetary incentives, and in-tangible incentives 

such as nudges. While monetary incentives are direct dollar amounts, the value-based 

incentives are points that can be traded for goods or services. Gamification techniques 

on the other hand are used to induce competition among users of the system. The table 

below provides an overview of various behavioral change strategies formulated in the 

real-world 

TABLE 1 DIFFERENT TYPE OF INCENTIVES EXPLORED IN LITERATURE 

Study 

Value Choice Benefits Gamification 

Econo 

mic 

Healt 

h 

Environ 

mental 

Rout 

e Mode 

Value 

-

based 

Monet 

ary 

In-

tangible Badge Points Leaderboard 

Ubigreen (1) ✓ ✓ ✓ ✓ ✓ ✓ 

PEIR (2) ✓ ✓ ✓ ✓ 

i-Tour (3) ✓ ✓ ✓ ✓ ✓ 

Trip-zoom ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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SUPER-

HUB (3) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Matka-Hupi 

(4) ✓ ✓ ✓ ✓ ✓ 

Peacox (5) ✓ ✓ ✓ ✓ 

QT ✓ ✓ ✓ ✓ ✓ ✓ 

IPET (6) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Viaggia (7) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

trafficO2 (8) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Metropia (9) ✓ ✓ ✓ ✓ ✓ 

IAM ✓ ✓ ✓ ✓ 

MM ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

MUV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Tripod ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

RMTP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Roider ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Commuter 

Connections 

(10) ✓ ✓ ✓ 

Commutifi 

(11) ✓ ✓ ✓ ✓ ✓ 

Hytch (12) ✓ ✓ ✓ ✓ ✓ ✓ 
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Spitsmijden 

(13) ✓ ✓ ✓ ✓ 

INSTANT 

(14) ✓ ✓ ✓ ✓ ✓ 

INSINC (15) ✓ ✓ ✓ ✓ ✓ 

CAPRI (16) ✓ ✓ ✓ 

Flex-Pass 

(17) 

Steptacular 

(18) ✓ ✓ ✓ 

1.3 Behavior Change Strategies and their Characteristics 
In this study, two behavioral change strategies have been considered. First is the tangible 

incentive such as monetary or value-based rewards. Second is the in-tangible incentives or the 

nudges. 

1.3.1 Characteristics of tangible incentives 
Tangible incentives are one of the most intuitive forms of behavioral change strategies. 

They can be either monetary or value based. Value-based incentives usually comprise of 

point systems that can be exchanged for real goods or services. The incentives are 

positive quantities as opposed to tolls and can be present on all of the edges in a road 

network. They are updated in real-time and are dependent on the system congestion 

levels making them dynamic in nature. They can also be based on time of the day and 

differ from off-peak periods to peak periods. 

1.3.2 Characteristics of nudges 
Nudges are an application of the Nudge theory proposed by Thaler, R. et al. 2008. They 

are a design mechanism on choice architecture. Nudges in this study are implemented 

as en-route prompts that encourage the user to change their route during the trip. 

Nudges do not have a tangible value and cannot be quantified. These prompts are 

provided to the user based on the availability of incentives and update of routes. These 

prompts are personalized to each user based on their travel preferences such as value 

of time or value of incentive. The table below summarizes the incentive and nudge 

characteristics. 

13 
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TABLE 2 INCENTIVE CHARACTERISTICS 

Tangible incentives Nudges 

Time-based Yes No 

Dynamic Yes No 

System level Yes No 

Personalized No Yes 

Market-based Yes No 

Geographical Yes No 

1.4 Problem Formulation 
1.4.1 Overview of the reinforcement learning problem 
Reinforcement learning is a type of machine learning paradigm that uses rewards and 

punishments to train the model. The reinforcement learning is modeled as a Markov 

decision process with an agent and an environment. At every step, the agent receives 

the system current state and reward from the environment. The agent performs an 

action to maximize its reward. The environment simulates the affect of the action and 

generates the state value and the reward value to pass to the agent. 

FIGURE 1 OVERVIEW OF THE REINFORCEMENT LEARNING PROBLEM 

1.4.2 Problem formulation 
The tangible incentives are generated in real-time based on the current system state. 

The incentives are generated as a response of the current system conditions and 

congestion. Within each trip, every user makes multiple micro-travel decisions such as 

changing routes within a single trip. The incentives are generated to influence such en-

route decisions. The generation of incentives is sequential in nature and is a response to 

the system congestion levels or travel time. The travel time and incentives are 

analogous to the state-action pairs present in the reinforcement learning framework. 

Like the action values within an RL framework, the incentives affect the transition of 

system from one state to the other. The transition between one traffic state to another 

is hard to model and computationally intensive. 

14 
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The tangible incentives and intangible nudges will be provided to the user through a 

mobile app. The generation of incentives themselves will be in real-time as a response 

to the travel time. Often the travel time is the only real-time value available to model 

incentives. Because of all the above reasons, the above problem is modeled as a Markov 

decision process and trained using a reinforcement learning problem. For the remainder 

of this section, we will formulate the incentive generation problem as a reinforcement 

learning problem. 

Consider a dynamic road network 𝐺(𝑁, 𝐸) with 𝑁 nodes and 𝐸 links. The time horizon 

of interest T is broken down into multiple time intervals. Each time interval 𝑡 
corresponds to a step in the RL/Markov decision process. Let 𝑡𝑡𝑒,𝑡 be the travel time on 

link 𝑒 at the end of time interval 𝑡. Let 𝑖𝑒,𝑡 be the number of incentives present on the 

link 𝑒 in the beginning of time interval 𝑡. 

Within a reinforcement learning framework, the state needs to be a sufficient statistic of 

the history. Within real-world deployments it is realistic to assume that the travel-time 

on every link is available for all links of a traffic network. Keeping this in mind, state 𝑆𝑡 is 

defined as an array of travel times on every link at the end of time interval 𝑡. 

𝑆𝑡 = {… , 𝑡𝑡𝑒,𝑡, … } ∀ 𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇 

The action value taken by the agent affects the transition of the traffic environment 

from one state to another. In this scenario, the action 𝐴𝑡 is defined as an array of 

incentives present on every link at the beginning of time interval 𝑡. This definition allows 

incentives to present on all links of the network based on congestion. This is contrary to 

tolls where they are only present on select roads. The incentives are non-negative 

values. This indicates that while there can be incentives on an edge, there could be a 

few edges without incentives. The values of the incentives are purely dependent on the 

congestion levels of the network. 

𝐴𝑡 = {… , 𝑖𝑒,𝑡, … } ∀ 𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇 

The RL agent maximizes the expected reward in the future steps. Since the objective of 

this study is to generate behavioral change strategies to reduce congestion using 

tangible (often monetary) incentives, the total system travel time is incorporated into 

the reward function. The reward value 𝑅𝑡 is defined as a linear combination of the total 

system travel time and the total incentives generated in the time interval 𝑡. 

𝑅𝑡 = −(∑ 𝑡𝑡𝑒,𝑡) − 𝛽 ∗ (∑ 𝑖𝑒,𝑡) ∀ 𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇 
𝑒 ∈𝐸 𝑒 ∈𝐸 

15 



   
 

  
 

       

    

 
       

        

          

     

        

    

    

      

         

      

 

   

          

        

          

           

            

  

    

         

      

       

       

         

        

       

         

           

         

      

A. 

STRIDE I 

I U1cr Preferermes Traffic Environment 

Decision Making 

Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Tr;dlk Movement 

Smartphone-Based Incentive Framework for Dynamic Network-Level 
Traffic Congestion Management 

The value 𝛽 is the scaling/weight factor used. This can also be interpreted as the value 

of time for the network operator. 

1.4.3 Incentive usage and route generation 
The incentives generated to influence the users on the traffic network to change their 

routes. Since the incentives are updated at every time step, the routes and users’ 

perception of the routes could also be affected. In each time interval t, the routes of all 

users is updated. The route updating contains two stages. In the first stage of route 

generation, a personalized route is computed based on the user preferences and the 

incentives available during that time step. This stage ensures that the incentives 

provided to the user are personalized by including user preferences such as value of 

time and value of incentives. The incentives are limited in quantity and consumed 

through the time interval. The users reaching a particular link first could gain incentives 

and the users reaching the same link later might not gain any incentives. 

FIGURE 2 ROUTE GENERATION IN THE PRESENCE OF INCENTIVES 

A personalized route is generated based on the utility function of a trip for each user. 

This utility function incorporates the user preferences such as the value of time and the 

value of incentive. Let 𝛽𝑡𝑡,𝑢 and 𝛽𝑖,𝑢 be the value of time and value of incentive for user 

u. Let 𝑡𝑡𝜇 and 𝑖𝜇 be the travel time and incentives on route 𝜇. The utility function for 

user u for a route 𝜇 is defined as a linear combination of travel time and incentives on 

that particular route. 

𝑐𝜇 = 𝛽𝑡𝑡,𝑢 ∗ 𝑡𝑡𝜇 + 𝛽𝑖,𝑢 ∗ 𝑖𝜇 

Each user has a unique cost function as it incorporates the user preferences. The user 

preferences can be estimated through the mobile app usage. 

The second stage is the decision-making stage. The updated route is provided as a 

prompt to the user. When prompted to change the route, a user can choose to change 

to the new updated route or choose to remain on the current route. 

The decision-making among users can be different based on their affinity towards 

incentives and nudges. The users can be classified into two categories. Habitual users 

that are reluctant to change the routes even when the cost of the new route is lower 

that their current routes. Nudged users who shift routes when prompted to do so even 

when the cost of the new route is higher. During the simulation, the users are classified 

into either nudged users or habitual users to model their corresponding behavior. 
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To avoid the cost function from reaching negative values, the upper limits are 

implemented on the incentives.  These upper limits are implemented such that the cost 

of the users remains positive. 

1.4.4 Traffic Environment 
The traffic environment is responsible for computing the transition between one state 

to another based on the provided incentives. Analytical models that handle the 

transition between different traffic states can be complex and computationally 

intensive. In this study, the traffic environment is simulated using the Simulation of 

Urban Mobility (SUMO) simulation platform. This platform is responsible for simulating 

the trajectories of vehicles and generate the resulting system state and reward. 

1.4.5 Training Algorithm 
A training algorithm is used to learn the optimal actions of the agent that maximizes 

reward. Within the RL literature, the algorithms can be classified into value-based 

methods or policy-based methods. The value-based methods learn actions based on the 

reward functions and expected value of action. The policy-based methods involve the 

use of a policy function that assess the value of an action. The proposed algorithm 

utilized in this study is the Deep Deterministic Policy Gradient (DDPG) developed by 

(20). Most RL algorithms deal with discrete state-action values, while the above 

formulation has both continuous state and action values. The DDPG algorithm is 

designed to allow continuous state and action pairs. This algorithm has an actor and a 

critic modeled using neural networks. The actor generates actions while the critic 

evaluates the actions and updates the policy. 

17 
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FIGURE 3 TRAINING ALGORITHM 

1.5 Real-time Deployment Solutions Framework 

FIGURE 4 REAL-TIME INCENTIVE DEPLOYMENT FRAMEWORK 

The figure 5 describes the real-world incentive deployment framework. This conceptual 

framework employs a mobile app to present the incentives and nudges to the users. Such a 

mobile app can also be used to track the user’s travel choices and interpret the user 

preferences such as their value of time or value of incentive. 
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1.6 Numerical Experiments 
The Simulation of Urban Mobility (SUMO) simulation platform is used to simulate the traffic 

state transitions. To test the effectiveness of the incentives, the following the RL agent is 

trained in six scenarios. Each scenario corresponds to different mobile app penetration levels. 

App penetration levels is a direct indication of the number of users that have access to the 

incentives on the network. 

For all the six scenarios Peak hour simulated between the 4 PM and 5 PM on Hannover South 

City network. Table 3 shows the parameters used by the DDPG algorithm to train on various 

scenarios. 

TABLE 3 DEEP DETERMINISTIC POLICY GRADIENT ALGORITHM PARAMETERS 

Parameter Value 

Optimizer Adam 

Actor network learning rate 10-4 

Critic network learning rate 10-3 

Discount factor 0.99 

Tau 0.001 

NN Layers ReLU 

Batch size 64 

Replay buffer size 100000 

Number of episodes 1000 

Actor network 2 hidden layers (400 X 300) 
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FIGURE 5 REWARD VALUE FOR DIFFERENT APP PENETRATION LEVELS 

Figure 5 shows the trend in the reward value over number of episodes. The different lines show 

the reward values for different app penetration levels. For example, a 40% app penetration 

scenario has 40% of the vehicles equipped with the incentive provision app and can change 

routes, the rest 60% do not change their initial routes. Rewards under all scenarios appear to be 

following similar trajectory. The reward value is the highest under the 100% app penetration 

scenario. Although unrealistic, this shows that the system congestion level is improving with 

increasing app penetration levels. The reward value is the lowest under the 20% app 

penetration scenario. The scenarios yielding similar results could indicate that the neural 

network might need additional training. For the training process, the basic actor and critic 

neural network architecture from the DDPG algorithm was adopted. The dimensionality of 

action values and state values are high and perhaps require a customized neural network 

architecture. Future studies could also explore multi-agent DDPG algorithm to train on the 

same data. 

1.7 REFERENCE LIST 
This list appears at the end of your report. References should appear as a numbered list. Below 

are suggestions for acceptable reference citations mostly borrowed from TRB. For in-text 

citations provide (last name of author, year) or (last name et al. Year) 

1. Froehlich, J., T. Dillahunt, P. Klasnja, J. Mankoff, S. Consolvo, B. Harrison, and J. A. 

Landay. UbiGreen: Investigating a Mobile Tool for Tracking and Supporting Green 

Transportation Habits. Proceedings of the SIGCHI Conference on Human Factors in 

Computing Systems, 2009. https://doi.org/10.1145/1518701. 

2. Mun, M., S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen, E. Howard, R. West, 

and P. Boda. PEIR, the Personal Environmental Impact Report, as a Platform for 

Participatory Sensing Systems Research. 

20 

https://doi.org/10.1145/1518701


   
 

  
 

        

      

  

 

    

 

     

  

    

      

 

       

    

  

         

     

 

     

 

     

 

   

 

       

       

      

 

     

   

        

 

STRIDE I Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Smartphone-Based Incentive Framework for Dynamic Network-Level 
Traffic Congestion Management 

3. Magliocchetti, D., M. Gielow, F. de Vigili, G. Conti, and R. de Amicis. A Personal Mobility 

Assistant Based on Ambient Intelligence to Promote Sustainable Travel Choices. 

Procedia Computer Science, Vol. 5, 2011, pp. 892–899. 

https://doi.org/10.1016/J.PROCS.2011.07.124. 

4. Jylhä, A. MatkaHupi: A Persuasive Mobile Application for Sustainable Mobility. 

https://doi.org/10.1145/2494091.2494164. 

5. Schrammel, J., M. Busch, and M. Tscheligi. Peacox-Persuasive Advisor for CO2-Reducing 

Cross-Modal Trip Planning). 2013. 

6. Meloni, I., and B. S. di Teulada. I-Pet Individual Persuasive Eco-Travel Technology: A Tool 

for VTBC Program Implementation. Transportation Research Procedia, Vol. 11, 2015, pp. 

422–433. https://doi.org/10.1016/J.TRPRO.2015.12.035. 

7. Bordin, S., M. Menendez, and A. de Angeli. ViaggiaTrento: An Application for 

Collaborative Sustainable Mobility. ICST Transactions on Ambient Systems, Vol. 1, No. 4, 

2014, p. e5. https://doi.org/10.4108/AMSYS.1.4.E5. 

8. di Dio, S., G. Peri, G. Rizzo, and I. Vinci. Design, Technology and Social Innovation : 
145The Serious Game of TrafficO2. Participatory Design Theory, 2018, pp. 145–156. 

https://doi.org/10.4324/9781315110332-11. 

9. Traffic Congestion Management | Metropia Inc. https://www.metropia.com/. Accessed 

Oct. 3, 2021. 

10. Commuter Connections. https://www.commuterconnections.org/. Accessed Oct. 3, 

2021. 

11. Commutifi | Data-Driven Commuting Platform. https://www.commutifi.com/. Accessed 

Oct. 3, 2021. 

12. Home - Hytch Rewards. https://hytch.me/. Accessed Oct. 3, 2021. 

13. Knockaerta, J., Y. Y. Tsenga, E. T. Verhoef, and J. Rouwendal. The Spitsmijden 

Experiment: A Reward to Battle Congestion. Transport Policy, Vol. 24, 2012, pp. 260– 
272. https://doi.org/10.1016/J.TRANPOL.2012.07.007. 

14. INSTANT Project | Prabhakar Group. 

https://prabhakargroup.stanford.edu/research/societal-networks/instant-project. 

Accessed Oct. 3, 2021. 

15. Pluntke, C., and B. Prabhakar. INSINC: A Platform for Managing Peak Demand in Public 

Transit. 2013. 

21 

https://prabhakargroup.stanford.edu/research/societal-networks/instant-project
https://doi.org/10.1016/J.TRANPOL.2012.07.007
https://hytch.me
https://www.commutifi.com
https://www.commuterconnections.org
https://www.metropia.com
https://doi.org/10.4324/9781315110332-11
https://doi.org/10.4108/AMSYS.1.4.E5
https://doi.org/10.1016/J.TRPRO.2015.12.035
https://doi.org/10.1145/2494091.2494164
https://doi.org/10.1016/J.PROCS.2011.07.124


   
 

  
 

   

   

          

   

     

     

  

      

   

 

     

     

 

  
 

 
  

          

        

     

           

      

         

    

    

        

        

        

        

    

      

   

        

        

STRIDE I Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Smartphone-Based Incentive Framework for Dynamic Network-Level 
Traffic Congestion Management 

16. CAPRI Project | Prabhakar Group. 

https://prabhakargroup.stanford.edu/research/societal-networks/capri-project. 

Accessed Oct. 3, 2021. 

17. FLEXPASS | NJ TRANSIT | New Jersey Transit Corporation | New Jersey. 

https://www.njtransit.com/flexpass. Accessed Oct. 3, 2021. 

18. Gomes, N., D. Merugu, G. O’brien, C. Mandayam, J. S. Yue, B. Atikoglu, A. Albert, N. 

Fukumoto, H. Liu, B. Prabhakar, and D. Wischik. Steptacular: An Incentive Mechanism for 

Promoting Wellness. 

19. Leonard, T. C. Richard H. Thaler, Cass R. Sunstein, Nudge: Improving Decisions about 

Health, Wealth, and Happiness. Constitutional Political Economy 2008 19:4, Vol. 19, No. 

4, 2008, pp. 356–360. https://doi.org/10.1007/S10602-008-9056-2. 

20. Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. 

Continuous Control with Deep Reinforcement Learning. 2016. 

2.0 Task 2: An Equilibrium Routing Mechanism for Traffic 
Congestion Mitigation Built upon Mixed Strategy Correlated 
Game and Distributed Optimization 
2.1 INTRODUCTION 
Traffic congestion has long been a major issue in urban areas, which happens when the demand 

is higher than road capacity. With the development of mobile intelligent devices and wireless 

communication technologies, drivers nowadays rely heavily on traveler information systems 

(TIS) such as Google Maps, Apple Maps, and Waze to get real-time traffic information and make 

their best response to avoid congestion. This study refers to this widely used routing 

mechanism as Independent Routing (IR). However, if too many vehicles simultaneously choose 

similar routes/links according to the same provided information, these recommended 

routes/links would become congested later. This phenomenon resulting from the collective 

snapshot routing decisions of drivers relying on IR is known as the flash crowd effect [13], which 

may cause severe traffic congestion and incur high system costs for all drivers. On the contrary 

to IR, System Optimum routing (SOR) seeks to minimize the total travel cost of all drivers, which 

is the ideal traffic state that a system wants to achieve. However, SOR will sacrifice some users’ 

interest (experience more travel cost) in exchange for better system performance, which 

conflicts with individuals' selfish nature. In addition, the computation load to implement real-

time SOR is prohibitive. 

Transportation researchers have long been devoted to developing navigation systems for 

reducing traffic congestion and pushing the routing pattern of IR to be more systematically 
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efficient. One of the most widely studied approaches is congestion pricing. Along with its 

variants like credit- or permit-based regulations, congestion pricing influences the behavior of 

individuals by changing their perceived cost physically/monetarily. Interested readers can refer 

to [8][16] for a comprehensive review. While theoretically, congestion pricing could push the 

traffic state close to SO and is undoubtedly a powerful tool to improve traffic conditions in 

practice, the study of [8] summarized seven main complications when implementing congestion 

pricing. Along with social equity, fairness, legislature, and political issues, congestion pricing still 

has obstacles to address in practice, and researchers are thus motivated to explore alternative 

options [15][21][22][25]. 

Several recent studies (i.e., [10][11][13]) proposed a different routing approach based on 

snapshot equilibrium routing (ER) to mitigate traffic congestion and improve traffic conditions. 

Mainly originating from game theory in economics, ER aided by real-time traffic information is a 

class of emerging routing mechanisms that try to manipulate individual drivers’ real-time route 

choices to approach a snapshot equilibrium by coordination or information provision 

technologies (discussed in detail in the literature review). To be noted, the collective snapshot 

routing decisions relying on IR do not lead to such snapshot route choice equilibrium. 

Therefore, ER seeks to reduce traffic congestion by mitigating the flash crowd effect resulting 

from the over-competition on the provided shortest paths, often observed in IR. In addition, 

unlike compulsive law enforcement or congestion pricing, ER influences individuals’ perceptions 

and decisions without using external regulation and incentives, thus avoiding many impedances 

faced in typical road pricing schemes. However, though ER could reduce system costs compared 

with IR, most existing ER mechanisms are still away from SOR since they are still user-oriented, 

and system interest (system optimality) is only implicitly considered by the routing mechanism 

design. We categorize this type of ER as user-oriented ER (uoER). 

Motivated by the above views, this study seeks to go one step further and design an 

equilibrium routing mechanism toward a better system performance than uoER. Specifically, 

this study develops a Correlated equilibrium online routing mechanism (CeRM) based on the 

correlated game and distributed solution algorithm. The CeRM explores a snapshot equilibrium 

route choice decision among all drivers opting in the routing service to reduce traffic congestion 

and improve system performance from IR and uoER. In addition, the CeRM does not violate 

individuals’ selfish nature, and thus drivers would be willing to follow the proposed routing 

decision. 

The idea of developing such an ER using the correlated game is invoked by exploiting the 

information discrepancies between individual drivers and the Central Planner (CP) in existing 

route navigation systems. Specifically, in a navigation scenario, each driver only knows their 

own trip information but has no idea of others, e.g., how many travelers are there on the road, 

where they are going, their personal choice characteristics, etc. The lack of panoramic 

information at the individual level makes drivers unable to know/predict traffic conditions in 

the future and often make the best response to the real-time traffic information provided by 
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the navigation service. On the other hand, the CP is omniscient and could better predict the 

traffic condition in the near future since it can get comprehensive information by collecting 

travelers’ trip plans when they require navigation services. Such an information gap allows the 

CP to act as a trusted agent, which can strategically design and provide individual drivers with 

route choices that no one would want to deviate from. Correspondingly, this study develops 

the CeRM, which calculates and suggests each traveler’s routing preferences according to their 
trip features (mainly origins, destinations, and personal choice characteristics), aiming to 

achieve the desired system optimal performance while guaranteeing that an individual driver 

would not be better off if they unilaterally derivate from the suggested routing preferences 

(i.e., correlated equilibrium). 

Moreover, to satisfy the computation need of online navigation services, this study develops a 

distributed solution algorithm (D-AL). It distributes the computation load of searching a 

correlated equilibrium route decision to individual vehicles’ smartphones and or/ onboard 

communication and computing devices. 

Overall, this study has four distinguished characteristics and methodology contributions: 

(i) We discovered the usually overlooked information discrepancies between the users and 
CP in a navigation service and developed a new information provision strategy for traffic 
congestion mitigation. 

(ii) Taking advantage of the information discrepancies, we developed a Correlated 
equilibrium Routing Mechanism (CeRM) built upon an atomic mixed strategy correlated 
game to coordinate individual travelers’ real-time routing decisions, which push traffic 
conditions toward a desired system optimal performance without introducing external 
regulation and incentives. 

