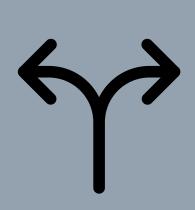
MULTIRESOLUTION MODELING OF AUTOMATED AND CONNECTED AUTOMATED VEHICLES ON MANAGED LANES CONSIDERING COMPLEX WEAVES

Introduction


Analysts have investigated CAVs operations on manage lanes or dedicated lanes for their impact, mainly o safety. However, most managed lanes are associate with complex weaving segments.

When CAVs exit the managed lanes, whether platoons or not, they will merge onto the weavin segment with other traffic. It is not clear how CAVs wit different combinations of car-following and lane changing algorithms will affect traffic operations of complex weave, and whether cooperation an connectivity will block other vehicles from mergin onto the complex weave

Research Objective

Develop a methodology for modeling the impact of CA in complex weaving segments considering the ca following and lane-changing behaviors of heterogeneou traffic in terms of vehicle technology

Kamar Amine, Mohammed Hadi, Ph.D., P.E. Southeastern Transportation Research, STRIDE Innovation, Development and Education Center

Methodology

						O		
ed on ed		 HCM6 weaving segment methodology Methods from literature Real-world observations 						
	0	Inves	tigat	e VISSIM's default AV dr	iving be	ehaviors		
in		Results						
ng th		Calibration for Existing C						
e-					LAIS	ungu		
a								
Id			/	Capacity estima	tion of	a comp		
ıg				Model				
		HCM6 Weaving Model 2,080				2,080		
		Rouphail et al. (2021) Model 1,882				1,882 \		
			/	Real-World Observat	ons	1,660 \		
				VISSIM calibration of	a comp	olex wea		
Vs				Parameter		ult Values vay Segme		
ar-		ying	Min. Clearance (ft) 1.64			1.64		
us	Min. Clearance (ft) Safety Distance Reduction Factor				•	0.6		
	1	පි -1 ft/s ² per distance (ft) 200				200		

Lane Change Distance (ft)

Capacity (vehicle/hour/lane)

isting conditions by altering car-

g Conditions

mplex weave

65

88

Capacity 80 Vehicle/hour/lane 882 Vehicle/hour/lane 660 Vehicle/hour/lane

Capacity with 100% CAVs using different models

VISSIM Default Driving Behavior

HCM CAFs f

- in complex weaves

weave for existing traffic

alues –	Calibrated Parameters –
egments	Complex Weaving Segment
4	1.97
5	0.3
0	656
6	5280
8	1662

- microscopic simulation

CAVs in VISSIM

CAFs for CAVs in HCM from literature

	Volume Ratio			
	0.2	0.3	0.4	
1PR (%)	Capacity Adjustment Factor			
0	1.00	1.00	1.00	
20	1.05	1.05	1.08	
40	1.11	1.13	1.14	
60	1.17	1.20	1.18	
80	1.25	1.26	1.24	
100	1.37	1.38	1.35	
0 20 40 60 80	Capacity 1.00 1.05 1.11 1.17 1.25	Adjustmez 1.00 1.05 1.13 1.20 1.26	nt Factor 1.00 1.08 1.14 1.18 1.24	

CAV Model		Capacity	
	AV Cautious	840 Vehicle/hour/lane	
	AV Normal	1788 Vehicle/hour/lane	
	AV Aggressive/All-Knowing	1501 Vehicle/hour/lane	
fc	or 100% CAVs, VR = 0.2	2274 Vehicle/hour/lane	

Upcoming Tasks

• **Develop and code lane-changing algorithm coupled with CACC/ACC**

• Perform feedback loop between microscopic and mesoscopic (DTAbased simulation) resolutions

Contribution

• Providing a calibration method of a complex weaving segment in

• Developing a methodology for modeling CAVs equipped with both car-following and lane-changing behaviors