(iii) To serve a large-scale of travelers’ online navigation requests, we developed a problem-
specific distributed solution algorithm (D-AL) by taking advantage of the model’s unique 
structure features. The D-AL could solve the CeRM problem efficiently by distributing the 
computation load to individual vehicles’ smart phones and/or onboard computing 
devices. 

(iv) The numerical experiments validate our solution algorithms' computation performance 
and convergence properties and demonstrate that the CeRM could reduce traffic 
congestion and system cost compared with existing IR and uoER. More exactly, our 
experiments show that the CeRM can significantly reduce traffic congestion and system 
travel time by 55% and 3.6% compared to the existing IR and uoER mechanisms. The D-
AL could handle a scenario with more than a thousand vehicles by a leading time smaller 
than 22 seconds. 

The rest of the paper is organized as follows. Section 2.2 reviews relevant works in the existing 

literature and identifies the research gaps this study addresses. Following that, we introduce 

related notations and concepts in section 2.3, and then design the correlated equilibrium 

routing scheme in section 2.4. Section 2.5 develops an effective distributed solution algorithm. 

Last, section 2.6 presents numerical experiments and section 2.7 concludes the task. We will 

use “vehicle” and “driver” interchangeably in the following context for better illustration. 
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2.1.1 OBJECTIVE 
This task has two main objectives. The first objective is to design an equilibrium routing 

mechanism to reduce traffic congestion and achieve better system performance than IR 

and uoER while still satisfy individual’s selfish nature. The second objective is to design a 

distributed solution algorithm with the help of smart phones and/or on-board 

computing and communication devices to solve our problem efficiently to satisfy the 

fast computation need of online navigation services. 

2.1.2 SCOPE 
To the best of our knowledge, this is the first research to design a correlated equilibrium 

routing mechanism with an efficient distributed solution algorithm using individuals’ 

smart phones and/or on-board smart devices to mitigate traffic congestion and reduce 

system cost. It significantly contributes to the methodology development and practice 

for the field of traffic congestion mitigation. 

2.2 LITERATURE REVIEW 
This study aims to develop a correlated routing mechanism by exploiting the information gap 

between drivers and the CP, which could reduce congestion at the system’s level while still 
maintaining individuals’ selfish nature. In literature, this research sits in the field of flash crowd 

effect, equilibrium routing, correlated game, and information design. This section will briefly 

review some of the most relevant works to our study and identify their research gaps. 

We first recognized the studies that improve system performance by congestion pricing and its 

variants like credit- or permit-based regulations, which has been briefly introduced in the 

Introduction section. Considering these studies mainly use a different line of approaches (i.e., 

imposing physical externalities) than our study (i.e., using information provision to form ER), 

the following survey does not provide detailed reviews for them. Interested readers can refer 

to [8] and [16] for a comprehensive review. 

In literature, the flash crowd effect [13], also known as overreaction [2], occurs in the traffic 

when a large number of drivers receive similar traffic information and make routing decisions 

based on it selfishly and independently. Different ER mechanisms have been proposed to 

mitigate such adverse phenomenon in either distributed or centralized ways. In [10], the author 

developed an online coordinated routing mechanism based on an atomic mixed strategy 

congestion game. By iteratively sharing and updating the routing preference for each vehicle, 

the coordinated routing mechanism guarantees to converge to an equilibrium routing decision 

which leads to better system cost than the IR mechanism. On the other hand, [13] proposed to 

perform route selections centrally. Vehicles are assigned to suggested routes with probabilities 

calculated by the central server. The probability is inversely proportional to the estimated travel 

time, and the resulting routing decision avoids the situation that a large number of vehicles 

choose the same route. There are many other approaches to derive an ER, and most of them 

share similar thoughts with [13] and [10]. For example, [11] conducted the coordinated routing 
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under pure strategy setting, [37] proposed to solve the mixed strategy coordinated routing 

problem similar to [10] using reinforcement learning method, and [20] proposed an 

anticipatory navigation service that predicts and disseminates the near future traffic condition 

based on real-time data. While simulation results show that all these approaches could reduce 

the system cost compared with IR, their performance is still away from SOR. This is because the 

routing decision in uoER can be considered as a spontaneous equilibrium resulting from drivers' 

selfish reactions to perfect traffic information. Though certain machinimas design of uoER could 

mitigate overreaction of drivers’ routing decisions, the resulting system cost is still sub-optimal 

compared with SOR since there are conflicts between user performance and system 

performance. The CeRM proposed in this study falls into the category of ER but differs from 

existing uoER in that it explicitly incorporates system cost minimization in the routing 

mechanism design. 

Another research area that shares similar thoughts to our study in literature is system optimal 

traffic assignment with users’ constraints. They conduct system optimum traffic assignment 

under the consideration of user fairness and cooperation willingness. The approaches used in 

this field can be divided into two branches. One incorporates users’ fairness constraints in the 

system optimum to stabilize the resulting system optimum flow. The other relaxed the user 

equilibrium condition to improve the system performance of user equilibrium flows. Interested 

readers can refer to [23] for a detailed review. Even though these studies achieve further 

system cost reduction without using externalities in road pricing schemes, they only reveal the 

aggregated traffic flow on each route/link, but do not provide specific routing decisions for 

drivers, thus cannot be used for navigation services. On the contrary, our study works on the 

atomic game, which yields detailed routing decisions for each driver and could be used in a 

navigation service. 

Recently, [9] and [29] proposed to improve the performance of uoER by providing a perturbed 

travel time to drivers in the navigation service. Mainly, this study seeks to manipulate individual 

drivers’ real-time route choices toward a better system performance by strategically involving 

bias into travel time provision. While this approach could reduce system cost and rational 

drivers are likely to comply, it may induce fairness issues. Specifically, some drivers responding 

to perturbed traffic information may experience sacrifice in travel time compared with 

responding to unperturbed traffic information. In comparison, in our work, we propose to 

reach a systematically efficient equilibrium routing decision based on the naturally existing 

information gap between drivers and the central planner. The proposed CeRM guarantees that 

every driver would be better off (at least not worse off) given their limited individual 

information and thus precludes the issue of individual fairness. 

The method in our study is built upon the correlated equilibrium (CE) in game theory, in which a 

trusted agent assigns strategy to players according to a probability distribution [1], and no 

player could unilaterally deviate from the assigned strategy to increase their expected utility. By 

designing the informational environment, the agent can manipulate players' behavior and 
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direct the resulting equilibrium to serve its own interests. CE has a great potential to improve 

the system performance without using externalities, but it is still an emerging area in the 

transportation field. Existing studies using CE to reduce traffic congestion focus on exploring the 

effects of CE in simplified scenarios such as small networks with simple one-link or parallel-link 

routes [12][17][7][13][18][30]. Three recent studies proposed CE models for routing games on 

general transportation networks and discussed their impact theoretically [19][33][34] by 

adopting linear travel cost functions, which do not well capture traffic flow features in reality. 

Moreover, to the authors’ best knowledge, no existing work provides efficient solution 
algorithms to solve the CE models for online navigation services over a city network. 

To conclude, state of the art indicates two major research gaps. 1) Most existing ER 

mechanisms do not completely address the inefficiencies brought by the conflicts between 

individual performance and system performance or user compliance issues. 2) Existing CE 

research in routing games can be further improved by involving realistic transportation network 

modeling and practical solution algorithms. This study seeks to partially fill such research gaps 

by involving these enhanced features and addressing the new research challenges. Briefly, this 

study develops a CE-based ER mechanism (i.e., CeRM), which reduces system cost compared 

with uoER and satisfies individuals’ selfish nature using a different line of approach from 

congestion pricing. Briefly, the CeRM is built upon a transportation network with multi origin-

destinations, multi-link non-parallel routes, and well-accepted link cost functions. To adapt this 

CeRM to the online application, we develop a distributed solution algorithm and prove it to be 

efficient for real-world scenarios with thousands of vehicles opting in the services. The 

following sections introduce the technical details for developing the CeRM. 

2.3 Preliminary 
This section will first introduce some mathematic notations and the concept of correlated 

equilibrium and then propose the correlated equilibrium routing mechanism. 

2.3.1 Mathematic notations 
Denote 𝐺 = (𝑁, 𝐿) to be the directed graph of a transportation network, where 𝑁 is the 

set of nodes and 𝐿 is the set of arcs (links). Let 𝑣 = 1,… ,𝑚 be the qualified vehicle on 

roads. Each vehicle 𝑣 has a specific origin-destination (OD) pair (𝑜𝑣, 𝑑𝑣) ∈ 𝑁 × 𝑁 and a 

set of 𝑘𝑣 possible routes. Denote 𝑟𝑣
𝑖 as the 𝑖th possible route of vehicle 𝑣, where 𝑖 = 

1, … , 𝑘𝑣. In a mixed strategy setting, every player places a probability distribution (i.e., 

preference) on their set of available choices. In the routing game, each vehicle is a 

player, and their possible paths are potential alternatives. Denote 𝑝𝑣,𝑖 as the probability 

that vehicle 𝑣 places on the route 𝑟𝑣
𝑖 , Then clearly, we have 

∑𝑖
𝑘
=
𝑣
1 𝑝

𝑣,𝑖 = 1 , ∀𝑣 = 1, … , 𝑚. (1) 

The probability 𝑝𝑣,𝑖 can also be viewed as the expected volume generated by vehicle 𝑣 
on route 𝑟𝑣

𝑖. Thus, we could form the expected flow on link 𝑙 as 
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𝑚 𝑘𝑣 

𝑙 𝑓𝑙 =∑∑𝑝𝑣,𝑖 𝛿𝑣,𝑖 , (2) 

𝑣=1 𝑖=1 
𝑙 𝑖 where the link-route incidence indicator 𝛿𝑣,𝑖 = 1 if link 𝑙 is used by route 𝑟𝑣 , and 0 

otherwise. Associated with each link is a link travel cost 𝑐𝑙(𝑓𝑙). Then, for each route 𝑖 of 

vehicle 𝑣, a generalized travel cost 𝐶𝑣
𝑖 could be defined. 

𝑖 (𝑷) = ∑ 𝑐𝑙(𝑓
𝑙) ,𝐶𝑣 (3) 

𝑙∈𝑟𝑣,𝑖 

where 𝑷 is the set of all route choice preferences, i.e., 𝑷 = {𝑝𝒗,𝒊}, 𝑣 = 1, … 𝑚, 𝑖 = 
𝑖 1, … 𝑘𝑣. Denote the current (initial) traffic information on route 𝑖 of vehicle 𝑣 as 𝐶𝑣,𝑜. 

𝑖 Then according to 𝐶𝑣,𝑜, individual vehicle’s selfish routing choice preference could then 
be calculated by a multinomial logit (MNL) choice model: 

𝑒−𝑉𝑣,𝑖 𝑣,𝑖 𝑝𝑜 = 
𝑘𝑣 

, (4) 
∑
𝑖=1 𝑒

−𝑉𝑣,𝑖 

Where 

𝑖 𝑉𝑣,𝑖 = 𝛼𝑣 + 𝛽𝑣𝐶𝑣,𝑜 , (5) 

is the measured utility of route 𝑟𝑣
𝑖 for vehicle 𝑣 and 𝛼𝑣, 𝛽𝑣 are vehicle-specific constant 

scalars representing the characteristics of each individual. 

2.3.2 Correlated Equilibrium (CE) 
In this subsection, we briefly introduce the concept of correlated equilibrium (CE) used 

in the proposed routing mechanism. We consider a 𝑁-player strategic game (𝑁, 𝐴𝑖, 𝑢𝑖) 
which is characterized by an action set 𝐴𝑖 and utility function 𝑢𝑖 for each player 𝑖. Let 𝑆 
denotes the strategy set given by a trusted CP, let 𝑠 ∈ 𝑆 be the single strategy and 𝑠𝑖 be 

the action allocated to player 𝑖 under strategy 𝑠. In a correlated game, a trusted agent 

assigns a strategy 𝑠 to every player according to a probability distribution 𝑝(𝑠), if no 

player wants to deviate from the suggested action 𝑠𝑖, then a correlated equilibrium (CE) 

is reached, i.e., 

′ ∑𝑝(𝑠𝑖, 𝑠−𝑖)(𝑢𝑖(𝑠𝑖, 𝑠−𝑖) − 𝑢𝑖(𝑠𝑖 , 𝑠−𝑖)) ≥ 0 , (6) 
𝑠−𝑖 

′ where 𝑠𝑖 is an action of player 𝑖 different from 𝑠𝑖, and 𝑠−𝑖 represents the action sets of 

all other players except 𝑖. 

In our routing problem, the CE is used to measure individual vehicles’ selfish rationality. 
A rational individual will not want to deviate from the routing guidance if it satisfies the 

CE condition. Namely, the CE condition ensures that no player can be better off by 

unilaterally derivate from the suggested strategy. 
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There is always more than one solution satisfying the CE condition [14]. However, not all 

of them will lead to a better system-level performance than IR or uoER. Thus, this study 

is interested in finding an optimal CE that minimizes the expected system cost in Eq. (7). 

𝑁 

𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡: ∑∑ 𝑝(𝑠) 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) (7) 
𝑖=1 

𝑠∈𝑆 

2.4 Correlated equilibrium Routing Mechanism (CeRM) 
Given the research gaps mentioned in the literature review, this study seeks to design a 

correlated equilibrium routing mechanism (CeRM) that could drive the traffic condition from an 

inefficient IR to a more systematically optimal one that outperforms existing uoER. By doing 

that, we consider a traffic scenario where there are a large number of qualified vehicles en 

route - vehicles equipped with on-board computing and communication devices - trying to 

make routing decisions at a given short-time period. The CeRM will ensure that every rational 

vehicle would be better off compared to the now widely adopted IR and would thus follow the 

scheme voluntarily. 

More exactly, at the beginning of the CeRM navigation service, each participating vehicle 

provides their OD pairs and receives the current traffic information (current route travel cost) 
𝑖 𝐶𝑣,𝑜 as they usually do with regular navigation services like Google or Apple map. According to 

𝑣,𝑖 the received traffic information, each vehicle 𝑣 will calculate their initial route preference 𝑝𝑜 , 
𝑖 = 1, … , 𝑘𝑣 (as done in IR by equations (4)-(5)), and then proposed to the CP. The collective 

𝑣,𝑖 information from all vehicles opting in the services is denoted as 𝑷𝒐 = {𝑝𝑜 }, 𝑣 = 1, …𝑚, 𝑖 = 
1, … , 𝑘𝑣. Built upon the collected information, the CP will generate the suggested CE route 

𝑣,𝑖 𝑣,𝑖 choice preferences 𝑷𝒔 = {𝑝𝑠 }, 𝑣 = 1, …𝑚, 𝑖 = 1,… , 𝑘𝑣 , in which 𝑝𝑠 , 𝑖 = 1, … , 𝑘𝑣 represents 

the suggested route preference for a driver 𝑣. 𝑷𝒔 seeks to minimizes the system cost while 

guarantees every driver would not be better off by deviating from the suggestion. The whole 

process is conducted automatically in the navigation apps/electronic devices, where the drivers 

only need to provide their OD and personal choice parameters (𝛼𝑣, 𝛽𝑣 in Eq. (5)) and wait for 

the CP to calculate and display the suggested route preferences. 

Note that our solution algorithm designed in Section 5 ensures that the CeRM takes no more 

than half a minute to generate the optimal CE routing guidance. Considering the traffic 

condition in such a short time period is not likely to change dramatically, we assume that the 
𝑖 initial traffic conditions, i.e., {𝐶𝑣,𝑜}, 𝑣 = 1,…𝑚, 𝑖 = 1,… , 𝑘𝑣 won’t change during the decision 

process of the CeRM. Travelers departing at different times may be treated as different 

coordination groups. If traffic condition changes or travelers change their routes en route for 

unexpected reasons within the coordination groups, they may rejoin the CeRM again as new 

travelers. For example, the apps on the individual vehicles can periodically reconduct the CeRM 

to obtain route suggestions whenever they are approaching traffic intersections and have the 

opportunity to re-route their trips.The calculation will be solved distributedly with the help of 

vehicles’ on-board computation resources, and the suggested route preference will be 
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disseminated to individual vehicles. Each vehicle would then pick a route based on the 

preferences (probabilities). 

2.4.1 Modeling CeRM 
There are a few assumptions we make before introducing the mathematical model for 

the CeRM: 

Assumption 1: Every participating driver is rational and would assume all others are 

rational. 

Assumption 2: Drivers don’t know other drivers’ choices. 

Assumption 3: Drivers either follow the guidance or stick to their initial route 

preference calculated by given real-time travel time. 

Assumption 4: The link cost function 𝑐𝑙 is assumed to be continuously differentiable, 

strictly increasing, and convex with respect to link flow 𝑓𝑙. 

Assumption 1 and 4 are common assumptions used in the transportation field, while 

assumption 2 and 3 captures the properties of most popular navigation services such as 

Google or Waze in reality. 

The CP suggests individual vehicles the optimal route choice preference by solving the 

following mathematical programming (MP) problem: 

𝑠. 𝑡 

𝑙)min 𝑍 = ∑ 𝑓𝑠 
𝑙𝑐𝑙(𝑓𝑠 

𝑙∈𝐿 
(8.1) 

𝑘𝑣 𝑘𝑣 
1 1𝑣,𝑖 𝑣,𝑖 𝑣,𝑖 𝑣 ) − 𝑣,𝑖∑ 𝑝𝑠 (−𝐶𝑣 

𝑖 (𝑷𝑠) − ln(𝑝𝑠 )) ≥ ∑ 𝑝𝑜 (− 𝐶𝑣 
𝑖 (𝑷𝑜 ln(𝑝𝑜 )),𝛽𝑣 𝛽𝑣 

𝑖=1 𝑖=1 

∀𝑣 = 1, … , 𝑚 (8.2) 

𝑘𝑣 

𝑣,𝑖 ∑ 𝑝𝑠 = 1, 
𝑖=1 

∀𝑣 = 1, … , 𝑚 (8.3) 

𝑣,𝑖 𝑝𝑠 ≥ 𝜖, ∀𝑣 = 1, … , 𝑚, ∀ 𝑖 = 1, … , 𝑘𝑣 

(8.4) 

𝑚 𝑘𝑣 

𝑙 𝑣,𝑖 𝐿 𝑓𝑠 = ∑ ∑ 𝑝𝑠 𝛿𝑣,𝑖 , ∀𝑙 ∈ 𝐿 (8.5) 

𝑣=1 𝑖=1 

𝑣 𝑣1,𝑖1 𝑣−1,𝑖
𝑘𝑣−1 𝑣,𝑖1 𝑣,𝑖𝑘𝑣 𝑣+1,𝑖1 𝑣𝑚,𝑖𝑘𝑣𝑚 Where, 𝑷𝑜 = {𝑝𝑠 , … , 𝑝𝑠 , 𝑝𝑜 , … , 𝑝𝑜 , 𝑝𝑠 , … , 𝑝𝑠 } is the set of route 

𝑣,𝑖 choice preferences in which only vehicle 𝑣 sticks to its initial preferences 𝑝𝑜 and all 
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others follow the CeRM guidance. Accordingly, the perceived link flow for vehicle 𝑗 on 
𝑚\𝑣𝑗 𝑙 𝑘𝑣 𝑣,𝑖 𝑙 𝑘 𝑣𝑗,𝑖 𝑙 link 𝑙 can be calculated by 𝑓𝑣𝑗 = ∑𝑣=1 ∑𝑖=1 𝑝𝑠 𝛿𝑣,𝑖 + ∑𝑖=

𝑣

1
𝑗 
𝑝𝑜 𝛿𝑣𝑗,𝑖. 

The MP aims to find an optimal solution that minimizes total system cost (8.1) while 

satisfying the correlated equilibrium condition (8.2) and other related feasibility 

constraints. Note that 𝑓𝑠
𝑙 is the expected flow on link 𝑙 if everyone follows the CeRM 

routing guidance 𝑷𝒔. Thus, the objective function (8.1) here is the expected total system 

travel time incurred by all vehicles in the network. The objective function can also 

incorporate other performance measurements such as emissions. It won’t affect the 

applicability of our model and the solution approach as long as its gradient satisfies the 

Lipschitz continuous condition. The left-hand side of Equation (8.2) is the driver’s 

expected net economic benefit if they follow the guidance, and the right-hand side is 

the expected net economic benefit if he unilaterally deviates from the guidance (sticks 

to their original routing preference 𝑷𝑜𝑣 ). We refer to constraint (8.2) as the rationality 

constraint, since it represents the decision process a rational driver would consider 

(Assumption 2 and 3). Below gives a further justification about using net economic 

benefit to build this constraint. 

It has been well known that under discrete behavior choice models, the perceived utility 

𝑈𝑣,𝑖 of a route 𝑖 for vehicle 𝑣 considers not only the exact measured travel time 𝑉𝑣,𝑖, but 

also a random term 𝜖 that represents the influence of unobserved attributes or 

measurement errors [26], i.e., 𝑈𝑣,𝑖 = 𝑉𝑣,𝑖 + 𝜖. Under the commonly adopted 

multinomial logit choice model, the error term 𝜖 follows an i.i.d Gumbel distribution. 

The welfare/consumer surplus an individual vehicle 𝑣 receives if it chooses a particular 
1 

route 𝑖 among other candidate routes could then be expressed as − ln(𝑝𝑣,𝑖) [28]. 
𝛽𝑣 

Then, the net economic benefit of an individual vehicle could be expressed as the 

welfare it receives minus the actual transportation cost it experiences [35], i.e., 

1
(− ln(𝑝𝑣,𝑖) − 𝐶𝑣

𝑖(𝑷)). It is worth noting that under the CeRM, the suggested routing 
𝛽𝑣 

𝑣,𝑖 preference 𝑝𝑠 of each individual vehicle are calculated from the MP rather than 

determined by logit choice model. But as a rational driver possesses consistent behavior 

patterns throughout a decision-making process to determine whether to follow the 

independent routing preference 𝒑𝑜𝑣 or the suggested routing preference 𝒑𝑠𝑣 , it is 

reasonable to use the consistent measurement to measure the welfare of the choice 

from an individual vehicle’s view. Namely, a rational driver would choose the routing 
decision with the largest net economic benefit. To ensure the compliance of the 

equilibrium routing guidance, the rationality constraints (8.2) guarantee that each driver 

would not be better off (receive more net economic benefit) if they choose not to follow 

the proposed guidance. In other words, if constraints (8.2) are satisfied, each driver 

would have no incentive to deviate from the suggested routing guidance. 
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Constraints (8.3) – (8.4) ensure the conservation and positiveness of probability 

variables. It’s worth pointing out that the route preference (probability) under the logit 

choice model is strictly positive. Namely, each route's probability could not be 0 because 

of uncertainties and user heterogeneities. To align the same route choice behavior 

pattern of a rational driver, constraints (8.4) ensure that the decision variables of route 

choice preference are positive. Here, we set 𝜖 as a sufficiently small positive constant, 

e.g., 𝜖 = 1 × 10−6. According to the theory of bounded rationalities [27][31], a rational 

driver cannot sense the travel time difference within a certain threshold. Thus, the 

introduction of 𝜖 to constraints (8.4) would not cause any noticeable difference to the 

routing decision of an individual driver in practice. Constraints (8.5) are the flow 

conservation constraints. 

From a mathematical point of view, the MP of (8.1) – (8.5) has a convex objective 

function but nonconvex constraint sets, and the detailed proof is shown in the Appendix 

A. Moreover, the MP is always feasible. When no routing guidance is given to individual 

vehicles, i.e., 𝑷𝑠 = 𝑷𝑜, all the constraints are satisfied, which means that there always 

exists a feasible solution for our problem. For simplicity issue, we reform the rationality 

constraint as: 

𝑘𝑣 𝑘𝑣 

𝑣,𝑖 1 𝑣,𝑖 𝑣,𝑖 𝑣) + 
1 𝑣,𝑖 𝑟𝑣(𝑷𝑠) =∑𝑝𝑠 (𝐶𝑣

𝑖(𝑷𝑠) + ln(𝑝𝑠 )) −∑𝑝𝑜 (𝐶𝑣
𝑖(𝑷𝑜 ln(𝑝𝑜 )) ≤ 0, ∀𝑣 = 1,… ,𝑚 (9) 

𝛽𝑣 𝛽𝑣 
𝑖=1 𝑖=1 

2.5 Distributed Augmented Lagrangian (D-AL) algorithm 
The CeRM seeks to provide online routing guidance for every participating vehicle to mitigate 

traffic congestion. It requires us to solve the large-scale, highly coupled, and nonlinear 

nonconvex MP in (8.1) – (8.5) promptly (i.e., less than 30 seconds) since it is not likely that a 

driver en route would wait several minutes or even longer to get the route guidance. Even 

though there exist many methods to cope with nonconvex optimization problems, such as 

interior-point methods [4], SQP (sequential quadratic programming) [4], and problem-specific 

heuristic algorithms [19], etc., state of the art shows that none of them could satisfy the 

computation needs for such online service involving a large scale of vehicles in a large 

transportation network (i.e., a large number of decision variables). On the other hand, thanks 

to recent developments in vehicular on-board computing devices and wireless communication 

technologies, distributed computation is becoming a possible solution to be implemented in 

practice. 

Motivated by this view, this study develops a distributed solution algorithm, i.e., distributed 

Augmented Lagrangian (D-AL), to solve the proposed MP for the CeRM problem by taking 

advantage of the problem’s unique structure features. Mainly, the D-AL will efficiently solve the 

problem by distributing a large portion of the computation loads to individual CVs smart 

phones and/or on-board smart devices. Figure 1 illustrates the framework of the D-AL 

implemented between the CP and individual vehicles. Specifically, it includes the four essential 

procedures. 
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Step (i): Individual vehicles first locally evaluate traffic conditions and propose their routing 

preferences to the CP; 

Step (ii): Upon receiving the information, the CP forms the MP for the CeRM problem, 

transforms it into a separable problem (𝑀𝑃 − 𝑆), and then separated into individual 

problems (𝑀𝑃 − 𝐼) and dispatch to each vehicle; 

Step (iii): Each vehicle iteratively calculates the assigned computation tasks and proposes the 

result to the CP. The CP synchronizes individuals' responses and updates the solution until 

the 𝑀𝑃 − 𝑆 converges; 
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Step (iv): If the outcome of Step (iii) does not satisfy the convergence criteria of the MP for the 

CeRM model, the 𝑀𝑃 − 𝑆 is updated and the algorithm returns to step (ii). 

FIGURE 6 THE FLOW CHART OF THE D-AL SOLUTION ALGORITHM 

The proposed D-AL is guaranteed to converge to a local solution to the MP of our CeRM 

problem. The subsections below introduce the technical details for developing such a solution 

algorithm, including model transformation, distribution scheme, and a customized projection 

algorithm. For simplicity issues, we denote the solution (routing guidance) of our problem 𝑷𝑠 = 
𝑣,𝑖} = {𝑥𝑣,𝑖} = 𝑿 ∈ ℝ∑𝑣𝑘

𝑣 
{𝑝𝑠 hereafter. 
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2.5.1 The Augmented Lagrangian Transformation 
To develop the D-AL, we first notice that the MP’s constraint set (8.2) – (8.5) presents a 

unique feature. It involves complicated nonconvex and highly coupled rationality 

constraints (8.2) and a relatively simple and separable 𝜖-probability simplex constraint 

set (8.3) – (8.4) regarding each vehicle’s route choice decision variables (preference). 

Invoked by these features, we consider transforming the MP for the CeRM problem into 

the Augmented Lagrangian form (10) by changing the inequality constraints (9) (an 

equivalent transformation of rationality constraints (8.2)) into equality constraints and 

penalizing them into the objective function (8.1). 

𝑛� 𝑚�
1�

ℒ(𝑿, 𝝀𝑲, 𝑐𝐾) =∑𝑓𝑠
𝐿𝑐𝐿(𝑓𝑠

𝐿) +� ∑(𝑚𝑎𝑥2{0, 𝜆𝑣𝐾 + 𝑐𝐾𝑟𝑣(𝑿)} − 𝜆
𝑣2),�

(10) 2𝑐𝐾�
𝐿⏟=1� 𝑣=1�

𝑍�

where 𝝀𝑲�=�{𝜆
𝑣
𝐾},�𝑣�=�1,�…�,�𝑚�is the set of Lagrangian multipliers, and 𝑐�is the penalty 

parameter. Then we have the first transformations of the MP for the CeRM problem 

given below. 

min�ℒ(𝑿,�𝝀,�𝑐)�
𝑴𝑷�−�𝑨𝑳:� 𝑿� (11) 

𝑠.�𝑡.�(8.3)�−�(8.5)�
The merits of this transformation lie in eliminating the complex constraints (8.2) in the 

MP and transforming them into more manageable sub-problems. Accordingly, existing 

studies [3] show that iteratively solving and updating the transformed problem in (11) 

and associated parameters by Augmented Lagrangian method (AL), we can find a local 

solution of the MP developed for the CeRM. Below we first briefly introduce the 

procedure of the AL algorithm to update the Lagrangian multipliers 𝝀𝐾�and penalty 

parameter 𝑐𝐾�with the given solution of (11): 

Parameter updating scheme 

1: if 𝒴𝐾+1�≤�𝛾𝑚𝒴𝐾�(rationality constraint violation has been decreased): 

2: set 𝑐𝐾+1�=�𝑐𝐾; 

3: else: 

4: set 𝑐𝐾+1�=�𝛾𝑐�𝑐𝐾; 

5: end if; 

6: for 𝑣�∈�𝑉: 

𝑣� 𝑣�7: set 𝜆𝐾+1�=�max�{0,�𝜆𝐾+1�+�𝑐𝐾𝑟𝑣(𝑿𝐾+1)}; 

Where 𝒴�=�max 𝑟𝑣(𝑿)�is the maximum violation of all rationality constraints, 𝛾𝑐�> 1�is a 
𝑣∈𝑉�

constant scalar for updating 𝑐𝐾, 𝛾𝑚�is a positive constant to compare the change in 
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constraint violations, and 𝑿𝐾 is the solution of (11) corresponding to (𝝀𝑲, 𝑐𝐾). The AL 

stops until the convergence criterion of the MP for the CeRM problem is satisfied. The 

updating scheme of the Lagrangian multipliers takes the merit of Augmented Lagrangian 

algorithms and the updating scheme of the penalty parameter 𝑐𝐾 has shown to be 

efficient for our problem in numerical experiments. 

On the other hand, with each given parameters (𝝀, 𝑐), the AL algorithm solves the 

transformed problem in (11) by iteratively updating the solution using the gradient 

projection method as follows. 

𝑿𝑘+1 = [𝑿𝑘 − 𝛼𝑘∇ℒ]ℋ , (12) 

where [∙]ℋ stands for the projection onto the constraint set (8.3) – (8.4) denoted by ℋ 
and 𝛼𝑘 is the step size. Note that we use upper case 𝐾 to denote each iteration of 

updating Lagrangian multipliers and penalty parameter (𝝀𝐾, 𝑐𝐾), and lower case 𝑘 to 

denote the iteration of updating 𝑿𝑘 for a given transformed problem (11). However, the 

standard gradient projection method along with the AL algorithm is not efficient enough 

to satisfy the computation need of our online navigation service. This study further 

develops a distribution scheme and a customized 𝝐-probability simplex projection 

algorithm to expedite the computation of the solution algorithm. 

2.5.2 Distribution scheme 
It is noticed that the link-based objective function (8.1) (the first item 𝑍 in (10)) is not 

user separable, but the second item in (10) and the constraint set (8.3) – (8.4) are. Thus, 

to accommodate a distribution scheme, we transform the objective function 𝑍 into the 

equivalent path-based and user separable form 𝑍𝑢: 

𝑚 𝑘𝑣 

𝑣,𝑖 𝑍𝑢 =∑∑𝑝𝑠 𝐶𝑣
𝑖(𝑷𝑠) (13) 

𝑣=1 𝑖=1 
After this second transformation, the objective function (10) can be rewritten as the 

summation of individuals’ augmented objective functions in (14) (i.e., 𝑀𝑃 − 𝐴𝐿 of (11) 

is then transformed to 𝑀𝑃 − 𝑆 of (14)), which could then be separated among 

individual vehicles. 

𝑚 𝑚 

𝑴𝑷− 𝑺: minℒ(𝑿, 𝝀, 𝑐) = 𝑍𝑢 + 
1 
∑(𝑚𝑎𝑥2{0, 𝜆𝑣 + 𝑐𝑟𝑣(𝑿)} − 𝜆

𝑣2) =∑𝒻𝑣 
𝑿 2𝑐 (14) 

𝑣=1 𝑣=1 
𝑠. 𝑡. (8.3) − (8.5) 

𝑘𝑣 𝑣,𝑖 1 𝑚 Where 𝒻𝑣 = ∑ 𝑝𝑠 𝐶𝑣
𝑖(𝑷𝑠) + ∑ (𝑚𝑎𝑥2{0, 𝜆𝑣 + 𝑐𝑟𝑣(𝑿)} − 𝜆

𝑣2) is the individual 𝑖=1 𝑣=12𝑐 

vehicle’s augmented objective function. The first part of 𝒻𝑣 is the expected travel cost of 

vehicle 𝑣 and the second part is related to the violation of vehicle 𝑣’s rationality. From 
the individual’s perspective, a vehicle 𝑣 only cares about its own augmented objective 
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𝒻𝑣, and tries to minimize it subject to constraints (8.3) – (8.5). We refer to the following 

model for each vehicle 𝑣 as the individual problem (𝑀𝑃 − 𝐼). 

𝑘𝑣 
1𝑣,𝑖 𝑴𝑷− 𝑰:min 𝒻𝑣(𝑿

𝑣, 𝝀, 𝑐) =∑𝑝𝑠 𝐶𝑣
𝑖(𝑷𝑠) + (𝑚𝑎𝑥2{0, 𝜆𝑣 + 𝑐𝑟𝑣(𝑿

𝑣)} − 
𝑿𝑣 (15) 2𝑐 

𝑖=1 

𝑠. 𝑡. (8.3) − (8.5) 
Note that an 𝑀𝑃 − 𝐼 is a separation of 𝑀𝑃 − 𝑆 regarding vehicles, not the decision 

variables. Namely, each 𝑀𝑃 − 𝐼 holds the same decision variables as the 𝑀𝑃 − 𝑆. It can 

be seen as an individual vehicle 𝑣 trying to design routing preferences for all vehicles 

that minimize its own augmented objective. An 𝑀𝑃 − 𝐼 can also be solved using the 

gradient projection method by iteratively performing the updating process shown in 

(16): 

𝑣𝑿𝑘+1 = [𝑿𝑘
𝑣 − 𝛼𝑘∇𝒻𝑣]

ℋ (16) 

𝑣 Where, 𝑿𝒗 ∈ ℝ∑ 𝑘𝑣 
is the solution of vehicle 𝑣’s 𝑀𝑃 − 𝐼. A solution 𝑿𝒗 from vehicle 𝑣 

can be seen as the solution mostly favorable to vehicle 𝑣’s interest. However, for two 
vehicles, most likely we will have 𝑿𝒗′ ≠ 𝑿𝒗 . Consequently, 𝑿𝒗 is not in accordance with 

the overall objective in (14). To balance individual’s will and produce a consensus 
solution that converges to the 𝑀𝑃 − 𝑆 , we design a customized distribution scheme (𝑐-

DS) that only requires individuals to propose their interest-related gradients ∇𝒻𝑣 = 
𝜕𝒻𝑣 𝜕𝒻𝑣 { , … , }. By synchronizing individuals’ gradients, the CP can obtain ∇ℒ = 𝑣1,𝑖1 𝑣𝑚,𝑖𝑘𝑣𝑚 𝜕𝑝𝑠 𝜕𝑝𝑠 
𝑚∑𝑣=1 ∇𝑔𝑣 , and then perform the update through (17) to solve the 𝑀𝑃 − 𝑆 of (14). 

ℋ𝑚 

𝑿𝑘+1 = [𝑿𝑘 − 𝛼𝑘 ∑ ∇𝒻𝑣] (17) 

𝑣=1 
Here, the step size 𝛼𝑘 is determined by a centralized line search along the projection arc 

𝑚 [3]. Clearly, ∑ ∇𝒻𝑣 = ∇ℒ and the solution updating process (17) is equivalent to 𝑣=1 

performing the gradient projection algorithm (12) on the 𝑀𝑃 − 𝐴𝐿 (11), but using a 

distributed way to conduct this computation. 

This study also noticed another more general and straightforward way to distribute the 

calculation load of ∇ℒ in (12) by letting each vehicle compute the partial derivatives 

related to their own decision variables. We label this naive approach as 𝑛-DS: vehicle 𝑣 
𝜕ℒ 

computes 𝑣,𝑖 , 𝑖 = 1,… , 𝑘𝑣. However, there are two drawbacks in 𝑛-DS. First, unlike in 
𝜕𝑝𝑠 

𝑐-DS, individuals have no direct interest in the computation task under 𝑛-DS, making 

them less willing to contribute their computing power and propose the needed 

information. Second, the naive approach 𝑛-DS is less efficient than our problem-specific 

𝑐-DS regarding the computation workload. We prove this merit in Theorem 1 below. 
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Theorem 1: Assume there are 𝑚 vehicles each with 𝑘 possible candidate routes, then 
1

1− 
each vehicle undertakes 𝑚 less workload in 𝑐-DS than in 𝑛-DS. 

𝑘+1 

The proof of Theorem 1 is shown in Appendix B. It is worth noting that each vehicle 

usually faces 2 to 4 possible routes. Then the 𝑐-DS developed in this study can reduce 

the computation load by nearly 20% to 33%, which is quite considerable in practice 

given that the main computation burden of the D-AL lies in this part. 

2.5.3 Projection onto the 𝝐-probability simplex 
It should be noted that the updating process (17) involves a projection process [∙]ℋ , 

which is not easy to perform in general procedures. It usually involves solving a quite 

computationally costly optimization problem：min‖𝑥 − 𝑦‖. However, after conducting 
𝑥∈ℋ 

the Augmented Lagrangian transformation and further transforming the problem to 

𝑀𝑃 − 𝑆 in (14), the remaining constraints are of 𝜖-probability simplex form for each 

vehicle. Several studies, i.e., [5][32] have developed projection algorithms with the 

probability simplex (𝑥𝑖 ≥ 0, ∑ 𝑥𝑖 = 1). To be noted, our study works on the projection 𝑖 

onto the 𝜖-probability simplex space. Thus, we cannot directly use their algorithms. This 

subsection thus develops a 𝜖-simplex projection algorithm that could conduct the 

projection efficiently to the 𝜖-probability simplex space without solving the extra 

optimization problem. We first give the projection algorithm and then prove its 

correctness. 

Algorithm 1 𝜖-Simplex Projection 

1: input 𝑌 = (𝑦1,… , 𝑦𝑛) ∈ ℝ𝑛; 

2: sort 𝑌 in descending order such that 𝑦(1) ≥ 𝑦(2) ≥ ⋯ ≥ 𝑦(𝑛); 

3: find the largest index 𝑘 ∈ [1, 𝑛], such that 

𝑘 ∑ 𝑦(𝑖) + (𝑛 − 𝑘)𝜖 − 1𝑖=1
𝑦(𝑘) − > 𝜖 

𝑘 
𝑘∑ 𝑦(𝑖)+(𝑛−𝑘)𝜖−1 

4: set 𝜆 = 𝑖=1 

𝑘 

5: return 𝑥𝑖 = max{𝑦𝑖 − 𝜆, 𝜖} , 𝑖 = 1… . , 𝑛. 

The main complexity of the algorithm lies in sorting the elements of 𝑌 into descending 

order, which has a worst-case time complexity of 𝑂(𝑛 log 𝑛) [6]. Theorem 2 below 

proves the algorithm correctly projects a vector into the 𝜖-probability simplex space. 

Theorem 2: the 𝜖-Simplex Projection algorithm returns a vector 𝑋 that satisfies 𝑋 = 
arg min‖𝑋 − 𝑌‖2 , where ℋ is the 𝜖-probability simplex space. 

𝑋∈ℋ 
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Proof: 

Projecting a vector 𝑌 = (𝑦1, … , 𝑦𝑛) into the 𝜖-probability simplex space equals to solving 

the optimization problem of: 

1 
min ‖𝑋 − 𝑌‖2 
𝑋 2 

(18) 
𝑠. 𝑡. 𝑋𝑇𝟏 = 1 
𝜖 ≤ 𝑥1, … , 𝑥𝑛 

KKT conditions of the problem are: 

∇𝑥𝑖ℒ(𝑋
∗, 𝜆∗, 𝜇∗) = 𝑥𝑖 − 𝑦𝑖 + 𝜆 − 𝜇𝑖 = 0, 𝑖 = 1,… , 𝑛 (19.1) 

𝑛 

∇𝜆ℒ(𝑋
∗, 𝜆∗, 𝜇∗) = ∑𝑥𝑖 − 1 = 0 (19.2) 

𝑖=1 

𝜇𝑖(𝜖 − 𝑥𝑖) = 0, 𝑖 = 1,… , 𝑛 (19.3) 

𝜖 ≤ 𝑥𝑖, 𝑖 = 1, … , 𝑛 (19.4) 

𝜇𝑖 ≥ 0, 𝑖 = 1, … , 𝑛 (19.5) 

From above, we know that 

if 𝑥𝑖 > 𝜖, then 𝜇𝑖 = 0 and 𝑦𝑖 − 𝜆 = 𝑥𝑖 > 𝜖 { (20) 
if 𝑥𝑖 = 𝜖, then 𝜇𝑖 ≥ 0 and 𝑦𝑖 − 𝜆 = 𝑥𝑖 − 𝜇𝑖 = 𝜖 − 𝜇𝑖 ≤ 𝜖 

(20) indicates that if 𝑦𝑖 ≥ 𝑦𝑗, then 𝑥𝑖 ≥ 𝑥𝑗 . Without loss of generality, assume that 𝑌 has 

been sorted in descending order, and 𝑋 is arranged using the same index, i.e., 

𝑦1 ≥ 𝑦2 ≥ ⋯ ≥ 𝑦𝑛 (21) 
𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑘 > 𝑥𝑘+1 = ⋯ = 𝑥𝑛 = 𝜖 

Replacing (20) and (21) to (19.2), we have: 

𝑛 𝑘 𝑘 

∑𝑥𝑖 =∑𝑥𝑖 + (𝑛 − 𝑘)𝜀 =∑(𝑦𝑖 − 𝜆) + (𝑛 − 𝑘)𝜖 = 1 (22) 

𝑖=1 𝑖=1 𝑖=1 
Then, 

∑𝑘𝑖=1 𝑦𝑖 + (𝑛 − 𝑘)𝜖 − 1 
(23) 𝜆 = 

𝑘 
To this end, if we find the boundary index 𝑘, we could determine the value of 𝜆 and 

calculate 

the projected vector by: 
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𝑥𝑖 = max{𝑦𝑖 − 𝜆, 𝜖} (24) 

By substituting (24) to (19.1) – (19.5), It’s easy to find that it would satisfy all the KKT 

conditions and would thus be the optimal solution to the problem (18). 

Next, we show that step 3 of Algorithm 1 will successfully find the boundary index 𝑘, 

i.e., if 𝑘 is the index found in step 3 of Algorithm 1, then 

∑
𝑗 

𝑦𝑖+(𝑛−𝑗)𝜖−1 
𝑦𝑗 − 𝑖=1 > 𝜖, ∀𝑗 ≤ 𝑘 

𝑗 
{ .𝑗 

+(𝑛−𝑗)𝜖−1∑
𝑖=1 𝑦𝑖 ≤ 𝜖, ∀𝑗 > 𝑘 𝑦𝑗 − 

𝑗 

𝑘 +(𝑛−𝑘)𝜖−1∑𝑖=1 𝑦𝑖 Suppose that now we have found the largest index 𝑘, such that 𝑦𝑘 − > 
𝑘 

∑𝑘 𝑦𝑖+(𝑛−𝑘)𝜖−1 
𝜖. Let 𝜆 = 𝑖=1 . Then, 

𝑘 

1) for index 𝑗 ≤ 𝑘, 

𝑗 𝑗 ∑ 𝑦𝑖 + (𝑛 − 𝑗)𝜖 − 1 𝑗𝑦𝑗 − ∑ 𝑦𝑖 − (𝑛 − 𝑗)𝜖 + 1𝑖=1 𝑖=1𝑦𝑗 − = 
𝑗 𝑗 

(25) 𝑘 𝑘 − ∑ − (𝑛 − 𝑗)𝜖 + 1𝑗𝑦𝑗 + ∑𝑖=𝑗+1 𝑦𝑖 𝑖=1 𝑦𝑖 
= 

𝑗 
From (22), we have 

𝑘 

∑ 𝑦𝑖 = 1 + 𝑘𝜆 − (𝑛 − 𝑘)𝜖 (26) 

𝑖=1 
Insert (26) into (25), we have 

𝑗 𝑘 ∑𝑖=1 𝑦𝑖 + (𝑛 − 𝑗)𝜖 − 1 𝑗𝑦𝑗 + ∑𝑖=𝑗+1 𝑦𝑖 − 𝑘𝜆 + (𝑗 − 𝑘)𝜖 
𝑦𝑗 − = 

𝑗 𝑗 
𝑘 𝑗(𝑦𝑗 − 𝜆) + ∑ (𝑦𝑖 − 𝜆) + (𝑗 − 𝑘)𝜖 𝑖=𝑗+1 (27) = 

𝑗 
𝑗𝜖 + (𝑘 − 𝑗)𝜖 + (𝑗 − 𝑘)𝜖 

> = 𝜖 
𝑗 

Note that the inequality in (27) results from that 𝑦 is sorted in descending order, thus 

for 𝑖 ≤ 𝑘, 𝑦𝑖 − 𝜆 ≥ 𝑦𝑘 − 𝜆 > 𝜖. 

2) for index 𝑗 > 𝑘, incorporate (26), we have 

40 



   
 

  
 

 

 

          

     

          

    

         

       

     

         

       

         

      

       

     

         

       

  

 

        

 

    

   

         

    

          

    

STRIDE I Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Smartphone-Based Incentive Framework for Dynamic Network-Level 
Traffic Congestion Management 

𝑗 𝑘 𝑗 ∑ 𝑦𝑖 + (𝑛 − 𝑗)𝜖 − 1 𝑗𝑦𝑗 − ∑𝑖=1 𝑦𝑖 − ∑ 𝑦𝑖 − (𝑛 − 𝑗)𝜖 + 1𝑖=1 𝑖=𝑘+1𝑦𝑗 − = 
𝑗 𝑗 

𝑗𝑦𝑗 − ∑𝑗 𝑦𝑖 − 𝑘𝜆 + (𝑗 − 𝑘)𝜖 𝑖=𝑘+1 = 
𝑗 (28) 
𝑗 

𝑘(𝑦𝑗 − 𝜆) + ∑ (𝑦𝑗 − 𝑦𝑖) + (𝑗 − 𝑘)𝜖 𝑖=𝑘+1 = 
𝑗 

𝑘𝜖 + (𝑗 − 𝑘)𝜖 
≤ = 𝜖 

𝑗 
Note that the inequality in (28) results from that 𝑦 is sorted in descending order, thus 

for 𝑗 > 𝑘, 𝑦𝑗 − 𝜆 ≤ 𝜖 and for 𝑖 < 𝑗, 𝑦𝑗 − 𝑦𝑖 ≤ 0. 

Combining (27) and (28), we conclude that if we find the largest index 𝑘 such that 𝑦𝑘 − 
𝑗 

∑𝑘 +(𝑛−𝑘)𝜖−1 ∑ 𝑦𝑖+(𝑛−𝑗)𝜖−1𝑖=1 𝑦𝑖 𝑖=1> 𝜖, then for index 𝑗 < 𝑘, 𝑦𝑗 − > 𝜖, for index 𝑗 > 𝑘,
𝑘 𝑗 

∑
𝑗 

+(𝑛−𝑗)𝜖−1𝑖=1 𝑦𝑖 𝑦𝑗 − ≤ 𝜖, and thus 𝑘 would be the boundary index we need. 
𝑗 

Q.E.D 

With the help of our customized distribution scheme (sec 5.1.2) and 𝜖-Simplex 

Projection algorithm, a complete description of Step (iii) in D-AL can then be given as 

follows: After an 𝑀𝑃 − 𝑆 is formed in Step (ii), the CP distributes individual-specific 

objective functions along with the current step solution to each vehicle. Upon receiving 

the information, individual vehicles calculate the gradients related to their own 

functions and propose them to the CP. The CP then aggregates all the information and 

performs process (17) to update a new solution. This process keeps iterating until the 

𝑀𝑃 − 𝑆 is converged. The solution updating process of (17) takes the merit of the 

gradient projection algorithm and is guaranteed to converge to a local solution of 𝑀𝑃 − 
𝑆 [3]. 

To this end, combining subsections 5.1.1 – 5.1.3, we provide the steps of the D-AL as 

follows: 

Algorithm 2 D-AL solution algorithm 

1: Initialization: initial route choice probabilities 𝑝𝑣
𝑖 , 𝑖 = 1,… , 𝑘𝑣, 𝑣 = 1,… ,𝑚, 

Lagrangian multipliers 𝝀𝟏 and penalty parameter 𝑐1; 

2: For 𝐾 = 1,2, …, : 

3: If the convergence criterion of the MP for the CeRM problem is satisfied: 

4: break; 
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5: Else: 

6: transform to / update (𝝀𝐾, 𝑐𝐾) for the 𝑀𝑃 − 𝑆 according to Eq. (11), (14) 

and the Parameter updating scheme; 

7: For 𝑘 = 1,2, … ,: 

8: If the convergence criterion of the 𝑀𝑃 − 𝑆 is satisfied: 

9: break; 

10: Else: 

11: distribute computation task ∇𝒻𝑣 to each vehicle 𝑣; 

12: collects the result from each vehicle and update the route choice 

probabilities according to Eq. (17) with the help of Algorithm 1; 

13: End 

14: End 

The D-AL algorithm developed here relies on the distributed computation of the 
𝑚 gradient information, i.e., ∑ ∇𝒻𝑣 in (17). Specifically, when the computation results 𝑣=1 

aggregated from individual vehicles are exactly the gradient of the 𝑀𝑃 − 𝑆 (∇ℒ), the 

solving process (17) of 𝑀𝑃 − 𝑆 takes the merits of the gradient projection methods and 

guarantees to converge [3]. Then, as 𝑀𝑃 − 𝑆 is iteratively updated according to (11) 

and the Parameter updating scheme, the convergence of the D-AL resembles that of the 

Augmented Lagrangian algorithm (see sec 5.1.1), which has been proved in literature to 

converge to a local solution [3]. In other words, the convergence of D-AL is guaranteed 

when every vehicle is well-connected throughout the navigation process. 

2.6 Numerical Experiment 
This study conducts numerical experiments to demonstrate the efficiency of the D-AL and the 

efficacy of the CeRM. Specifically, our experiments investigate three aspects: (1) the 

computation efficiency and convergence pattern of the D-AL algorithm; (2) the system cost 

reduction brought by the CeRM compared with benchmarks (IR, uoER, SOR) routing 

mechanisms. 

2.6.1 Experiment Settings 
The experiments are conducted upon the topology of the Sioux Falls city network, as 

shown in Figure 2. The middle-sized network has 24 nodes and 76 links [35] and has 

been widely used as a testbed in the transportation field. 
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FIGURE 7 SIOUX FALLS CITY NETWORK 

The standard BPR function is adopted to capture link travel time with the given flow, 

i.e., 

𝑓𝑙 
4 

𝑐𝑙(𝑓𝑙) = 𝑡0
𝑙 (1 + 0.15 ( ) )

𝑘𝑙 

where 𝑡0
𝑙 and 𝑘𝑙 is the free-flow travel time and capacity of link 𝑙 separately. Vehicles 

represented by a three tuple (𝑂𝐷, 𝛼, 𝛽) are generated randomly with OD denoting the 

origin-destination pair and 𝛼, 𝛽 ∈ [0,1] being personal parameters used in the 

multinomial logit choice model as defined in (5). Each vehicle 𝑣 has two possible routes 

found by the k-shortest paths algorithm [36] under current (initial) traffic conditions. 

Detailed parameters used in the D-AL algorithm are shown in Table 4. 

TABLE 4 EXPERIMENT PARAMETERS 

Parameter use notation value 

penalty updating 

parameter 
𝛾𝑐 10 

Constraint feasibility 

comparison 
𝛾𝑚 0.7 

first order optimality 

tolerance 
𝜀𝑚 0.01 

feasibility tolerance 𝜀𝑐 0.01 
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Initial Lagrangian 

multiplier 
𝜆0 1 

Initial penalty 𝑝0 1 

initial step size 𝛼̅ 1 

Armijo parameter 𝛽, 𝜎 
0.5, 

0.01 

To measure the algorithm’s efficiency, we implement the proposed D-AL algorithm in 

MATLAB R2020a and compare it with the SQP-based MATLAB solver since Sequential 

Quadratic Programming (SQP) is commonly used to solve nonconvex large-scale 

optimization problems. In addition, it has been used by recent works such as [24] to 

solve nonconvex problems in routing games. To measure the routing mechanism’s 

efficacy, we compare the system cost of the CeRM with that of (i) IR, by which each 

vehicle conducts one snapshot best response to real-time traffic information, (ii) uoER, 

by which the route choices of the vehicles are coordinated to a snapshot equilibrium 

resolution, and (iii) SOR, by which vehicles’ route choices are systematically manipulated 
toward the minimum system cost. The experiments are conducted on the laptop with 

processor: Intel® Core™ i5-8300H CPU @ 2.30GHz. 

2.6.2 Computation performance of D-AL 

FIGURE 8 CONVERGENCE PATTERN UNDER DIFFERENT NUMBER OF VEHICLES 

To demonstrate the proposed algorithm’s computation performance, we run 14 traffic 
scenarios with the number of qualified participating vehicles increasing from 200 to 
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1500 by an increment of 100. Each scenario was run ten times and then we took the 

average performance to reduce contingency and randomness. 

Figure 3 displays the convergence pattern under the cases of 500, 1000, and 1500 

vehicles. It indicates that the objective function drops quickly in the early period (when 

the penalty is small), fluctuates a little bit, then enters a flat district and stays stable (as 

penalty increases), which coincides with the typical convergence pattern of the 

Augmented Lagrangian algorithm. 
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FIGURE 9 COMPUTATION TIME UNDER DIFFERENT NUMBER OF VEHICLES 

Figure 4 shows the average computation time for D-AL and SQP as the number of 

vehicles increases. It demonstrates that the SQP solver becomes computationally 

intractable (i.e., computation time is larger than 6000 seconds, which cannot adapt to 

online routing requirements) when the number of vehicles exceeds 800. The coefficient 

of variation for the computation time of the D-AL ranges between 0.19 to 0.43, with a 

maximum computation time of 28.7 sec happened in the scenario with 1500 vehicles. 

The D-AL dramatically outperforms SQP in all scenarios and we conclude that it could 

satisfy the fast computation need for an online navigation service (i.e., handle a scenario 

with more than a thousand vehicles by an average leading time smaller than 22 

seconds). It’s worth noting that it is not proper to compare the computation time of the 

CeRM to that of the IR mechanism applications such as Google Map or Waze, since the 

formal one seeks to coordinate the routing decision of a group of vehicles, which is 

highly complicated and time-consuming, while the latter one only determines individual 

vehicles’ route choices independently without coordination. To conclude, the D-AL 

algorithm shows stable convergence quality and is far more efficient than the traditional 

SQP algorithm regarding convergence speed. The computation performance of the D-AL 
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can satisfy the need for a realistic online navigation service with a large number of 

vehicles. 

2.6.3 System Performance of the CeRM 
This section further investigates the effectiveness of the CeRM in mitigating traffic 

congestion, while sustaining individual vehicles’’ trip interest. The proposed D-AL is used 

to calculate the routing guidance under the CeRM. The system cost resulting from the 

collective route choices under the CeRM is compared with three benchmarks: IR. uoER, 

and SOR. The detailed formulations of these benchmarks are shown in Appendix C. 

Fourteen scenarios of experiments are conducted, in which the number of vehicles 

increased from 200 to 1500 with an increment of 100. Similar to above, every scenario is 

run ten times to reduce the effect of randomness in the presented results. The 

coefficient of variation for different scenarios ranges between 0.018 to 0.027, which is 

very small and shows that the CeRM has stable system performance. 
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FIGURE 10 SYSTEM COST COMPARISON BETWEEN IR AND CERM 
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FIGURE 11 SYSTEM COST COMPARISON BETWEEN UOER AND CERM 

The experiment results are shown in Figure 5 and Figure 6. Figure 5 shows the system 

cost comparison between IR and the CeRM, and Figure 6 shows the same comparison 

between the uoER and CeRM. Define 𝑍𝐶𝑒𝑅𝑀, 𝑍𝐼𝑅, 𝑍𝑢𝑜𝐸𝑅, 𝑍𝑆𝑂𝑅 to be the system cost 

under the CeRM, IR, uoER, and SOR, respectively. The blue bars show the amount of the 

system cost reduction by the CeRM from the benchmark mechanisms, and the orange 

line shows the percentage of the system cost reduction as comparing the CeRM with IR 
𝑍𝐼𝑅−𝑍𝐶𝑒𝑅𝑀 𝑍𝑢𝑜𝐸𝑅−𝑍𝐶𝑒𝑅𝑀 or uoER, i.e., and . It can be seen that the system cost of the CeRM 

𝑍𝐼𝑅 𝑍𝑢𝑜𝐸𝑅 

is always lower than that under IR and uoER. As the number of vehicles increases, the 

system cost reduction by the CeRM increases. In congested scenarios, the system cost 

could be reduced by around 55% compared with IR and approximately 3.6% compared 

with uoER. 

We also compare the system performance of the CeRM, IR, and uoER by measuring how 

much their induced system costs are higher than the System Optimum (SOR) cost, i.e., 

compare ∆𝐶𝑒𝑅𝑀 = 𝑍𝐶𝑒𝑅𝑀 − 𝑍𝑆𝑂𝑅, ∆𝐼𝑅= 𝑍𝐼𝑅 − 𝑍𝑆𝑂𝑅 and ∆𝑢𝑜𝐸𝑅 = 𝑍𝑢𝑜𝐸𝑅 − 𝑍𝑆𝑂𝑅. Given 

SOR represents the best system performance, the smaller ∆ is, the better the resulting 

system performance it represents. Table 1 clearly shows that the CeRM approaches the 

system optimum cost closely and it outperforms IR and uoER under all scenarios. To 

conclude, the CeRM pushes the snapshot traffic resulting from widely used IR to a more 

systematically efficient state. It proves to be efficient in reducing traffic congestion at a 

systematic level. 

Number of ∆𝐶𝑒𝑅𝑀 ∆𝑢𝑜𝐸𝑅 ∆𝐼𝑅 
Vehicles 
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TABLE 5 SYSTEM PERFORMANCE UNDER DIFFERENT NUMBER OF VEHICLES 

2.7 Conclusion 
This study designs a correlated routing mechanism that calculates and provides online routing 

guidance for vehicles with onboard computing and communication devices. By exploiting 

information discrepancies between individual vehicles and the CP, the proposed mechanism 

drives the snapshot equilibrium route choice of a group of vehicles toward a more systematic 

optimal condition while still preserving the individual’s selfish nature. By following the routing 
guidance offered by the CP, every driver would get better off (at least not worse off) compared 

to their initial preference based on current traffic information. Furthermore, this study 

proposes the D-AL, an effective distributed algorithm to quickly solve the routing problem for 

an online real-time navigation service. The conducted numerical experiments demonstrate the 

merits of the D-AL in its computation speed. The experimental results also indicate that the 

CeRM drives the traffic equilibrium to a state better than that under IR and uoER regarding the 

objective of the system cost. To the best of our knowledge, this is one of the first studies to 

design an online routing mechanism based on correlated game and distributed optimization to 

mitigate network traffic congestion. The methodology and findings of this study will 

significantly contribute to traffic congestion mitigation areas in both literature and practice. 

2.8 Appendix 
Appendix A 
Lemma 13: The optimization problem has a convex objective function and a nonconvex 

feasible region. 

Proof: To check the convexity of the objective function, we exam its Hessian and noticed 

the Hessian of Z is positive definite. 

200 72.74 88.40 88.41 
300 110.34 130.51 132.34 
400 155.29 190.40 203.74 
500 242.11 299.35 410.44 
600 305.83 389.87 645.76 
700 441.50 582.75 1387.15 
800 526.70 759.24 2268.00 
900 589.15 1006.36 4498.82 

1000 651.79 1152.41 6742.16 
1100 663.79 1367.56 13280.52 
1200 571.55 1364.15 18313.46 
1300 575.57 1526.05 23824.54 
1400 440.08 1435.10 40052.14 
1500 443.80 1535.47 52978.12 
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Since the link cost function is strictly increasing and convex according to assumption 6, 

𝑐𝑙′ and 𝑐𝑙′′ would be positive. Thus, every element in matrix Λ is positive. Given any 

diagonal matrix Λ with positive elements, for any vector 𝑥 and matrix 𝑀, 𝑥𝑇𝑀Λ𝑀𝑇𝑥 = 
(𝑀𝑇𝑥)𝑇Λ(𝑀𝑇𝑥) > 0 must hold. Hence, the hessian matrix 𝐻(𝑍) is positive definite. 

Next, we check the rationality constraint's convexity and notice that the Hessian of 

rationality constraints is indefinite. More exactly, we first calculate the elements in the 

Hessian and then prove it is neither positive (semi) definite nor negative definite. 

The first derivatives of the rationality constraint of vehicle 𝑣∗ are: 

𝑘𝑣∗ 

𝜕𝑟𝑣∗ 𝐿) 
1 𝑣∗,𝑖∗ 𝑣∗,𝑖 𝐿) 𝐿 = 1, … , 𝑘𝑣

∗ 
= ∑ 𝑐𝐿(𝑓𝑠 + (1 + ln(𝑝𝑠 )) +∑𝑝𝑠 ∑ 𝑐𝐿′(𝑓𝑠 𝛿𝑣∗ , 𝑖∗ 

𝑣∗,𝑖∗ ,𝑖∗ 
𝜕𝑝𝑠 𝛽𝑣∗ 

𝐿∈𝑟𝑣
∗,𝑖∗ 𝑖=1 𝐿∈𝑟𝑣

∗,𝑖 

𝜕𝑟𝑣∗ 𝑘𝑣∗ 𝑣∗,𝑖 ∑ 𝐿 𝑘𝑣∗ 𝑣∗,𝑖 ∑ 𝐿 = ∑ 𝑝𝑠 ,𝑖 𝑐𝐿′(𝑓𝑠
𝐿)𝛿 −∑ 𝑝𝑜 ,𝑖 𝑐𝐿

′ (𝑓𝑜
𝐿)𝛿 , 𝑣′ ≠ 𝑣∗, 𝑖′ = 1, … , 𝑘𝑣

′ 

𝑣′,𝑖′ 𝑖=1 𝐿∈𝑟𝑣
∗ 

𝑣′,𝑖′ 𝑖=1 𝐿∈𝑟𝑣
∗ 

𝑣′,𝑖′ 
𝜕𝑝𝑠 

the elements in the Hessian matrix of the rationality constraint of vehicle 𝑣∗ are: 

𝑘𝑣∗ 

𝜕𝑟𝑣∗ 1𝐿 𝑣∗,𝑖 𝐿 = 2 ∑ 𝑐𝐿
′ (𝑓𝑠

𝐿)𝛿𝑣∗ +∑𝑝𝑠 ∑ 𝑐𝐿
′′(𝑓𝑠

𝐿)𝛿𝑣∗ + , 𝑖∗ = 1, … , 𝑘𝑣
∗ 

𝑣∗,𝑖∗ 𝑣∗,𝑖∗ ,𝑖∗ ,𝑖∗ 𝑣∗,𝑖∗ 𝜕𝑝𝑠 𝜕𝑝𝑠 𝛽𝑣∗𝑝𝑠 𝐿∈𝑟𝑣
∗,𝑖∗ 𝑖=1 𝐿∈𝑟𝑣

∗,𝑖 
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Take a simplified scenario for the demonstration. Assume there are two simple routes 
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𝑥1
2𝐴+2𝑥1𝑥3𝐵+𝑥2

2𝐶+𝑥3
2𝐸�

<�0,�𝑖𝑓�𝑥4�<� −2𝑥2𝐷�Thus, we have 𝑥Φ𝑥𝑇�{� . So, the hessian matrix Φ�is 
𝑥1
2𝐴+2𝑥1𝑥3𝐵+𝑥2

2𝐶+𝑥3
2𝐸�

≥�0,�𝑖𝑓𝑥4�≥� −2𝑥2𝐷�

indefinite, and the feasible region defined by the constraint is nonconvex. 

Q.E.D 

Appendix B 
Proof of Theorem 1: 

𝑣,𝑖�We denote a solution point 𝑷𝑠�=�{𝑝𝑠�}�=�𝑿�=�(𝑥1,… , 𝑥𝑘𝑚)�and 𝑿𝑖�=�(𝑥1,�…�,�𝑥𝑖�+�

𝑑𝑥𝑖, …�, 𝑥𝑘𝑚), then the numerical calculation of a single partial derivative for a vehicle in 

𝑛-DS takes the form: 

𝑚� 𝑚�𝜕ℒ� ℒ(𝑿𝑖)−ℒ(𝑿)� ∑� ∇𝒻𝑣(𝑿
𝑖)−∑� ∇𝒻𝑣(𝑿)𝑣=1� 𝑣=1�=� =� , 𝑖 = 𝑘(𝑣 − 1) + 1,… , 𝑘𝑣. 

𝜕𝑥𝑖� 𝑑𝑥𝑖� 𝑑𝑥𝑖�

In the contrast, the numerical calculation of a single partial derivative for a vehicle in 𝑐-

DS takes the form: 

𝜕𝒻𝑣� 𝒻𝑣(𝑿
𝑖)�−�𝒻𝑣(𝑿)�

=� , 𝑖�=�1,… , 𝑘𝑚�
𝜕𝑥𝑖� 𝑑𝑥𝑖�

An individual vehicle under 𝑐-DS has to compute 𝑘𝑚�partial derivatives, while under 𝑛-

DS has to compute 𝑘�partial derivatives. Consider the time complexity it takes to 

numerically calculate 𝒻𝑣(𝑿)�as 𝑙. Then the computation costs measured by the time 

complexity of vehicle 𝑗�under 𝑐-DS and 𝑛-DS are given below: 

𝑐-DS time complexity: (𝑘𝑚�+�1)𝑙�

𝜕𝒻𝑣�• the vehicle needs to calculate 𝑘𝑚�different , and thus needs to calculate 
𝜕𝑥𝑖�

(𝑿𝑘𝑚)� (𝑿).𝒻𝑣𝑗(𝑿
1),… , 𝒻𝑣𝑗� ⏟⏟� , 𝒻𝑣𝑗�

𝑘𝑚� 1�

𝑛-DS time complexity: (𝑘�+�1)𝑚𝑙�

𝜕ℒ�
• the vehicle needs to calculate 𝑘�different , and thus needs to calculate 

𝜕𝑥𝑖�
𝑚� (𝑋𝑘(𝑗−1)+1)� 𝑚� (𝑋𝑘𝑗)�𝑚�∑⏟� 𝒻𝑣� ⏟� 𝒻𝑣� ⏟� 𝒻𝑣�(𝑋).𝑣=1� , … , ∑� , ∑𝑣=1� 𝑣=1�

⏟� 𝑚� 𝑚� 𝑚�

𝑘�
1�

(𝑘+1)𝑚𝑙−(𝑘𝑚+1)𝑙� 𝑚�
1−�

Then, we claim a vehicle in 𝑐-DS undertakes =� less workload than in 
(𝑘+1)𝑚𝑙� 𝑘+1�

𝑛-DS. 

Q.E.D 

Appendix C 
Independent Routing (IR) 
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In an independent routing mechanism, each individual driver independently does the 

best response to the real-time traffic conditions. In this study, we adopt the commonly 

used multinomial logit-based (MNL) behavior choice model. According to the real-time 
𝑖 traffic information 𝐶𝑣,𝑜, individual vehicle’s independent routing choice preference 

could then be calculated by the MNL model: 

𝑒−𝑉𝑣,𝑖 
𝑝𝑣,𝑖 = 

𝑘𝑣 
, 

∑
𝑖=1 𝑒

−𝑉𝑣,𝑖 

where 
𝑖 𝑉𝑣,𝑖 = 𝛼𝑣 + 𝛽𝑣𝐶𝑣 , 

is the measured utility of route 𝑟𝑣
𝑖 for vehicle 𝑣 and 𝛼𝑣, 𝛽𝑣 are vehicle-specific constant 

scalars representing the characteristics of each individual. Readers can refer to Sec 3.1 

for a detailed introduction. 

User-oriented Equilibrium Routing (uoER) 

There are several approaches to derive an uoER. Under the assumption of logit-choice 

model, this study adopts the coordinated routing mechanism proposed in [10]. 

Specifically, the route preference is calculated by: 

𝑚 𝑘𝑣 
𝑓𝑙 1 

min∑∫ 𝑐𝑙(𝑤)𝑑𝑤 +∑∑ 𝑝𝑣,𝑖ln(𝑝𝑣,𝑖)
𝑝 0 𝛽𝑣 

𝑙∈𝐿 𝑣=1 𝑖=1 

𝑠. 𝑡 

𝑘𝑣 

∑ 𝑝𝑣,𝑖 = 1, ∀𝑣 = 1,… ,𝑚 
𝑖=1 
𝑘𝑣 

∑ 𝑝𝑣,𝑖 = 1, ∀𝑣 = 1,… ,𝑚 
𝑖=1 

𝑚 𝑘𝑣 

𝐿 𝑓𝑙 = ∑ ∑ 𝑝𝑣,𝑖 𝛿𝑣,𝑖 , , ∀𝑙 ∈ 𝐿 
𝑣=1 𝑖=1 

𝑛 𝑙)And the corresponding system cost is calculated by 𝐶𝑠𝑦𝑠 = ∑ 𝑓𝑙𝑐𝑙(𝑓𝑠 .𝑙=1 

System Optimum Routing (SOR) 

We consider there is a centralized agent to systemically generate the route preference 

for each driver, aiming to minimize the expected system travel cost 𝐶𝑠𝑦𝑠. Then the SOR 

routing preference could be calculated by solving the following: 
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𝑛 

min𝐶𝑠𝑦𝑠 = ∑𝑓𝑙𝑐𝑙(𝑓𝑙) 
𝑝 

𝑙=1 

𝑠. 𝑡 

𝑘𝑣 

∑ 𝑝𝑣,𝑖 = 1, ∀𝑣 = 1,… ,𝑚 
𝑖=1 

𝑝𝑣,𝑖 ≥ 0, ∀𝑣 = 1,… ,𝑚, ∀ 𝑖 = 1,… , 𝑘𝑣 

𝑚 𝑘𝑣 

= ∑ ∑ 𝑝𝑣,𝑖 𝐿 𝑓𝑙 𝛿𝑣,𝑖 , , ∀𝑙 ∈ 𝐿 
𝑣=1 𝑖=1 

To be noted, the agent generates route choice probability not a route choice for 

individual vehicles to make it consistent to the setup of our CeRM in this study. 
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3.0 RECOMMENDATIONS 
There are several possible extensions stemmed from this work. For Task 1, In the future, 

numerical studies could be conducted on larger-scale traffic networks such as Sioux Falls or 

real-world networks such as the city of Atlanta. Another direction to explore is to build and test 

the smartphone-based framework with human subjects to understand the effect of the 

behavioral change solutions. For task 2, the convergence speed of the D-AL now heavily 

depends on the computation load of searching the step size. The future study can explore the 

distributed step size calculation scheme to improve the convergence efficiency dramatically. In 

addition, this study assumes drivers make decisions purely based on information provided by 

the CP without using their prior knowledge. However drivers’ ex-ante knowledge may affect 

their compliance to the routing guidance. Therefore, a possible future work is to incorporate 

individual drivers' ex-ante beliefs into the correlated routing game. 
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	ABSTRACT 
	ABSTRACT 
	In recent years, dynamic traffic data from multiple entities (public transportation agencies, Google, transportation network companies, etc.) and sensor types is available. This study proposes to develop smartphone-based frameworks to develop/utilize real-time incentives (monetary, value-based, travel-related credits, information etc.) to influence drivers’ en route routing decisions to manage network-level system performance in congested dynamic traffic networks. The framework consists of: (i) analytical m
	Accordingly, this study composes of two tasks. Task 1 of this study investigates the role of demand management techniques in generating system level benefits such as reduction in congestion or pollution. This study explored two such techniques, namely tangible incentives, and nudges. Both incentives and nudges were modeled in the context of network-level traffic congestion to be behavior consistent, real-time, and market-based. A reinforcement learning-based approach is employed to design and generate the i
	Task 2 of this study aims to alleviate traffic congestion by exploiting a novel information provision strategy. Specifically, it takes advantage of the information gaps between individuals and the central planner (CP) and developed a correlated equilibrium routing mechanism (CeRM), which suggests priorities to individual vehicles’ route choices and drives their route choices to an equilibrium with a systematically optimal traffic condition while still satisfying individuals’ selfish nature. A distributed Au
	Keywords (up to 5): Congestion mitigation; Driver behavior; Travel demand; Real-time incentive; Big data analysis 
	Artifact
	Smartphone-Based Incentive Framework for Dynamic Network-Level Traffic Congestion Management 

	EXECUTIVE SUMMARY 
	EXECUTIVE SUMMARY 
	By leveraging advances in smartphone-based personalization, big data availability for traffic, network-level integration through information-based connectivity, this study proposes to manage congestion in real-time in traffic networks, especially during peak period commutes and under debilitating incidents. 
	Task 1 investigates two demand management techniques, i.e., tangible incentives and nudges, in generating system level benefits such as reduction in congestion or pollution. Both incentives and nudges are designed and generated dynamically according to system-level congestion. Task 1 employs a reinforcement learning-based approach to design and generate the incentives and illustrates a ubiquitous smartphone-based framework to present the incentives to the users. Such a solution is practical in its real-worl
	Task 2 investigates the use of information incentives and designs a correlated routing mechanism that calculates and provides online routing guidance for vehicles with smart phones and/or onboard computing and communication devices. By exploiting information discrepancies between individual vehicles and the Central Planner (CP), the proposed mechanism drives the snapshot equilibrium route choice of a group of vehicles toward a more systematic optimal condition while still preserving the individual’s selfish
	The results and insights provided by this study can be used by state/local transportation agencies as new complementary tools in their portfolio to dynamically manage traffic congestion at the network level. It may help transit agencies and planners in understanding the potential of using smart-phones and different types of incentives to alleviate traffic congestions. In the future, Task 1 could be conducted on real-world networks such as the city of Atlanta to build and test the smartphone-based framework 
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	1.0 Task 1: Smart-Phone Based Real-Time Incentive Framework for Travel Behavior Change 
	1.0 Task 1: Smart-Phone Based Real-Time Incentive Framework for Travel Behavior Change 
	1.1 INTRODUCTION 
	1.1 INTRODUCTION 
	1.1.1 Background 
	1.1.1 Background 
	Traffic congestion and pollution are some of the major transportation related problems faced by the Urban areas. Traffic congestion further leads to loss in productivity and has economic cost to it. INRIX (1) study showed that the Average American spends almost 100 hours in congestion and leads to $1350 in economic cost per American. Majority of urban travel in the United States is through single occupancy personal vehicles. Such travel patterns severely contributed to the pollution in the urban areas. Stud
	To tackle urban congestion, both supply and demand side solutions were explored. Supply side solutions include infrastructure developments and investments, traffic management devices, ITS solutions and increasing the capacity of existing roadways. These solutions are not sustainable, expensive and time consuming. 
	Demand side solutions uses tools to target and influence individuals' travel behavior. These tools included tolls, congestion pricing, incentives, and tradeable credit schemes. Incentives are intended to influence their travel decisions subtly. Incentives based solutions are more acceptable and equitable than tolls. Incentive based solutions fall under a broader research of behavioral change strategies within behavioral psychology. 

	1.1.2 Objectives 
	1.1.2 Objectives 
	The main objective of this study is two-fold. The first objective is to list, characterize and classify behavioral change strategies that can be used to influence travel related decisions. The second objective is to model the behavioral changes strategies in the context of a dynamic traffic network. 

	1.1.3 Scope 
	1.1.3 Scope 
	The scope of this research is limited to studying the effect of behavioral change strategies on route choice behavior. Specifically, the research addresses the effect of behavioral change strategies on initial route choice and subsequent en-route choices. While the behavioral change strategies can be applied to the various aspects of individual trip making such as choice of mode, route, departure time, etc., this study does not model its effects on mode choice and departure time choice. 
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	1.1.4 Report organization 
	1.1.4 Report organization 
	This report includes five sections. Section 2 covers literature review. Section 3 classifies and characterizes the incentives. Section 4 presents the problem formulation and solution methods. Section 5 presents the real-time solution deployment framework. Section 6 presents the numerical studies. 


	1.2 LITERATURE REVIEW 
	1.2 LITERATURE REVIEW 
	A review of published literature and practices on the use of incentives and nudges in the context of travel behavior is presented below. 
	1.2.1 Research studies using behavioral intervention strategies 
	1.2.1 Research studies using behavioral intervention strategies 
	Behavioral change strategies operate on the motivation behind user actions. Often the research studies target the users economic, health or environmental values to influence their decisions. For example, by providing environmental incentives the users that are concerned with global warming, or their carbon footprint would be motivated to change behavior. Among the past travel-based studies, most studies target mode choice behavior and encourage users to shift to public transit. The behavioral intervention t
	TABLE 1 DIFFERENT TYPE OF INCENTIVES EXPLORED IN LITERATURE 
	Study Value Choice Benefits Gamification Econo mic Healt h Environ mental Rout e Mode Value -based Monet ary In-tangible Badge Points Leaderboard Ubigreen (1) ✓ ✓ ✓ ✓ ✓ ✓ 
	PEIR (2) ✓ ✓ ✓ ✓ i-Tour (3) ✓ ✓ ✓ ✓ ✓ 
	Trip-zoom ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
	Smartphone-Based Incentive Framework for Dynamic Network-Level Traffic Congestion Management SUPER-HUB (3) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Matka-Hupi (4) ✓ ✓ ✓ ✓ ✓ Peacox (5) ✓ ✓ ✓ ✓ 
	QT ✓ ✓ ✓ ✓ ✓ ✓ IPET (6) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
	Viaggia (7) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ trafficO2 (8) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
	Metropia (9) ✓ ✓ ✓ ✓ ✓ IAM ✓ ✓ ✓ ✓ 
	MM ✓ ✓ ✓ ✓ ✓ ✓ ✓ MUV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
	Tripod ✓ ✓ ✓ ✓ ✓ ✓ ✓ RMTP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
	Roider ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Commuter Connections (10) ✓ ✓ ✓ 
	Commutifi (11) ✓ ✓ ✓ ✓ ✓ Hytch (12) ✓ ✓ ✓ ✓ ✓ ✓ 
	12 
	Smartphone-Based Incentive Framework for Dynamic Network-Level Traffic Congestion Management Spitsmijden (13) ✓ ✓ ✓ ✓ INSTANT (14) ✓ ✓ ✓ ✓ ✓ INSINC (15) ✓ ✓ ✓ ✓ ✓ 
	CAPRI (16) ✓ ✓ ✓ Flex-Pass (17) 
	Steptacular (18) ✓ ✓ ✓ 


	1.3 Behavior Change Strategies and their Characteristics 
	1.3 Behavior Change Strategies and their Characteristics 
	In this study, two behavioral change strategies have been considered. First is the tangible incentive such as monetary or value-based rewards. Second is the in-tangible incentives or the nudges. 
	1.3.1 Characteristics of tangible incentives 
	1.3.1 Characteristics of tangible incentives 
	Tangible incentives are one of the most intuitive forms of behavioral change strategies. They can be either monetary or value based. Value-based incentives usually comprise of point systems that can be exchanged for real goods or services. The incentives are positive quantities as opposed to tolls and can be present on all of the edges in a road network. They are updated in real-time and are dependent on the system congestion levels making them dynamic in nature. They can also be based on time of the day an

	1.3.2 Characteristics of nudges 
	1.3.2 Characteristics of nudges 
	Nudges are an application of the Nudge theory proposed by Thaler, R. et al. 2008. They are a design mechanism on choice architecture. Nudges in this study are implemented as en-route prompts that encourage the user to change their route during the trip. Nudges do not have a tangible value and cannot be quantified. These prompts are provided to the user based on the availability of incentives and update of routes. These prompts are personalized to each user based on their travel preferences such as value of 
	13 
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	TABLE 2 INCENTIVE CHARACTERISTICS 
	Table
	TR
	Tangible incentives 
	Nudges 

	Time-based 
	Time-based 
	Yes 
	No 

	Dynamic 
	Dynamic 
	Yes 
	No 

	System level 
	System level 
	Yes 
	No 

	Personalized 
	Personalized 
	No 
	Yes 

	Market-based 
	Market-based 
	Yes 
	No 

	Geographical 
	Geographical 
	Yes 
	No 




	1.4 Problem Formulation 
	1.4 Problem Formulation 
	1.4.1 Overview of the reinforcement learning problem 
	1.4.1 Overview of the reinforcement learning problem 
	Reinforcement learning is a type of machine learning paradigm that uses rewards and punishments to train the model. The reinforcement learning is modeled as a Markov decision process with an agent and an environment. At every step, the agent receives the system current state and reward from the environment. The agent performs an action to maximize its reward. The environment simulates the affect of the action and generates the state value and the reward value to pass to the agent. 
	Figure
	FIGURE 1 OVERVIEW OF THE REINFORCEMENT LEARNING PROBLEM 

	1.4.2 Problem formulation 
	1.4.2 Problem formulation 
	The tangible incentives are generated in real-time based on the current system state. The incentives are generated as a response of the current system conditions and congestion. Within each trip, every user makes multiple micro-travel decisions such as changing routes within a single trip. The incentives are generated to influence such en-route decisions. The generation of incentives is sequential in nature and is a response to the system congestion levels or travel time. The travel time and incentives are 
	Artifact
	Smartphone-Based Incentive Framework for Dynamic Network-Level Traffic Congestion Management 
	The tangible incentives and intangible nudges will be provided to the user through a mobile app. The generation of incentives themselves will be in real-time as a response to the travel time. Often the travel time is the only real-time value available to model incentives. Because of all the above reasons, the above problem is modeled as a Markov decision process and trained using a reinforcement learning problem. For the remainder of this section, we will formulate the incentive generation problem as a rein
	Consider a dynamic road network 𝐺(𝑁, 𝐸) with 𝑁 nodes and 𝐸 links. The time horizon of interest T is broken down into multiple time intervals. Each time interval 𝑡 corresponds to a step in the RL/Markov decision process. Let 𝑡𝑡be the travel time on link 𝑒 at the end of time interval 𝑡. Let 𝑖be the number of incentives present on the link 𝑒 in the beginning of time interval 𝑡. 
	𝑒,𝑡 
	𝑒,𝑡 

	Within a reinforcement learning framework, the state needs to be a sufficient statistic of the history. Within real-world deployments it is realistic to assume that the travel-time on every link is available for all links of a traffic network. Keeping this in mind, state 𝑆is defined as an array of travel times on every link at the end of time interval 𝑡. 
	𝑡 

	𝑆={…,𝑡𝑡,…}∀𝑒∈𝐸,𝑡 ∈𝑇 
	𝑡
	𝑒,𝑡

	The action value taken by the agent affects the transition of the traffic environment from one state to another. In this scenario, the action 𝐴is defined as an array of incentives present on every link at the beginning of time interval 𝑡. This definition allows incentives to present on all links of the network based on congestion. This is contrary to tolls where they are only present on select roads. The incentives are non-negative values. This indicates that while there can be incentives on an edge, ther
	𝑡 

	𝐴𝑡={…,𝑖𝑒,𝑡,…}∀𝑒∈𝐸,𝑡 ∈𝑇 
	The RL agent maximizes the expected reward in the future steps. Since the objective of this study is to generate behavioral change strategies to reduce congestion using tangible (often monetary) incentives, the total system travel time is incorporated into the reward function. The reward value 𝑅is defined as a linear combination of the total system travel time and the total incentives generated in the time interval 𝑡. 
	𝑡 

	𝑅=−(∑𝑡𝑡)−𝛽∗(∑𝑖)∀𝑒∈𝐸,𝑡 ∈𝑇 
	𝑡
	𝑒,𝑡
	𝑒,𝑡

	𝑒 ∈𝐸 𝑒 ∈𝐸 
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	The value 𝛽 is the scaling/weight factor used. This can also be interpreted as the value of time for the network operator. 

	1.4.3 Incentive usage and route generation 
	1.4.3 Incentive usage and route generation 
	The incentives generated to influence the users on the traffic network to change their 
	routes. Since the incentives are updated at every time step, the routes and users’ 
	perception of the routes could also be affected. In each time interval t, the routes of all users is updated. The route updating contains two stages. In the first stage of route generation, a personalized route is computed based on the user preferences and the incentives available during that time step. This stage ensures that the incentives provided to the user are personalized by including user preferences such as value of time and value of incentives. The incentives are limited in quantity and consumed t
	P
	Figure

	FIGURE 2 ROUTE GENERATION IN THE PRESENCE OF INCENTIVES 
	A personalized route is generated based on the utility function of a trip for each user. This utility function incorporates the user preferences such as the value of time and the value of incentive. Let 𝛽and 𝛽be the value of time and value of incentive for user 
	𝑡𝑡,𝑢 
	𝑖,𝑢 

	u. Let 𝑡𝑡and 𝑖be the travel time and incentives on route 𝜇. The utility function for user u for a route 𝜇 is defined as a linear combination of travel time and incentives on that particular route. 
	𝜇 
	𝜇 

	𝜇 𝑡𝑡,𝑢 𝜇 𝑖,𝑢 𝜇 
	𝑐
	= 𝛽
	∗ 𝑡𝑡
	+ 𝛽
	∗ 𝑖

	Each user has a unique cost function as it incorporates the user preferences. The user preferences can be estimated through the mobile app usage. 
	The second stage is the decision-making stage. The updated route is provided as a prompt to the user. When prompted to change the route, a user can choose to change to the new updated route or choose to remain on the current route. 
	The decision-making among users can be different based on their affinity towards incentives and nudges. The users can be classified into two categories. Habitual users that are reluctant to change the routes even when the cost of the new route is lower that their current routes. Nudged users who shift routes when prompted to do so even when the cost of the new route is higher. During the simulation, the users are classified into either nudged users or habitual users to model their corresponding behavior. 
	Artifact
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	To avoid the cost function from reaching negative values, the upper limits are implemented on the incentives.  These upper limits are implemented such that the cost of the users remains positive. 

	1.4.4 Traffic Environment 
	1.4.4 Traffic Environment 
	The traffic environment is responsible for computing the transition between one state to another based on the provided incentives. Analytical models that handle the transition between different traffic states can be complex and computationally intensive. In this study, the traffic environment is simulated using the Simulation of Urban Mobility (SUMO) simulation platform. This platform is responsible for simulating the trajectories of vehicles and generate the resulting system state and reward. 

	1.4.5 Training Algorithm 
	1.4.5 Training Algorithm 
	A training algorithm is used to learn the optimal actions of the agent that maximizes reward. Within the RL literature, the algorithms can be classified into value-based methods or policy-based methods. The value-based methods learn actions based on the reward functions and expected value of action. The policy-based methods involve the use of a policy function that assess the value of an action. The proposed algorithm utilized in this study is the Deep Deterministic Policy Gradient (DDPG) developed by (20).
	Smartphone-Based Incentive Framework for Dynamic Network-Level Traffic Congestion Management 
	FIGURE 3 TRAINING ALGORITHM 


	1.5 Real-time Deployment Solutions Framework 
	1.5 Real-time Deployment Solutions Framework 
	Figure
	FIGURE 4 REAL-TIME INCENTIVE DEPLOYMENT FRAMEWORK 
	The figure 5 describes the real-world incentive deployment framework. This conceptual framework employs a mobile app to present the incentives and nudges to the users. Such a mobile app can also be used to track the user’s travel choices and interpret the user preferences such as their value of time or value of incentive. 
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	1.6 Numerical Experiments 
	1.6 Numerical Experiments 
	The Simulation of Urban Mobility (SUMO) simulation platform is used to simulate the traffic state transitions. To test the effectiveness of the incentives, the following the RL agent is trained in six scenarios. Each scenario corresponds to different mobile app penetration levels. App penetration levels is a direct indication of the number of users that have access to the incentives on the network. 
	For all the six scenarios Peak hour simulated between the 4 PM and 5 PM on Hannover South City network. Table 3 shows the parameters used by the DDPG algorithm to train on various scenarios. 
	TABLE 3 DEEP DETERMINISTIC POLICY GRADIENT ALGORITHM PARAMETERS 
	Parameter 
	Parameter 
	Parameter 
	Value 

	Optimizer 
	Optimizer 
	Adam 

	Actor network learning rate 
	Actor network learning rate 
	10-4 

	Critic network learning rate 
	Critic network learning rate 
	10-3 

	Discount factor 
	Discount factor 
	0.99 

	Tau 
	Tau 
	0.001 

	NN Layers 
	NN Layers 
	ReLU 

	Batch size 
	Batch size 
	64 

	Replay buffer size 
	Replay buffer size 
	100000 

	Number of episodes 
	Number of episodes 
	1000 

	Actor network 
	Actor network 
	2 hidden layers (400 X 300) 
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	Figure

	FIGURE 5 REWARD VALUE FOR DIFFERENT APP PENETRATION LEVELS 
	Figure 5 shows the trend in the reward value over number of episodes. The different lines show the reward values for different app penetration levels. For example, a 40% app penetration scenario has 40% of the vehicles equipped with the incentive provision app and can change routes, the rest 60% do not change their initial routes. Rewards under all scenarios appear to be following similar trajectory. The reward value is the highest under the 100% app penetration scenario. Although unrealistic, this shows th
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	2.0 Task 2: An Equilibrium Routing Mechanism for Traffic Congestion Mitigation Built upon Mixed Strategy Correlated Game and Distributed Optimization 
	2.1 INTRODUCTION 
	Traffic congestion has long been a major issue in urban areas, which happens when the demand is higher than road capacity. With the development of mobile intelligent devices and wireless communication technologies, drivers nowadays rely heavily on traveler information systems (TIS) such as Google Maps, Apple Maps, and Waze to get real-time traffic information and make their best response to avoid congestion. This study refers to this widely used routing mechanism as Independent Routing (IR). However, if too
	[13], 

	is the ideal traffic state that a system wants to achieve. However, SOR will sacrifice some users’ 
	interest (experience more travel cost) in exchange for better system performance, which conflicts with individuals' selfish nature. In addition, the computation load to implement real-time SOR is prohibitive. 
	Transportation researchers have long been devoted to developing navigation systems for reducing traffic congestion and pushing the routing pattern of IR to be more systematically 
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	efficient. One of the most widely studied approaches is congestion pricing. Along with its variants like credit-or permit-based regulations, congestion pricing influences the behavior of individuals by changing their perceived cost physically/monetarily. Interested readers can refer to for a comprehensive review. While theoretically, congestion pricing could push the traffic state close to SO and is undoubtedly a powerful tool to improve traffic conditions in practice, the study of summarized seven main com
	[8][
	16] 
	[8] 
	22][
	21][
	[15][


	25]

	Several recent studies (i.e., ) proposed a different routing approach based on snapshot equilibrium routing (ER) to mitigate traffic congestion and improve traffic conditions. Mainly originating from game theory in economics, ER aided by real-time traffic information is a class of emerging routing mechanisms that try to manipulate individual drivers’ real-time route choices to approach a snapshot equilibrium by coordination or information provision technologies (discussed in detail in the literature review)
	11][
	[10][

	13]

	Motivated by the above views, this study seeks to go one step further and design an equilibrium routing mechanism toward a better system performance than uoER. Specifically, this study develops a Correlated equilibrium online routing mechanism (CeRM) based on the correlated game and distributed solution algorithm. The CeRM explores a snapshot equilibrium route choice decision among all drivers opting in the routing service to reduce traffic congestion and improve system performance from IR and uoER. In addi
	individuals’ selfish nature, and thus drivers would be willing to follow the proposed routing 
	decision. 
	The idea of developing such an ER using the correlated game is invoked by exploiting the information discrepancies between individual drivers and the Central Planner (CP) in existing route navigation systems. Specifically, in a navigation scenario, each driver only knows their own trip information but has no idea of others, e.g., how many travelers are there on the road, where they are going, their personal choice characteristics, etc. The lack of panoramic information at the individual level makes drivers 
	The idea of developing such an ER using the correlated game is invoked by exploiting the information discrepancies between individual drivers and the Central Planner (CP) in existing route navigation systems. Specifically, in a navigation scenario, each driver only knows their own trip information but has no idea of others, e.g., how many travelers are there on the road, where they are going, their personal choice characteristics, etc. The lack of panoramic information at the individual level makes drivers 
	the navigation service. On the other hand, the CP is omniscient and could better predict the traffic condition in the near future since it can get comprehensive information by collecting travelers’ trip plans when they require navigation services. Such an information gap allows the CP to act as a trusted agent, which can strategically design and provide individual drivers with route choices that no one would want to deviate from. Correspondingly, this study develops the CeRM, which calculates and suggests e
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	Moreover, to satisfy the computation need of online navigation services, this study develops a distributed solution algorithm (D-AL). It distributes the computation load of searching a correlated equilibrium route decision to individual vehicles’ smartphones and or/ onboard communication and computing devices. 
	Overall, this study has four distinguished characteristics and methodology contributions: 
	(i) 
	(i) 
	(i) 
	We discovered the usually overlooked information discrepancies between the users and CP in a navigation service and developed a new information provision strategy for traffic congestion mitigation. 

	(ii) 
	(ii) 
	Taking advantage of the information discrepancies, we developed a Correlated equilibrium Routing Mechanism (CeRM) built upon an atomic mixed strategy correlated game to coordinate individual travelers’ real-time routing decisions, which push traffic conditions toward a desired system optimal performance without introducing external regulation and incentives. 


	(iii) To serve a large-scale of travelers’ online navigation requests, we developed a problem-specific distributed solution algorithm (D-AL) by taking advantage of the model’s unique structure features. The D-AL could solve the CeRM problem efficiently by distributing the computation load to individual vehicles’ smart phones and/or onboard computing devices. 
	(iv) The numerical experiments validate our solution algorithms' computation performance and convergence properties and demonstrate that the CeRM could reduce traffic congestion and system cost compared with existing IR and uoER. More exactly, our experiments show that the CeRM can significantly reduce traffic congestion and system travel time by 55% and 3.6% compared to the existing IR and uoER mechanisms. The DAL could handle a scenario with more than a thousand vehicles by a leading time smaller than 22 
	-

	The rest of the paper is organized as follows. Section 2.2 reviews relevant works in the existing literature and identifies the research gaps this study addresses. Following that, we introduce related notations and concepts in section 2.3, and then design the correlated equilibrium routing scheme in section 2.4. Section 2.5 develops an effective distributed solution algorithm. Last, section 2.6 presents numerical experiments and section 2.7 concludes the task. We will 
	use “vehicle” and “driver” interchangeably in the following context for better illustration. 
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	2.1.1 OBJECTIVE 
	This task has two main objectives. The first objective is to design an equilibrium routing mechanism to reduce traffic congestion and achieve better system performance than IR and uoER while still satisfy individual’s selfish nature. The second objective is to design a distributed solution algorithm with the help of smart phones and/or on-board computing and communication devices to solve our problem efficiently to satisfy the fast computation need of online navigation services. 
	2.1.2 SCOPE 
	To the best of our knowledge, this is the first research to design a correlated equilibrium routing mechanism with an efficient distributed solution algorithm using individuals’ smart phones and/or on-board smart devices to mitigate traffic congestion and reduce system cost. It significantly contributes to the methodology development and practice for the field of traffic congestion mitigation. 
	2.2 LITERATURE REVIEW 
	This study aims to develop a correlated routing mechanism by exploiting the information gap between drivers and the CP, which could reduce congestion at the system’s level while still maintaining individuals’ selfish nature. In literature, this research sits in the field of flash crowd effect, equilibrium routing, correlated game, and information design. This section will briefly review some of the most relevant works to our study and identify their research gaps. 
	We first recognized the studies that improve system performance by congestion pricing and its variants like credit-or permit-based regulations, which has been briefly introduced in the Introduction section. Considering these studies mainly use a different line of approaches (i.e., imposing physical externalities) than our study (i.e., using information provision to form ER), the following survey does not provide detailed reviews for them. Interested readers can refer to and for a comprehensive review. 
	[8] 
	[16] 

	In literature, the flash crowd effect also known as overreaction occurs in the traffic when a large number of drivers receive similar traffic information and make routing decisions based on it selfishly and independently. Different ER mechanisms have been proposed to mitigate such adverse phenomenon in either distributed or centralized ways. In the author developed an online coordinated routing mechanism based on an atomic mixed strategy congestion game. By iteratively sharing and updating the routing prefe
	In literature, the flash crowd effect also known as overreaction occurs in the traffic when a large number of drivers receive similar traffic information and make routing decisions based on it selfishly and independently. Different ER mechanisms have been proposed to mitigate such adverse phenomenon in either distributed or centralized ways. In the author developed an online coordinated routing mechanism based on an atomic mixed strategy congestion game. By iteratively sharing and updating the routing prefe
	[13], 
	[2], 
	[10], 
	[13] 
	[13] 
	[10].
	[11] 

	under pure strategy setting, proposed to solve the mixed strategy coordinated routing problem similar to using reinforcement learning method, and proposed an anticipatory navigation service that predicts and disseminates the near future traffic condition based on real-time data. While simulation results show that all these approaches could reduce the system cost compared with IR, their performance is still away from SOR. This is because the routing decision in uoER can be considered as a spontaneous equilib
	[37] 
	[10] 
	[20] 
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	Another research area that shares similar thoughts to our study in literature is system optimal 
	traffic assignment with users’ constraints. They conduct system optimum traffic assignment 
	under the consideration of user fairness and cooperation willingness. The approaches used in 
	this field can be divided into two branches. One incorporates users’ fairness constraints in the 
	system optimum to stabilize the resulting system optimum flow. The other relaxed the user equilibrium condition to improve the system performance of user equilibrium flows. Interested readers can refer to for a detailed review. Even though these studies achieve further system cost reduction without using externalities in road pricing schemes, they only reveal the aggregated traffic flow on each route/link, but do not provide specific routing decisions for drivers, thus cannot be used for navigation services
	[23] 

	Recently, and proposed to improve the performance of uoER by providing a perturbed travel time to drivers in the navigation service. Mainly, this study seeks to manipulate individual drivers’ real-time route choices toward a better system performance by strategically involving bias into travel time provision. While this approach could reduce system cost and rational drivers are likely to comply, it may induce fairness issues. Specifically, some drivers responding to perturbed traffic information may experie
	[9] 
	[29] 

	The method in our study is built upon the correlated equilibrium (CE) in game theory, in which a trusted agent assigns strategy to players according to a probability distribution and no player could unilaterally deviate from the assigned strategy to increase their expected utility. By designing the informational environment, the agent can manipulate players' behavior and 
	The method in our study is built upon the correlated equilibrium (CE) in game theory, in which a trusted agent assigns strategy to players according to a probability distribution and no player could unilaterally deviate from the assigned strategy to increase their expected utility. By designing the informational environment, the agent can manipulate players' behavior and 
	[1], 

	direct the resulting equilibrium to serve its own interests. CE has a great potential to improve the system performance without using externalities, but it is still an emerging area in the transportation field. Existing studies using CE to reduce traffic congestion focus on exploring the effects of CE in simplified scenarios such as small networks with simple one-link or parallel-link routes . Three recent studies proposed CE models for routing games on general transportation networks and discussed their im
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	Figure
	Smartphone-Based Incentive Framework for Dynamic Network-Level Traffic Congestion Management 
	Moreover, to the authors’ best knowledge, no existing work provides efficient solution 
	algorithms to solve the CE models for online navigation services over a city network. 
	To conclude, state of the art indicates two major research gaps. 1) Most existing ER mechanisms do not completely address the inefficiencies brought by the conflicts between individual performance and system performance or user compliance issues. 2) Existing CE research in routing games can be further improved by involving realistic transportation network modeling and practical solution algorithms. This study seeks to partially fill such research gaps by involving these enhanced features and addressing the 
	2.3 Preliminary 
	This section will first introduce some mathematic notations and the concept of correlated equilibrium and then propose the correlated equilibrium routing mechanism. 
	2.3.1 Mathematic notations 
	Denote 𝐺 = (𝑁, 𝐿) to be the directed graph of a transportation network, where 𝑁 is the set of nodes and 𝐿 is the set of arcs (links). Let 𝑣 = 1,…,𝑚 be the qualified vehicle on roads. Each vehicle 𝑣 has a specific origin-destination (OD) pair (𝑜, 𝑑) ∈ 𝑁 × 𝑁 and a set of 𝑘possible routes. Denote 𝑟as the 𝑖th possible route of vehicle 𝑣, where 𝑖 = 1, … , 𝑘. In a mixed strategy setting, every player places a probability distribution (i.e., preference) on their set of available choices. In the r
	𝑣
	𝑣
	𝑣 
	𝑣
	𝑖 
	𝑣
	𝑣,𝑖 
	𝑣
	𝑖 

	∑𝑝= 1 , ∀𝑣 = 1, … , 𝑚. (1) The probability 𝑝can also be viewed as the expected volume generated by vehicle 𝑣 on route 𝑟. Thus, we could form the expected flow on link 𝑙 as 
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	𝑚 𝑘
	𝑣 

	𝑙 
	𝑓=∑∑𝑝𝛿, (2) 
	𝑙 
	𝑣,𝑖
	𝑣,𝑖

	𝑣=1 𝑖=1 𝑙 𝑖 
	where the link-route incidence indicator 𝛿= 1 if link 𝑙 is used by route 𝑟, and 0 otherwise. Associated with each link is a link travel cost 𝑐(𝑓). Then, for each route 𝑖 of vehicle 𝑣, a generalized travel cost 𝐶could be defined. 
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	(3) 
	𝑙∈𝑟𝑣,𝑖 
	where 𝑷 is the set of all route choice preferences, i.e., 𝑷 = {𝑝}, 𝑣 = 1, … 𝑚, 𝑖 = 𝑖 
	𝒗,𝒊

	1, … 𝑘. Denote the current (initial) traffic information on route 𝑖 of vehicle 𝑣 as 𝐶. 𝑖 
	𝑣
	𝑣,𝑜

	Then according to 𝐶, individual vehicle’s selfish routing choice preference could then be calculated by a multinomial logit (MNL) choice model: 
	𝑣,𝑜
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	Where 
	𝑖 
	𝑉= 𝛼+ 𝛽𝐶, (5) is the measured utility of route 𝑟for vehicle 𝑣 and 𝛼, 𝛽are vehicle-specific constant scalars representing the characteristics of each individual. 
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	2.3.2 Correlated Equilibrium (CE) 
	In this subsection, we briefly introduce the concept of correlated equilibrium (CE) used in the proposed routing mechanism. We consider a 𝑁-player strategic game (𝑁, 𝐴, 𝑢) which is characterized by an action set 𝐴and utility function 𝑢for each player 𝑖. Let 𝑆 denotes the strategy set given by a trusted CP, let 𝑠 ∈ 𝑆 be the single strategy and 𝑠be the action allocated to player 𝑖 under strategy 𝑠. In a correlated game, a trusted agent assigns a strategy 𝑠 to every player according to a probabil
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	where 𝑠is an action of player 𝑖 different from 𝑠, and 𝑠represents the action sets of all other players except 𝑖. 
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	−𝑖 

	In our routing problem, the CE is used to measure individual vehicles’ selfish rationality. A rational individual will not want to deviate from the routing guidance if it satisfies the CE condition. Namely, the CE condition ensures that no player can be better off by unilaterally derivate from the suggested strategy. 
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	There is always more than one solution satisfying the CE condition However, not all of them will lead to a better system-level performance than IR or uoER. Thus, this study is interested in finding an optimal CE that minimizes the expected system cost in Eq. 
	[14]. 
	(7). 

	𝑁 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡: ∑∑ 𝑝(𝑠)𝑢(𝑠,𝑠) (7) 
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	𝑖=1 
	𝑠∈𝑆 
	2.4Correlated equilibrium Routing Mechanism (CeRM) 
	Given the research gaps mentioned in the literature review, this study seeks to design a correlated equilibrium routing mechanism (CeRM) that could drive the traffic condition from an inefficient IR to a more systematically optimal one that outperforms existing uoER. By doing that, we consider a traffic scenario where there are a large number of qualified vehicles en route -vehicles equipped with on-board computing and communication devices -trying to make routing decisions at a given short-time period. The
	More exactly, at the beginning of the CeRM navigation service, each participating vehicle provides their OD pairs and receives the current traffic information (current route travel cost) 
	𝑖 
	𝐶as they usually do with regular navigation services like Google or Apple map. According to 𝑣,𝑖 
	𝑣,𝑜 

	the received traffic information, each vehicle 𝑣 will calculate their initial route preference 𝑝, 𝑖 = 1,…,𝑘(as done in IR by equations ), and then proposed to the CP. The collective 
	𝑜 
	𝑣 
	(4)-
	(5)

	𝑣,𝑖 
	information from all vehicles opting in the services is denoted as 𝑷= {𝑝},𝑣 = 1,…𝑚,𝑖 = 1, … , 𝑘. Built upon the collected information, the CP will generate the suggested CE route 
	𝒐 
	𝑜 
	𝑣

	𝑣,𝑖 𝑣,𝑖 
	choice preferences 𝑷= {𝑝},𝑣 = 1,…𝑚,𝑖 = 1,…,𝑘, in which 𝑝,𝑖 = 1,…,𝑘represents the suggested route preference for a driver 𝑣. 𝑷seeks to minimizes the system cost while guarantees every driver would not be better off by deviating from the suggestion. The whole process is conducted automatically in the navigation apps/electronic devices, where the drivers only need to provide their OD and personal choice parameters (𝛼, 𝛽in Eq.  and wait for the CP to calculate and display the suggested route prefer
	𝒔 
	𝑠 
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	𝑠 
	𝑣 
	𝒔 
	𝑣
	𝑣 
	(5))

	Note that our solution algorithm designed in Section 5 ensures that the CeRM takes no more than half a minute to generate the optimal CE routing guidance. Considering the traffic condition in such a short time period is not likely to change dramatically, we assume that the 
	𝑖 
	initial traffic conditions, i.e., {𝐶},𝑣 = 1,…𝑚,𝑖 = 1,…,𝑘won’t change during the decision process of the CeRM. Travelers departing at different times may be treated as different coordination groups. If traffic condition changes or travelers change their routes en route for unexpected reasons within the coordination groups, they may rejoin the CeRM again as new travelers. For example, the apps on the individual vehicles can periodically reconduct the CeRM to obtain route suggestions whenever they are app
	initial traffic conditions, i.e., {𝐶},𝑣 = 1,…𝑚,𝑖 = 1,…,𝑘won’t change during the decision process of the CeRM. Travelers departing at different times may be treated as different coordination groups. If traffic condition changes or travelers change their routes en route for unexpected reasons within the coordination groups, they may rejoin the CeRM again as new travelers. For example, the apps on the individual vehicles can periodically reconduct the CeRM to obtain route suggestions whenever they are app
	𝑣,𝑜
	𝑣 

	disseminated to individual vehicles. Each vehicle would then pick a route based on the preferences (probabilities). 
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	2.4.1 Modeling CeRM 
	There are a few assumptions we make before introducing the mathematical model for the CeRM: 
	Assumption 1: Every participating driver is rational and would assume all others are rational. 
	Assumption 2: Drivers don’t know other drivers’ choices. 
	Assumption 3: Drivers either follow the guidance or stick to their initial route preference calculated by given real-time travel time. 
	Assumption 4: The link cost function 𝑐is assumed to be continuously differentiable, strictly increasing, and convex with respect to link flow 𝑓. 
	𝑙 
	𝑙

	Assumption 1 and 4 are common assumptions used in the transportation field, while assumption 2 and 3 captures the properties of most popular navigation services such as Google or Waze in reality. 
	The CP suggests individual vehicles the optimal route choice preference by solving the following mathematical programming (MP) problem: 
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	1 1𝑣,𝑖 𝑣,𝑖𝑣,𝑖 𝑣 ) − 𝑣,𝑖∑ 𝑝𝑠 (−𝐶𝑣 𝑖 (𝑷𝑠) − ln(𝑝𝑠 )) ≥ ∑ 𝑝𝑜 (− 𝐶𝑣 𝑖 (𝑷𝑜 ln(𝑝𝑜 )),𝛽𝑣 𝛽𝑣 𝑖=1 𝑖=1 
	∀𝑣 = 1, … , 𝑚 
	(8.2) 

	𝑘𝑣 𝑣,𝑖 ∑ 𝑝𝑠 = 1, 𝑖=1 
	𝑘𝑣 𝑣,𝑖 ∑ 𝑝𝑠 = 1, 𝑖=1 
	∀𝑣 = 1, … , 𝑚 
	(8.3) 

	𝑣,𝑖 𝑝𝑠 ≥ 𝜖, 
	𝑣,𝑖 𝑝𝑠 ≥ 𝜖, 
	∀𝑣 = 1, … , 𝑚, ∀ 𝑖 = 1, … , 𝑘𝑣 
	(8.4) 

	𝑚 
	𝑚 
	𝑘𝑣 


	𝑙 𝑣,𝑖 𝐿 
	𝑓𝑠 = ∑ ∑ 𝑝𝛿, ∀𝑙 ∈ 𝐿 (8.5) 
	𝑠 
	𝑣,𝑖 

	𝑣=1 𝑖=1 𝑣 𝑣1,𝑖1 𝑣−1,𝑖𝑘𝑣−1 𝑣,𝑖1 𝑣,𝑖𝑘𝑣 𝑣+1,𝑖1 𝑣𝑚,𝑖𝑘𝑣𝑚 
	Where, 𝑷= {𝑝,…,𝑝,𝑝,…,𝑝,𝑝,…,𝑝} is the set of route 𝑣,𝑖 
	𝑜 
	𝑠 
	𝑠 
	𝑜 
	𝑜 
	𝑠 
	𝑠 

	choice preferences in which only vehicle 𝑣 sticks to its initial preferences 𝑝and all 
	choice preferences in which only vehicle 𝑣 sticks to its initial preferences 𝑝and all 
	𝑜 

	others follow the CeRM guidance. Accordingly, the perceived link flow for vehicle 𝑗 on 
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	𝑚\𝑣𝑗 
	𝑙 𝑘𝑣,𝑖 𝑙 𝑘 𝑗𝑙 
	𝑣 
	𝑣
	,𝑖 

	link 𝑙 can be calculated by 𝑓= ∑∑𝑝𝛿+ ∑𝑝𝛿. 
	𝑣
	𝑗 
	𝑣=1 
	𝑖=1 
	𝑠 
	𝑣,𝑖 
	𝑖=
	𝑣
	1
	𝑗 
	𝑜 
	𝑣
	𝑗
	,𝑖

	The MP aims to find an optimal solution that minimizes total system cost while satisfying the correlated equilibrium condition and other related feasibility constraints. Note that 𝑓is the expected flow on link 𝑙 if everyone follows the CeRM routing guidance 𝑷. Thus, the objective function here is the expected total system travel time incurred by all vehicles in the network. The objective function can also incorporate other performance measurements such as emissions. It won’t affect the applicability of o
	(8.1) 
	(8.2) 
	𝑠
	𝑙 
	𝒔
	(8.1) 
	(8.2) 
	𝑣 
	(8.2) 

	It has been well known that under discrete behavior choice models, the perceived utility 𝑈of a route 𝑖 for vehicle 𝑣 considers not only the exact measured travel time 𝑉, but also a random term 𝜖 that represents the influence of unobserved attributes or measurement errors i.e., 𝑈= 𝑉+ 𝜖. Under the commonly adopted multinomial logit choice model, the error term 𝜖 follows an i.i.d Gumbel distribution. The welfare/consumer surplus an individual vehicle 𝑣 receives if it chooses a particular 
	𝑣,𝑖 
	𝑣,𝑖
	[26], 
	𝑣,𝑖 
	𝑣,𝑖 

	1 
	route 𝑖 among other candidate routes could then be expressed as − ln(𝑝) 
	𝑣,𝑖
	[28]. 

	𝛽𝑣 
	Then, the net economic benefit of an individual vehicle could be expressed as the welfare it receives minus the actual transportation cost it experiences i.e., 
	[35], 

	1
	(− ln(𝑝) − 𝐶(𝑷)). It is worth noting that under the CeRM, the suggested routing 
	𝑣,𝑖
	𝑣
	𝑖

	𝛽𝑣 𝑣,𝑖 
	preference 𝑝of each individual vehicle are calculated from the MP rather than determined by logit choice model. But as a rational driver possesses consistent behavior patterns throughout a decision-making process to determine whether to follow the independent routing preference 𝒑𝑜or the suggested routing preference 𝒑𝑠, it is reasonable to use the consistent measurement to measure the welfare of the choice 
	𝑠 
	𝑣 
	𝑣 

	from an individual vehicle’s view. Namely, a rational driver would choose the routing 
	decision with the largest net economic benefit. To ensure the compliance of the equilibrium routing guidance, the rationality constraints guarantee that each driver would not be better off (receive more net economic benefit) if they choose not to follow the proposed guidance. In other words, if constraints are satisfied, each driver would have no incentive to deviate from the suggested routing guidance. 
	(8.2) 
	(8.2) 
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	Constraints – ensure the conservation and positiveness of probability variables. It’s worth pointing out that the route preference (probability) under the logit choice model is strictly positive. Namely, each route's probability could not be 0 because of uncertainties and user heterogeneities. To align the same route choice behavior pattern of a rational driver, constraints ensure that the decision variables of route choice preference are positive. Here, we set 𝜖 as a sufficiently small positive constant, 
	(8.3) 
	(8.4) 
	(8.4) 
	−6
	[27][
	31]
	(8.4) 
	(8.5) 

	From a mathematical point of view, the MP of – has a convex objective function but nonconvex constraint sets, and the detailed proof is shown in the Appendix 
	(8.1) 
	(8.5) 

	A. Moreover, the MP is always feasible. When no routing guidance is given to individual vehicles, i.e., 𝑷= 𝑷, all the constraints are satisfied, which means that there always exists a feasible solution for our problem. For simplicity issue, we reform the rationality constraint as: 
	𝑠 
	𝑜

	𝑘𝑣 𝑘𝑣 
	𝑣,𝑖 𝑣,𝑖 𝑣,𝑖 𝑣𝑣,𝑖 
	1 
	) 
	+ 
	1 

	𝑟𝑣(𝑷𝑠)=∑𝑝𝑠 (𝐶𝑣(𝑷𝑠)+ ln(𝑝𝑠 ))−∑𝑝𝑜 (𝐶𝑣(𝑷𝑜 ln(𝑝𝑜 ))≤0, ∀𝑣=1,…,𝑚 (9) 
	𝑖
	𝑖

	𝛽𝑣 𝛽𝑣 
	𝛽𝑣 𝛽𝑣 

	𝑖=1 𝑖=1 
	2.5 Distributed Augmented Lagrangian (D-AL) algorithm 
	The CeRM seeks to provide online routing guidance for every participating vehicle to mitigate traffic congestion. It requires us to solve the large-scale, highly coupled, and nonlinear nonconvex MP in – promptly (i.e., less than 30 seconds) since it is not likely that a driver en route would wait several minutes or even longer to get the route guidance. Even though there exist many methods to cope with nonconvex optimization problems, such as interior-point methods SQP (sequential quadratic programming) and
	(8.1) 
	(8.5) 
	[4], 
	[4], 
	[19], 

	Motivated by this view, this study develops a distributed solution algorithm, i.e., distributed Augmented Lagrangian (D-AL), to solve the proposed MP for the CeRM problem by taking advantage of the problem’s unique structure features. Mainly, the D-AL will efficiently solve the problem by distributing a large portion of the computation loads to individual CVs smart phones and/or on-board smart devices. Figure 1 illustrates the framework of the D-AL implemented between the CP and individual vehicles. Specifi
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	Step (i): Individual vehicles first locally evaluate traffic conditions and propose their routing preferences to the CP; 
	Step (ii): Upon receiving the information, the CP forms the MP for the CeRM problem, transforms it into a separable problem (𝑀𝑃 − 𝑆), and then separated into individual problems (𝑀𝑃 − 𝐼) and dispatch to each vehicle; 
	Step (iii): Each vehicle iteratively calculates the assigned computation tasks and proposes the result to the CP. The CP synchronizes individuals' responses and updates the solution until the 𝑀𝑃 − 𝑆 converges; 
	Step (iii): Each vehicle iteratively calculates the assigned computation tasks and proposes the result to the CP. The CP synchronizes individuals' responses and updates the solution until the 𝑀𝑃 − 𝑆 converges; 
	Step (iv): If the outcome of Step (iii) does not satisfy the convergence criteria of the MP for the CeRM model, the 𝑀𝑃 − 𝑆 is updated and the algorithm returns to step (ii). 
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	FIGURE 6 THE FLOW CHART OF THE D-AL SOLUTION ALGORITHM 
	The proposed D-AL is guaranteed to converge to a local solution to the MP of our CeRM problem. The subsections below introduce the technical details for developing such a solution algorithm, including model transformation, distribution scheme, and a customized projection algorithm. For simplicity issues, we denote the solution (routing guidance) of our problem 𝑷= 
	𝑠 

	𝑣,𝑖𝑣,𝑖∑𝑘𝑣 
	} = {𝑥
	} = 𝑿 ∈ ℝ
	𝑣

	{𝑝hereafter. 
	𝑠 
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	2.5.1 The Augmented Lagrangian Transformation 
	To develop the D-AL, we first notice that the MP’s constraint set – presents a unique feature. It involves complicated nonconvex and highly coupled rationality constraints and a relatively simple and separable 𝜖-probability simplex constraint set – regarding each vehicle’s route choice decision variables (preference). Invoked by these features, we consider transforming the MP for the CeRM problem into the Augmented Lagrangian form by changing the inequality constraints (an equivalent transformation of rati
	(8.2) 
	(8.5) 
	(8.2) 
	(8.3) 
	(8.4) 
	(10) 
	(9) 
	(8.2)) 
	(8.1). 

	𝑛𝑚
	1
	ℒ(𝑿,𝝀,𝑐)=∑𝑓𝑐(𝑓)+∑(𝑚𝑎𝑥{0,𝜆+𝑐𝑟(𝑿)}−𝜆),
	𝑲
	𝐾
	𝑠
	𝐿
	𝐿
	𝑠
	𝐿
	2
	𝑣
	𝐾
	𝐾
	𝑣
	𝑣
	2
	(10) 

	2𝑐𝐾
	2𝑐𝐾

	𝐿⏟=1𝑣=1
	𝑍where 𝝀={𝜆},𝑣=1,…,𝑚is the set of Lagrangian multipliers, and 𝑐is the penalty parameter. Then we have the first transformations of the MP for the CeRM problem given below. 
	𝑲
	𝑣
	𝐾

	minℒ(𝑿,𝝀,𝑐)𝑴𝑷−𝑨𝑳:(11) 𝑠.𝑡.
	𝑿
	(8.5)
	(8.3)−


	The merits of this transformation lie in eliminating the complex constraints in the MP and transforming them into more manageable sub-problems. Accordingly, existing studies show that iteratively solving and updating the transformed problem in (11) and associated parameters by Augmented Lagrangian method (AL), we can find a local solution of the MP developed for the CeRM. Below we first briefly introduce the procedure of the AL algorithm to update the Lagrangian multipliers 𝝀and penalty parameter 𝑐with th
	(8.2) 
	[3] 
	𝐾
	𝐾

	Parameter updating scheme 
	1: if 𝒴≤𝛾𝒴(rationality constraint violation has been decreased): 
	𝐾+1
	𝑚
	𝐾

	2: set 𝑐=𝑐; 
	𝐾+1
	𝐾

	3: else: 
	4: 
	4: 
	4: 
	set 𝑐𝐾+1=𝛾𝑐𝑐𝐾; 

	5: 
	5: 
	end if; 

	6: 
	6: 
	for 𝑣∈𝑉: 

	TR
	𝑣
	𝑣


	7: set 𝜆=max{0,𝜆+𝑐𝑟(𝑿)}; 
	𝐾+1
	𝐾+1
	𝐾
	𝑣
	𝐾+1

	Where 𝒴=max𝑟(𝑿)is the maximum violation of all rationality constraints, 𝛾>1is a 
	𝑣
	𝑐

	𝑣∈𝑉
	constant scalar for updating 𝑐, 𝛾is a positive constant to compare the change in 
	𝐾
	𝑚
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	constraint violations, and 𝑿is the solution of (11) corresponding to (𝝀, 𝑐). The AL stops until the convergence criterion of the MP for the CeRM problem is satisfied. The updating scheme of the Lagrangian multipliers takes the merit of Augmented Lagrangian algorithms and the updating scheme of the penalty parameter 𝑐has shown to be efficient for our problem in numerical experiments. 
	𝐾 
	𝑲
	𝐾
	𝐾 

	On the other hand, with each given parameters (𝝀, 𝑐), the AL algorithm solves the transformed problem in (11) by iteratively updating the solution using the gradient projection method as follows. 
	𝑿= [𝑿− 𝛼∇ℒ], (12) where [∙]stands for the projection onto the constraint set – denoted by ℋ and 𝛼is the step size. Note that we use upper case 𝐾 to denote each iteration of updating Lagrangian multipliers and penalty parameter (𝝀, 𝑐), and lower case 𝑘 to denote the iteration of updating 𝑿for a given transformed problem (11). However, the standard gradient projection method along with the AL algorithm is not efficient enough to satisfy the computation need of our online navigation service. This stud
	𝑘+1 
	𝑘 
	𝑘
	ℋ 
	ℋ 
	(8.3) 
	(8.4) 
	𝑘 
	𝐾
	𝐾
	𝑘 

	2.5.2 Distribution scheme 
	It is noticed that the link-based objective function (the first item 𝑍 in  is not user separable, but the second item in and the constraint set – are. Thus, to accommodate a distribution scheme, we transform the objective function 𝑍 into the equivalent path-based and user separable form 𝑍: 
	(8.1) 
	(10))
	(10) 
	(8.3) 
	(8.4) 
	𝑢

	𝑚 𝑘𝑣 
	𝑣,𝑖 
	𝑍=∑∑𝑝𝐶(𝑷) (13) 
	𝑢
	𝑠 
	𝑣
	𝑖
	𝑠

	𝑣=1 𝑖=1 
	After this second transformation, the objective function can be rewritten as the summation of individuals’ augmented objective functions in (i.e., 𝑀𝑃 − 𝐴𝐿 of (11) is then transformed to 𝑀𝑃 − 𝑆 of , which could then be separated among individual vehicles. 
	(10) 
	(14) 
	(14))

	𝑚 𝑚 
	𝑴𝑷−𝑺:minℒ(𝑿,𝝀,𝑐)=𝑍+ ∑(𝑚𝑎𝑥{0,𝜆+𝑐𝑟(𝑿)}−𝜆) =∑𝒻
	𝑢 
	1 
	2
	𝑣
	𝑣
	𝑣
	2
	𝑣 

	𝑿 2𝑐 (14) 
	𝑣=1 𝑣=1 
	𝑠. 𝑡. 
	(8.5) 
	(8.3) − 


	𝑘𝑣 𝑣,𝑖 1 𝑚 
	Where 𝒻=∑ 𝑝𝐶(𝑷)+ ∑ (𝑚𝑎𝑥{0,𝜆+𝑐𝑟(𝑿)}−𝜆) is the individual 
	𝑣
	𝑠 
	𝑣
	𝑖
	𝑠
	2
	𝑣
	𝑣
	𝑣
	2

	𝑖=1 𝑣=1
	2𝑐 vehicle’s augmented objective function. The first part of 𝒻is the expected travel cost of vehicle 𝑣 and the second part is related to the violation of vehicle 𝑣’s rationality. From the individual’s perspective, a vehicle 𝑣 only cares about its own augmented objective 
	𝑣 
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	𝒻, and tries to minimize it subject to constraints –  We refer to the following model for each vehicle 𝑣 as the individual problem (𝑀𝑃 − 𝐼). 
	𝑣
	(8.3) 
	(8.5).

	𝑘𝑣 
	1
	𝑣,𝑖 
	𝑴𝑷−𝑰:min𝒻(𝑿,𝝀,𝑐)=∑𝑝𝐶(𝑷)+ (𝑚𝑎𝑥{0,𝜆+𝑐𝑟(𝑿)}− 
	𝑣
	𝑣
	𝑠 
	𝑣
	𝑖
	𝑠
	2
	𝑣
	𝑣
	𝑣

	𝑿𝑣 (15) 
	2𝑐 
	𝑖=1 
	𝑠. 𝑡. Note that an 𝑀𝑃 − 𝐼 is a separation of 𝑀𝑃 − 𝑆 regarding vehicles, not the decision variables. Namely, each 𝑀𝑃 − 𝐼 holds the same decision variables as the 𝑀𝑃 − 𝑆. It can be seen as an individual vehicle 𝑣 trying to design routing preferences for all vehicles that minimize its own augmented objective. An 𝑀𝑃 − 𝐼 can also be solved using the gradient projection method by iteratively performing the updating process shown in 
	(8.5) 
	(8.3) − 

	(16): 

	𝑣
	𝑿= [𝑿− 𝛼∇𝒻](16) 
	𝑘+1 
	𝑘
	𝑣 
	𝑘
	𝑣
	ℋ 

	𝑣 
	Where, 𝑿∈ ℝis the solution of vehicle 𝑣’s 𝑀𝑃 − 𝐼. A solution 𝑿from vehicle 𝑣 can be seen as the solution mostly favorable to vehicle 𝑣’s interest. However, for two vehicles, most likely we will have 𝑿≠ 𝑿. Consequently, 𝑿is not in accordance with the overall objective in  To balance individual’s will and produce a consensus solution that converges to the 𝑀𝑃 − 𝑆 , we design a customized distribution scheme (𝑐DS) that only requires individuals to propose their interest-related gradients ∇𝒻= 
	𝒗 
	∑ 
	𝑘
	𝑣 
	𝒗 
	𝒗′ 
	𝒗 
	𝒗 
	(14).
	-
	𝑣 

	𝜕𝒻𝑣 𝜕𝒻𝑣 
	{ ,…, }. By synchronizing individuals’ gradients, the CP can obtain ∇ℒ = 
	𝑣𝑚,𝑖
	𝑣1,𝑖1 
	𝑘
	𝑣
	𝑚 

	𝜕𝑝𝑠 
	𝜕𝑝𝑠 𝑚
	∑∇𝑔, and then perform the update through to solve the 𝑀𝑃 − 𝑆 of 
	𝑣=1 
	𝑣 
	(17) 
	(14). 

	ℋ
	𝑚 
	𝑿= [𝑿− 𝛼∑ ∇𝒻] (17) 𝑣=1 
	𝑘+1 
	𝑘 
	𝑘 
	𝑣

	Here, the step size 𝛼is determined by a centralized line search along the projection arc 
	𝑘 

	𝑚 
	Clearly, ∑ ∇𝒻= ∇ℒ and the solution updating process is equivalent to 
	[3]. 
	𝑣 
	(17) 

	𝑣=1 
	performing the gradient projection algorithm on the 𝑀𝑃 − 𝐴𝐿 (11), but using a distributed way to conduct this computation. 
	(12) 

	This study also noticed another more general and straightforward way to distribute the calculation load of ∇ℒ in by letting each vehicle compute the partial derivatives related to their own decision variables. We label this naive approach as 𝑛-DS: vehicle 𝑣 
	(12) 

	𝜕ℒ 
	computes ,𝑖 = 1,…,𝑘. However, there are two drawbacks in 𝑛-DS. First, unlike in 
	𝑣,𝑖
	𝑣

	𝜕𝑝𝑠 
	𝑐-DS, individuals have no direct interest in the computation task under 𝑛-DS, making them less willing to contribute their computing power and propose the needed information. Second, the naive approach 𝑛-DS is less efficient than our problem-specific 𝑐-DS regarding the computation workload. We prove this merit in Theorem 1 below. 
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	Theorem 1: Assume there are 𝑚 vehicles each with 𝑘 possible candidate routes, then 
	1
	1− 
	each vehicle undertakes less workload in 𝑐-DS than in 𝑛-DS. 
	𝑚 

	𝑘+1 
	The proof of Theorem 1 is shown in Appendix B. It is worth noting that each vehicle usually faces 2 to 4 possible routes. Then the 𝑐-DS developed in this study can reduce the computation load by nearly 20% to 33%, which is quite considerable in practice given that the main computation burden of the D-AL lies in this part. 
	2.5.3 Projection onto the 𝝐-probability simplex 
	It should be noted that the updating process involves a projection process [∙], which is not easy to perform in general procedures. It usually involves solving a quite computationally costly optimization problem：min‖𝑥 − 𝑦‖. However, after conducting 
	(17) 
	ℋ 

	𝑥∈ℋ 
	the Augmented Lagrangian transformation and further transforming the problem to 𝑀𝑃 − 𝑆 in the remaining constraints are of 𝜖-probability simplex form for each vehicle. Several studies, i.e., have developed projection algorithms with the probability simplex (𝑥≥0,∑ 𝑥=1). To be noted, our study works on the projection 
	(14), 
	[5][
	32] 
	𝑖
	𝑖

	𝑖 
	onto the 𝜖-probability simplex space. Thus, we cannot directly use their algorithms. This subsection thus develops a 𝜖-simplex projection algorithm that could conduct the projection efficiently to the 𝜖-probability simplex space without solving the extra optimization problem. We first give the projection algorithm and then prove its correctness. 
	Algorithm 1 𝜖-Simplex Projection 
	1: input 𝑌 = (𝑦,…,𝑦) ∈ ℝ; 
	1
	𝑛
	𝑛

	2: sort 𝑌 in descending order such that 𝑦≥ 𝑦≥ ⋯ ≥ 𝑦; 
	(1) 
	(2) 
	(𝑛)

	3: find the largest index 𝑘 ∈ [1,𝑛], such that 
	𝑘 
	∑ 𝑦+ (𝑛 − 𝑘)𝜖 − 1
	(𝑖) 

	𝑖=1
	𝑖=1

	𝑦− > 𝜖 
	(𝑘) 

	𝑘 
	𝑘
	∑ 𝑦(𝑖)+(𝑛−𝑘)𝜖−1 
	4: set 𝜆 = 
	𝑖=1 

	𝑘 
	5: return 𝑥=max{𝑦−𝜆,𝜖},𝑖 =1….,𝑛. 
	𝑖 
	𝑖

	The main complexity of the algorithm lies in sorting the elements of 𝑌 into descending order, which has a worst-case time complexity of 𝑂(𝑛 log 𝑛) Theorem 2 below proves the algorithm correctly projects a vector into the 𝜖-probability simplex space. 
	[6]. 

	Theorem 2: the 𝜖-Simplex Projection algorithm returns a vector 𝑋 that satisfies 𝑋 = arg min‖𝑋 − 𝑌‖, where ℋ is the 𝜖-probability simplex space. 
	2 

	𝑋∈ℋ 
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	Proof: 
	Projecting a vector 𝑌 = (𝑦, … , 𝑦) into the 𝜖-probability simplex space equals to solving the optimization problem of: 
	1
	𝑛

	1 
	min ‖𝑋 − 𝑌‖
	2 

	𝑋 2 
	(18) 
	𝑠.𝑡.𝑋𝟏 = 1 𝜖 ≤ 𝑥,…,𝑥𝑛 
	𝑇
	1

	KKT conditions of the problem are: 
	∇ℒ(𝑋,𝜆,𝜇)=𝑥−𝑦+𝜆−𝜇=0, 𝑖=1,…,𝑛 (19.1) 
	𝑥
	𝑖
	∗
	∗
	∗
	𝑖
	𝑖
	𝑖

	𝑛 
	∇ℒ(𝑋,𝜆,𝜇) = ∑𝑥−1 = 0 (19.2) 𝑖=1 
	𝜆
	∗
	∗
	∗
	𝑖 

	𝜇(𝜖−𝑥)=0, 𝑖=1,…,𝑛 (19.3) 
	𝑖
	𝑖

	𝜖 ≤ 𝑥, 𝑖 = 1,…,𝑛 (19.4) 
	𝑖

	𝜇≥ 0, 𝑖 = 1,…,𝑛 (19.5) 
	𝑖 

	From above, we know that 
	if𝑥>𝜖,then𝜇=0and𝑦−𝜆=𝑥>𝜖 
	𝑖 
	𝑖 
	𝑖
	𝑖 

	{ (20) 
	if𝑥=𝜖,then𝜇≥0and𝑦−𝜆=𝑥−𝜇=𝜖−𝜇≤𝜖 
	𝑖 
	𝑖 
	𝑖
	𝑖
	𝑖 
	𝑖 

	indicates that if 𝑦≥ 𝑦, then 𝑥≥ 𝑥. Without loss of generality, assume that 𝑌 has been sorted in descending order, and 𝑋 is arranged using the same index, i.e., 
	(20) 
	𝑖 
	𝑗
	𝑖 
	𝑗 

	𝑦≥𝑦≥⋯≥𝑦𝑛 
	1
	2 

	(21) 
	𝑥≥𝑥≥⋯≥𝑥>𝑥=⋯=𝑥=𝜖 
	1
	2
	𝑘 
	𝑘+1
	𝑛 

	Replacing and to we have: 
	(20) 
	(21) 
	(19.2), 

	𝑛𝑘 𝑘 
	∑𝑥=∑𝑥+(𝑛−𝑘)𝜀=∑(𝑦−𝜆)+(𝑛−𝑘)𝜖=1 (22) 
	𝑖 
	𝑖
	𝑖

	𝑖=1 𝑖=1 𝑖=1 
	Then, 
	∑𝑦+ (𝑛 − 𝑘)𝜖 − 1 
	𝑘
	𝑖=1 
	𝑖 

	(23) 
	𝜆 = 
	𝑘 To this end, if we find the boundary index 𝑘, we could determine the value of 𝜆 and calculate 
	the projected vector by: 
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	𝑥= max{𝑦− 𝜆, 𝜖} (24) 
	𝑖 
	𝑖 

	By substituting to – find that it would satisfy all the KKT conditions and would thus be the optimal solution to the problem 
	(24) 
	(19.1) 
	(19.5), It’s easy to 
	(18). 

	Next, we show that step 3 of Algorithm 1 will successfully find the boundary index 𝑘, i.e., if 𝑘 is the index found in step 3 of Algorithm 1, then 
	∑
	∑
	𝑗 
	𝑦𝑖+(𝑛−𝑗)𝜖−1 

	𝑦− >𝜖, ∀𝑗≤𝑘 
	𝑗
	𝑖=1 

	𝑗 
	{ .
	𝑗 
	𝑗 
	+(𝑛−𝑗)𝜖−1

	∑
	∑
	𝑖=1 
	𝑦
	𝑖 

	≤ 𝜖, ∀𝑗 > 𝑘 
	𝑗 
	𝑗 
	𝑦
	𝑗 
	− 

	𝑘 
	𝑘 
	+(𝑛−𝑘)𝜖−1


	∑
	∑
	𝑖=1 
	𝑦
	𝑖 

	Suppose that now we have found the largest index 𝑘, such that 𝑦− > 
	𝑘

	𝑘 ∑𝑦𝑖+(𝑛−𝑘)𝜖−1 
	𝑘 

	𝜖. Let 𝜆 = . Then, 
	𝑖=1 

	𝑘 
	1) for index 𝑗 ≤ 𝑘, 
	𝑗 𝑗 
	∑ 𝑦+(𝑛−𝑗)𝜖−1 𝑗𝑦−∑ 𝑦−(𝑛−𝑗)𝜖+1
	𝑖
	𝑗
	𝑖

	𝑖=1 𝑖=1
	𝑖=1 𝑖=1

	𝑦− = 
	𝑦− = 
	𝑗

	𝑗 𝑗 

	(25) 
	𝑘 𝑘 
	−∑ −(𝑛−𝑗)𝜖+1
	𝑗𝑦
	𝑗𝑦
	𝑗 
	+ 
	∑
	𝑖=𝑗+1 
	𝑦
	𝑖 𝑖=1 
	𝑦
	𝑖 

	= 
	𝑗 
	From we have 
	(22), 

	𝑘 
	∑ 𝑦= 1 + 𝑘𝜆 − (𝑛 − 𝑘)𝜖 (26) 
	𝑖 

	𝑖=1 
	Insert into we have 
	(26) 
	(25), 

	𝑗 𝑘 
	∑𝑦+ (𝑛 − 𝑗)𝜖 − 1 𝑗𝑦+ ∑𝑦− 𝑘𝜆 + (𝑗 − 𝑘)𝜖 
	𝑖=1 
	𝑖 
	𝑗 
	𝑖=𝑗+1 
	𝑖 

	𝑦− = 
	𝑦− = 
	𝑗

	𝑗 𝑗 

	𝑘 
	𝑗(𝑦− 𝜆) + ∑ (𝑦− 𝜆) + (𝑗 − 𝑘)𝜖 
	𝑗 
	𝑖 

	𝑖=𝑗+1 
	𝑖=𝑗+1 

	(27) 
	= 
	𝑗 𝑗𝜖 + (𝑘 − 𝑗)𝜖 + (𝑗 − 𝑘)𝜖 
	> =𝜖 
	𝑗 Note that the inequality in results from that 𝑦 is sorted in descending order, thus for 𝑖 ≤ 𝑘, 𝑦−𝜆 ≥ 𝑦−𝜆 > 𝜖. 
	(27) 
	𝑖 
	𝑘 

	2) for index 𝑗 > 𝑘, incorporate we have 
	(26), 
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	𝑗 𝑘𝑗 
	∑ 𝑦+ (𝑛 − 𝑗)𝜖 − 1 𝑗𝑦𝑗 − ∑𝑦𝑖 − ∑ 𝑦𝑖 − (𝑛 − 𝑗)𝜖 + 1
	𝑖 
	𝑖=1 

	𝑖=1 
	𝑖=1 
	𝑖=𝑘+1

	𝑦− = 
	𝑗

	𝑗 𝑗 
	𝑗𝑦− ∑𝑦− 𝑘𝜆 + (𝑗 − 𝑘)𝜖 
	𝑗 
	𝑗 
	𝑖 

	𝑖=𝑘+1 
	𝑖=𝑘+1 

	= 
	𝑗 
	(28) 
	𝑗 
	𝑘(𝑦− 𝜆) + ∑ (𝑦− 𝑦) + (𝑗 − 𝑘)𝜖 
	𝑗 
	𝑗 
	𝑖

	𝑖=𝑘+1 
	𝑖=𝑘+1 

	= 
	𝑗 
	𝑘𝜖 + (𝑗 − 𝑘)𝜖 
	≤ =𝜖 
	𝑗 Note that the inequality in results from that 𝑦 is sorted in descending order, thus for 𝑗 > 𝑘, 𝑦−𝜆 ≤ 𝜖 and for 𝑖 < 𝑗, 𝑦−𝑦≤0. 
	(28) 
	𝑗 
	𝑗
	𝑖 

	Combining and we conclude that if we find the largest index 𝑘 such that 𝑦− 
	(27) 
	(28), 
	𝑘 

	𝑗 
	∑
	∑
	𝑘 
	+(𝑛−𝑘)𝜖−1 
	∑ 𝑦𝑖+(𝑛−𝑗)𝜖−1

	𝑖=1 
	𝑖=1 
	𝑦
	𝑖 
	𝑖=1

	> 𝜖, then for index 𝑗 <𝑘, 𝑦− >𝜖, for index 𝑗 > 𝑘,
	𝑗

	𝑘 𝑗 
	∑
	𝑗 
	+(𝑛−𝑗)𝜖−1

	𝑖=1 
	𝑖=1 
	𝑦
	𝑖 

	𝑦− ≤𝜖, and thus 𝑘 would be the boundary index we need. 
	𝑗

	𝑗 
	Q.E.D 
	With the help of our customized distribution scheme (sec 5.1.2) and 𝜖-Simplex Projection algorithm, a complete description of Step (iii) in D-AL can then be given as follows: After an 𝑀𝑃 − 𝑆 is formed in Step (ii), the CP distributes individual-specific objective functions along with the current step solution to each vehicle. Upon receiving the information, individual vehicles calculate the gradients related to their own functions and propose them to the CP. The CP then aggregates all the information an
	(17) 
	(17) 
	[3]. 

	To this end, combining subsections 5.1.1 – 5.1.3, we provide the steps of the D-AL as follows: 
	Algorithm 2 D-AL solution algorithm 
	1: Initialization: initial route choice probabilities 𝑝,𝑖 = 1,…,𝑘,𝑣 = 1,…,𝑚, Lagrangian multipliers 𝝀and penalty parameter 𝑐; 
	𝑣
	𝑖
	𝑣
	𝟏 
	1

	2: For 𝐾 = 1,2,…, : 
	3: If the convergence criterion of the MP for the CeRM problem is satisfied: 
	4: break; 
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	5: Else: 
	6: transform to / update (𝝀, 𝑐) for the 𝑀𝑃 − 𝑆 according to Eq. (11), and the Parameter updating scheme; 
	𝐾
	𝐾
	(14) 

	7: For 𝑘 = 1,2,…,: 
	8: If the convergence criterion of the 𝑀𝑃 − 𝑆 is satisfied: 
	9: break; 
	10: Else: 
	11: distribute computation task ∇𝒻to each vehicle 𝑣; 
	𝑣 

	12: collects the result from each vehicle and update the route choice probabilities according to Eq. (17) with the help of Algorithm 1; 
	13: End 
	14: End 
	The D-AL algorithm developed here relies on the distributed computation of the 
	𝑚 
	gradient information, i.e., ∑ ∇𝒻in  Specifically, when the computation results 
	𝑣 
	(17).

	𝑣=1 
	aggregated from individual vehicles are exactly the gradient of the 𝑀𝑃 − 𝑆 (∇ℒ), the solving process of 𝑀𝑃 − 𝑆 takes the merits of the gradient projection methods and guarantees to converge  Then, as 𝑀𝑃 − 𝑆 is iteratively updated according to (11) and the Parameter updating scheme, the convergence of the D-AL resembles that of the Augmented Lagrangian algorithm (see sec 5.1.1), which has been proved in literature to converge to a local solution  In other words, the convergence of D-AL is guaranteed
	(17) 
	[3].
	[3].

	2.6 Numerical Experiment 
	This study conducts numerical experiments to demonstrate the efficiency of the D-AL and the efficacy of the CeRM. Specifically, our experiments investigate three aspects: (1) the computation efficiency and convergence pattern of the D-AL algorithm; (2) the system cost reduction brought by the CeRM compared with benchmarks (IR, uoER, SOR) routing mechanisms. 
	2.6.1 Experiment Settings 
	The experiments are conducted upon the topology of the Sioux Falls city network, as shown in Figure 2. The middle-sized network has 24 nodes and 76 links and has been widely used as a testbed in the transportation field. 
	[35] 
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	FIGURE 7 SIOUX FALLS CITY NETWORK 
	The standard BPR function is adopted to capture link travel time with the given flow, i.e., 
	4 ( ) )
	𝑓
	𝑙 
	𝑐(𝑓)=𝑡(1+0.15
	𝑙
	𝑙
	0
	𝑙


	𝑘𝑙 
	where 𝑡and 𝑘is the free-flow travel time and capacity of link 𝑙 separately. Vehicles represented by a three tuple (𝑂𝐷, 𝛼, 𝛽) are generated randomly with OD denoting the origin-destination pair and 𝛼, 𝛽 ∈ [0,1] being personal parameters used in the multinomial logit choice model as defined in (5). Each vehicle 𝑣 has two possible routes found by the k-shortest paths algorithm under current (initial) traffic conditions. Detailed parameters used in the D-AL algorithm are shown in Table 4. 
	0
	𝑙 
	𝑙 
	[36] 

	TABLE 4 EXPERIMENT PARAMETERS 
	Parameter use 
	Parameter use 
	Parameter use 
	notation 
	value 

	penalty updating parameter 
	penalty updating parameter 
	𝛾𝑐 
	10 

	Constraint feasibility comparison 
	Constraint feasibility comparison 
	𝛾𝑚 
	0.7 

	first order optimality tolerance 
	first order optimality tolerance 
	𝜀𝑚 
	0.01 

	feasibility tolerance 
	feasibility tolerance 
	𝜀𝑐 
	0.01 
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	Initial Lagrangian multiplier 
	Initial Lagrangian multiplier 
	Initial Lagrangian multiplier 
	𝜆0 
	1 

	Initial penalty 
	Initial penalty 
	𝑝0 
	1 

	initial step size 
	initial step size 
	𝛼̅ 
	1 

	Armijo parameter 
	Armijo parameter 
	𝛽, 𝜎 
	0.5, 0.01 


	To measure the algorithm’s efficiency, we implement the proposed D-AL algorithm in MATLAB R2020a and compare it with the SQP-based MATLAB solver since Sequential Quadratic Programming (SQP) is commonly used to solve nonconvex large-scale optimization problems. In addition, it has been used by recent works such as to solve nonconvex problems in routing games. To measure the routing mechanism’s efficacy, we compare the system cost of the CeRM with that of (i) IR, by which each vehicle conducts one snapshot be
	[24] 

	resolution, and (iii) SOR, by which vehicles’ route choices are systematically manipulated 
	toward the minimum system cost. The experiments are conducted on the laptop with processor: Intel® Core™ i5-8300H CPU @ 2.30GHz. 
	2.6.2 Computation performance of D-AL 
	FIGURE 8 CONVERGENCE PATTERN UNDER DIFFERENT NUMBER OF VEHICLES 
	To demonstrate the proposed algorithm’s computation performance, we run 14 traffic 
	scenarios with the number of qualified participating vehicles increasing from 200 to 
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	1500 by an increment of 100. Each scenario was run ten times and then we took the average performance to reduce contingency and randomness. 
	Figure 3 displays the convergence pattern under the cases of 500, 1000, and 1500 vehicles. It indicates that the objective function drops quickly in the early period (when the penalty is small), fluctuates a little bit, then enters a flat district and stays stable (as penalty increases), which coincides with the typical convergence pattern of the Augmented Lagrangian algorithm. 
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	D-AL SQP 
	FIGURE 9 COMPUTATION TIME UNDER DIFFERENT NUMBER OF VEHICLES 
	Figure 4 shows the average computation time for D-AL and SQP as the number of vehicles increases. It demonstrates that the SQP solver becomes computationally intractable (i.e., computation time is larger than 6000 seconds, which cannot adapt to online routing requirements) when the number of vehicles exceeds 800. The coefficient of variation for the computation time of the D-AL ranges between 0.19 to 0.43, with a maximum computation time of 28.7 sec happened in the scenario with 1500 vehicles. The D-AL dram
	Figure 4 shows the average computation time for D-AL and SQP as the number of vehicles increases. It demonstrates that the SQP solver becomes computationally intractable (i.e., computation time is larger than 6000 seconds, which cannot adapt to online routing requirements) when the number of vehicles exceeds 800. The coefficient of variation for the computation time of the D-AL ranges between 0.19 to 0.43, with a maximum computation time of 28.7 sec happened in the scenario with 1500 vehicles. The D-AL dram
	can satisfy the need for a realistic online navigation service with a large number of vehicles. 
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	2.6.3 System Performance of the CeRM 
	This section further investigates the effectiveness of the CeRM in mitigating traffic congestion, while sustaining individual vehicles’’ trip interest. The proposed D-AL is used to calculate the routing guidance under the CeRM. The system cost resulting from the collective route choices under the CeRM is compared with three benchmarks: IR. uoER, and SOR. The detailed formulations of these benchmarks are shown in Appendix C. Fourteen scenarios of experiments are conducted, in which the number of vehicles inc
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	FIGURE 10 SYSTEM COST COMPARISON BETWEEN IR AND CERM 
	46 
	Artifact
	Smartphone-Based Incentive Framework for Dynamic Network-Level Traffic Congestion Management 
	1200 4.0% 3.5% 1000 
	3.0% 
	16 20 35 57 84 141 233 417 501 704 793 0.7% 950 995 1092 0.7% 0.6% 0.9% 1.1% 1.5% 2.1% 3.1% 3.2% 3.6% 3.6% 3.7% 3.1% 2.9% 

	800 
	2.5% 600 2.0% 1.5% 
	400 
	1.0% 
	200 
	0.5% 0 
	0.0% 
	200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 uoER-CeRM percentage decrease from uoER 
	FIGURE 11 SYSTEM COST COMPARISON BETWEEN UOER AND CERM 
	The experiment results are shown in Figure 5 and Figure 6. Figure 5 shows the system cost comparison between IR and the CeRM, and Figure 6 shows the same comparison between the uoER and CeRM. Define 𝑍,𝑍, 𝑍,𝑍to be the system cost under the CeRM, IR, uoER, and SOR, respectively. The blue bars show the amount of the system cost reduction by the CeRM from the benchmark mechanisms, and the orange line shows the percentage of the system cost reduction as comparing the CeRM with IR 
	𝐶𝑒𝑅𝑀
	𝐼𝑅
	𝑢𝑜𝐸𝑅
	𝑆𝑂𝑅 

	𝑍𝑢𝑜𝐸𝑅−𝑍𝐶𝑒𝑅𝑀 
	𝑍𝐼𝑅−𝑍𝐶𝑒𝑅𝑀 

	or uoER, i.e., and . It can be seen that the system cost of the CeRM 
	𝑍𝐼𝑅 𝑍𝑢𝑜𝐸𝑅 
	is always lower than that under IR and uoER. As the number of vehicles increases, the system cost reduction by the CeRM increases. In congested scenarios, the system cost could be reduced by around 55% compared with IR and approximately 3.6% compared with uoER. 
	We also compare the system performance of the CeRM, IR, and uoER by measuring how much their induced system costs are higher than the System Optimum (SOR) cost, i.e., 
	𝐶𝑒𝑅𝑀 𝐶𝑒𝑅𝑀 𝑆𝑂𝑅𝐼𝑅𝐼𝑅 𝑆𝑂𝑅 𝑢𝑜𝐸𝑅 𝑢𝑜𝐸𝑅 𝑆𝑂𝑅SOR represents the best system performance, the smaller ∆ is, the better the resulting system performance it represents. Table 1 clearly shows that the CeRM approaches the system optimum cost closely and it outperforms IR and uoER under all scenarios. To conclude, the CeRM pushes the snapshot traffic resulting from widely used IR to a more systematically efficient state. It proves to be efficient in reducing traffic congestion at a systematic l
	compare ∆
	= 𝑍
	− 𝑍
	, ∆
	= 𝑍
	− 𝑍
	and ∆
	= 𝑍
	− 𝑍
	. Given 

	Number of 
	𝐶𝑒𝑅𝑀 𝑢𝑜𝐸𝑅 𝐼𝑅 
	∆
	∆
	∆

	Vehicles 
	Artifact
	Smartphone-Based Incentive Framework for Dynamic Network-Level Traffic Congestion Management 
	TABLE 5 SYSTEM PERFORMANCE UNDER DIFFERENT NUMBER OF VEHICLES 
	2.7 Conclusion 
	This study designs a correlated routing mechanism that calculates and provides online routing guidance for vehicles with onboard computing and communication devices. By exploiting information discrepancies between individual vehicles and the CP, the proposed mechanism drives the snapshot equilibrium route choice of a group of vehicles toward a more systematic optimal condition while still preserving the individual’s selfish nature. By following the routing guidance offered by the CP, every driver would get 
	2.8 Appendix Appendix A 
	Lemma 13: The optimization problem has a convex objective function and a nonconvex feasible region. 
	Proof: To check the convexity of the objective function, we exam its Hessian and noticed the Hessian of is positive definite. 
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	where is the link-path relation matrix, i.e., . 
	Figure

	Figure
	Since the link cost function is strictly increasing and convex according to assumption 6, 𝑐′ and 𝑐′′ would be positive. Thus, every element in matrix Λ is positive. Given any diagonal matrix Λ with positive elements, for any vector 𝑥 and matrix 𝑀, 𝑥𝑀Λ𝑀𝑥 = (𝑀𝑥)Λ(𝑀𝑥) > 0 must hold. Hence, the hessian matrix 𝐻(𝑍) is positive definite. 
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	Next, we check the rationality constraint's convexity and notice that the Hessian of rationality constraints is indefinite. More exactly, we first calculate the elements in the Hessian and then prove it is neither positive (semi) definite nor negative definite. 
	The first derivatives of the rationality constraint of vehicle 𝑣are: 
	∗ 
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	the elements in the Hessian matrix of the rationality constraint of vehicle 𝑣are: 
	∗ 

	𝑘𝑣∗ 
	𝜕𝑟𝑣∗ 1
	𝐿 𝑣,𝑖 𝐿 
	∗

	=2 ∑ 𝑐(𝑓𝑠)𝛿∗ +∑𝑝∑ 𝑐(𝑓𝑠)𝛿∗ + ,𝑖=1,…,𝑘
	𝐿
	′
	𝐿
	𝑣
	𝑠 
	𝐿
	′′
	𝐿
	𝑣
	∗
	𝑣
	∗ 

	,𝑖,𝑖𝑣,𝑖
	𝑣
	∗
	,𝑖
	∗ 
	𝑣
	∗
	,𝑖
	∗ 
	∗ 
	∗ 
	∗
	∗ 

	𝜕𝑝𝑠 𝜕𝑝𝑠 𝛽𝑣∗𝑝𝑠 
	𝐿∈𝑟𝑣∗,𝑖∗ 𝑖=1 𝐿∈𝑟𝑣∗,𝑖 
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	𝑘𝑣∗𝑣𝐿𝑣,𝑖𝐿𝐿
	𝜕𝑟
	∗
	∗

	=2∑𝑐𝐿′(𝑓𝑠)𝛿∗+∑𝑝∑𝑐(𝑓𝑠)𝛿∗∗𝛿∗,𝑗≠𝑖
	𝐿
	𝑣
	,𝑗
	𝑠
	𝐿
	′′
	𝐿
	𝑣
	,𝑖
	𝑣
	,𝑗
	∗

	𝑠𝑠𝐿∈𝑟𝑣∗,𝑖∗𝑖=1𝐿∈𝑟𝑣∗,𝑖
	𝑣∗,𝑖∗𝑣
	∗
	,𝑗
	𝜕𝑝
	𝜕𝑝

	𝑘𝑣∗𝑣𝐿𝑣,𝑖𝐿𝐿
	𝜕𝑟
	∗
	∗

	=∑)𝛿∑)𝛿∗𝛿,𝑣≠𝑣,𝑖=1,…,𝑘
	𝐿
	𝐿
	𝑣
	′
	∗
	′
	𝑣
	′

	𝐿𝑠𝑣,𝑖𝑠𝐿𝑠,𝑖𝑣,𝑖𝑠𝑠𝐿∈𝑟𝑣∗,𝑖∗𝑖=1𝐿∈𝑟𝑣∗,𝑖
	𝑣∗,𝑖∗𝑣′,𝑖′
	𝑐
	′(𝑓
	′
	′
	+∑𝑝
	𝑐
	′′(𝑓
	∗
	′
	′𝜕𝑝
	𝜕𝑝

	𝑘𝑣∗𝜕𝑟𝑣∗
	𝐿𝑣,𝑖𝐿𝐿
	∗

	=∑𝑐𝐿′(𝑓𝑠)𝛿+∑𝑝∑𝑐𝐿′′(𝑓𝑠)𝛿∗𝛿,𝑣≠𝑣,𝑖=1,…,𝑘
	𝐿
	𝑠
	𝐿
	𝑣
	′
	∗
	′
	𝑣
	′

	𝑣,𝑖,𝑗𝑣,𝑖𝑠𝑠𝐿∈𝑟𝑣∗,𝑗𝑖=1𝐿∈𝑟𝑣∗,𝑖
	𝑣′,𝑖′𝑣∗,𝑗
	′
	′
	′
	′𝜕𝑝
	𝜕𝑝

	𝑘𝑣∗𝑘𝑣∗𝑣𝑣,𝑖𝐿𝐿𝑣,𝑖𝐿𝐿
	𝜕𝑟
	∗
	∗
	∗

	′=∑𝑝𝑠∑𝑐𝐿′′(𝑓𝑠)𝛿′′𝛿′−∑𝑝𝑜∑𝑐𝐿(𝑓∗)𝛿′′𝛿′,𝑣≠𝑣,𝑖=1,…,𝑘𝜕𝑝𝑠𝜕𝑝𝑠𝑖=1𝐿∈𝑟𝑣∗,𝑖𝑖=1𝐿∈𝑟𝑣∗,𝑖
	𝑣
	′
	,𝑖
	′
	𝑣
	,𝑗
	𝐿
	𝑣
	,𝑖
	𝑣
	,𝑗
	′′
	𝑣
	𝐿
	𝑣
	,𝑖
	𝑣
	,𝑗
	′
	∗
	′
	𝑣
	′

	Take a simplified scenario for the demonstration. Assume there are two simple routes (routes that contain only one link) 1 and 2 connecting O and D, and there are only two vehicles 𝑎, 𝑏traveling in between. Vehicle 𝑎has two possible routes 1 and 2, while vehicle 𝑏has only route 1. Denote the Hessian matrix as Φ, then for any vector 𝑥: 
	𝑥Φ𝑥=𝑥2𝑐(𝑓)+𝑝𝑐(𝑓)+
	𝑇
	1
	2
	1
	′
	𝑠
	1
	𝑠
	𝑣
	𝑎
	,𝑖
	1
	1
	′′
	𝑠
	1
	1

	𝑣1,𝑖1⏟𝑣1𝑠
	𝛽
	𝑝

	()
	𝐴

	𝑣𝑎,𝑖1
	𝑐
	1

	+2𝑥𝑥(𝑐⏟(𝑓𝑠)+𝑝(𝑓𝑠))𝐵
	1
	3
	1
	′
	1
	𝑠
	′′
	1

	2𝑣𝑎,𝑖2
	𝑐
	2
	1

	+𝑥2𝑐(𝑓)+𝑝(𝑓)+
	2
	2
	′
	𝑠
	1
	𝑠
	′′
	𝑠
	1

	𝑣1,𝑖2⏟𝑣1𝑠
	𝛽
	𝑝

	()
	𝐶

	𝑣𝑎,𝑖2𝑣𝑎,𝑖1𝑣𝑎,𝑖1
	𝑐
	2
	𝑐
	1
	𝑐
	1

	+𝑥𝑥(𝑐⏟(𝑓𝑠)+𝑝(𝑓))+𝑥(𝑝⏟(𝑓)−𝑝(𝑓))𝐷𝐸
	2
	4
	2
	′
	1
	𝑠
	′′
	𝑠
	1
	3
	2
	𝑠
	′′
	𝑠
	1
	𝑜
	′′
	𝑜
	1

	1𝑣𝑎,𝑖1
	where 𝑓=𝑝+𝑝is the flow on link 1 if both vehicle 𝑎and 𝑏follow the 1𝑣𝑎,𝑖1
	𝑠
	𝑠
	𝑠
	𝑣
	𝑏
	,𝑖
	1

	guidance and 𝑓=𝑝+𝑝is the flow on link 1 if only vehicle 𝑏follows the 𝑣1,𝑖1𝑣1,𝑖1
	𝑎
	𝑜
	𝑠
	𝑣
	𝑏
	,𝑖
	1

	guidance while 𝑎sticks to its original choice. Suppose 𝑝>𝑝(vice versa), and 1
	𝑠
	𝑜

	𝑥,𝑥,𝑥>0. Follow assumption 4, 𝑐′′is an increasing function of 𝑓. Since 𝑓>𝑓, we 𝑣𝑎,𝑖1𝑣𝑎,𝑖1
	1
	2
	3
	𝑠
	1
	𝑜
	𝑐
	1
	𝑐
	1

	have 𝑐(𝑓)>𝑐(𝑓). Thus, 𝑝(𝑓)−𝑝(𝑓)>0, and all the 5 items 𝐴,𝐵,𝐶,𝐷,𝐸>0.
	1
	′′
	𝑠
	1
	1
	′′
	𝑜
	1
	𝑠
	′′
	𝑠
	1
	𝑜
	′′
	𝑜
	1
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	𝑥1
	𝑥1
	2
	𝐴+2𝑥1𝑥3𝐵+𝑥2
	2
	𝐶+𝑥3
	2
	𝐸

	<0,𝑖𝑓𝑥<
	4

	−2𝑥2𝐷
	Thus, we have 𝑥Φ𝑥{. So, the hessian matrix Φis 
	𝑇

	𝑥1
	𝑥1
	2
	𝐴+2𝑥1𝑥3𝐵+𝑥2
	2
	𝐶+𝑥3
	2
	𝐸

	≥0,𝑖𝑓𝑥≥
	4

	−2𝑥2𝐷
	indefinite, and the feasible region defined by the constraint is nonconvex. Q.E.D 
	Appendix B 
	Proof of Theorem 1: 
	𝑣,𝑖
	We denote a solution point 𝑷={𝑝}=𝑿=(𝑥,…,𝑥)and 𝑿=(𝑥,…,𝑥+𝑑𝑥,…,𝑥), then the numerical calculation of a single partial derivative for a vehicle in 𝑛-DS takes the form: 
	𝑠
	𝑠
	1
	𝑘𝑚
	𝑖
	1
	𝑖
	𝑖
	𝑘𝑚

	𝑚𝑚
	𝜕ℒ
	ℒ(𝑿
	𝑖
	)−ℒ(𝑿)∑∇𝒻𝑣(𝑿
	𝑖
	)−∑∇𝒻𝑣(𝑿)

	𝑣=1𝑣=1
	𝑣=1𝑣=1

	==,𝑖=𝑘(𝑣−1)+1,…,𝑘𝑣. 
	𝜕𝑥𝑖𝑑𝑥𝑖𝑑𝑥𝑖
	In the contrast, the numerical calculation of a single partial derivative for a vehicle in 𝑐DS takes the form: 
	-

	𝜕𝒻𝑣𝒻𝑣(𝑿)−𝒻𝑣(𝑿)
	𝑖

	=,𝑖=1,…,𝑘𝑚
	𝜕𝑥𝑖𝑑𝑥𝑖
	An individual vehicle under 𝑐-DS has to compute 𝑘𝑚partial derivatives, while under 𝑛DS has to compute 𝑘partial derivatives. Consider the time complexity it takes to numerically calculate 𝒻(𝑿)as 𝑙. Then the computation costs measured by the time complexity of vehicle 𝑗under 𝑐-DS and 𝑛-DS are given below: 
	-
	𝑣

	𝑐-DS time complexity: (𝑘𝑚+1)𝑙
	𝜕𝒻𝑣
	𝜕𝒻𝑣

	• the vehicle needs to calculate 𝑘𝑚different , and thus needs to calculate 
	𝜕𝑥𝑖𝑘𝑚
	(𝑿
	)

	(𝑿).
	𝑗𝑗⏟
	𝒻
	𝑣
	(
	𝑿
	1
	)
	,…,𝒻
	𝑣

	⏟𝑗𝑘𝑚1
	, 𝒻
	𝑣

	𝑛-DS time complexity: (𝑘+1)𝑚𝑙
	𝜕ℒ
	• the vehicle needs to calculate 𝑘different , and thus needs to calculate 
	𝜕𝑥𝑖𝑚𝑘(𝑗−1)+1𝑚𝑘𝑗𝑚
	(𝑋
	)
	(𝑋
	)

	∑𝒻𝒻⏟𝒻(𝑋).
	⏟
	𝑣
	⏟
	𝑣
	𝑣

	,…,∑, ∑
	𝑣=1

	𝑣=1𝑣=1⏟𝑚𝑚𝑚𝑘
	1
	(𝑘+1)𝑚𝑙−(𝑘𝑚+1)𝑙
	𝑚

	1−
	Then, we claim a vehicle in 𝑐-DS undertakes =less workload than in 
	(𝑘+1)𝑚𝑙𝑘+1
	𝑛-DS. Q.E.D 
	Appendix C 
	Independent Routing (IR) 
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	In an independent routing mechanism, each individual driver independently does the best response to the real-time traffic conditions. In this study, we adopt the commonly used multinomial logit-based (MNL) behavior choice model. According to the real-time 
	𝑖 
	traffic information 𝐶, individual vehicle’s independent routing choice preference could then be calculated by the MNL model: 
	𝑣,𝑜

	−𝑉𝑣,𝑖 𝑝= , 𝑖=1 
	𝑒
	𝑣,𝑖 
	𝑘
	𝑣 
	∑
	𝑒
	−𝑉
	𝑣,𝑖 

	where 
	𝑖 
	𝑉= 𝛼+ 𝛽𝐶, is the measured utility of route 𝑟for vehicle 𝑣 and 𝛼, 𝛽are vehicle-specific constant scalars representing the characteristics of each individual. Readers can refer to Sec 3.1 for a detailed introduction. 
	𝑣,𝑖 
	𝑣 
	𝑣
	𝑣 
	𝑣
	𝑖 
	𝑣
	𝑣 

	User-oriented Equilibrium Routing (uoER) 
	There are several approaches to derive an uoER. Under the assumption of logit-choice model, this study adopts the coordinated routing mechanism proposed in Specifically, the route preference is calculated by: 
	[10]. 

	𝑚 𝑘
	𝑣 

	𝑓𝑙 
	1 
	min∑∫ 𝑐(𝑤)𝑑𝑤+∑∑ 𝑝ln(𝑝)
	𝑙
	𝑣,𝑖
	𝑣,𝑖

	𝑝 
	𝑝 
	0 
	𝛽
	𝑣 


	𝑙∈𝐿 𝑣=1 𝑖=1 
	𝑠. 𝑡 
	𝑘𝑣 
	𝑣,𝑖 
	∑ 𝑝

	= 1, ∀𝑣 = 1,…,𝑚 
	𝑖=1 𝑘𝑣 
	𝑣,𝑖 
	∑ 𝑝

	= 1, ∀𝑣 = 1,…,𝑚 
	𝑖=1 
	𝑚 𝑘
	𝑣 

	𝐿 
	𝑓= ∑ ∑ 𝑝𝛿, , ∀𝑙 ∈ 𝐿 𝑣=1 𝑖=1 
	𝑓= ∑ ∑ 𝑝𝛿, , ∀𝑙 ∈ 𝐿 𝑣=1 𝑖=1 
	𝑙 
	𝑣,𝑖 
	𝑣,𝑖 

	𝑛 𝑙
	)


	And the corresponding system cost is calculated by 𝐶= ∑ 𝑓𝑐(𝑓.
	𝑠𝑦𝑠 
	𝑙
	𝑙
	𝑠 

	𝑙=1 
	System Optimum Routing (SOR) 
	We consider there is a centralized agent to systemically generate the route preference for each driver, aiming to minimize the expected system travel cost 𝐶. Then the SOR routing preference could be calculated by solving the following: 
	𝑠𝑦𝑠

	Artifact
	Smartphone-Based Incentive Framework for Dynamic Network-Level Traffic Congestion Management 
	𝑛 min𝐶= ∑𝑓𝑐(𝑓) 
	𝑠𝑦𝑠 
	𝑙
	𝑙
	𝑙

	𝑝 
	𝑙=1 
	𝑠. 𝑡 
	𝑘𝑣 
	𝑣,𝑖 
	∑ 𝑝

	= 1, ∀𝑣 = 1,…,𝑚 
	𝑖=1 
	𝑣,𝑖𝑣 
	𝑝
	≥0, ∀𝑣=1,…,𝑚,∀𝑖=1,…,𝑘

	𝑚 𝑘
	𝑣 

	𝑣,𝑖 𝐿 
	= ∑ ∑ 𝑝

	𝑓𝛿, , ∀𝑙 ∈ 𝐿 
	𝑙 
	𝑣,𝑖 

	𝑣=1 𝑖=1 
	To be noted, the agent generates route choice probability not a route choice for 
	individual vehicles to make it consistent to the setup of our CeRM in this study. 
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	3.0 RECOMMENDATIONS 
	There are several possible extensions stemmed from this work. For Task 1, In the future, numerical studies could be conducted on larger-scale traffic networks such as Sioux Falls or real-world networks such as the city of Atlanta. Another direction to explore is to build and test the smartphone-based framework with human subjects to understand the effect of the behavioral change solutions. For task 2, the convergence speed of the D-AL now heavily depends on the computation load of searching the step size. T







