NC STATE

 UNIVERSITYDo Autonomous Vehicles Respond Faster than Human Driver?
Tanmay Das ${ }^{1}$, Shoaib Samandar¹, Nagui Rouphail1, Billy Williams ${ }^{1}$
${ }^{1}$ Civil Construction and Environmental Engineering, North Carolina State University, Raleigh, NC

INTRODUCTION

* Response time (RT) shows how long it takes for a driver/vehicle to respond to a situation by accelerating, decelerating or doing nothing in response to the action of the leading vehicle.
* Literature suggests, RT affects safety and mobility of traffic stream significantly.
* Scarce literature available on estimating autonomous vehicles' (AVs) RT operating in mixed traffic with human driven vehicles (TVs).

RESEARCH QUESTION

* Do Autonomous Vehicles Respond Faster than Human Drivers ?

WORKFLOW and DATA DESCIRPTION

Inter vehicular spacings at the start of experiment for two-vehicle platoons

RESEARCH METHODOLOGY (CROSS CORRELATION)

Consider, two time series $x(t)=\operatorname{Stimulus}(t)$ and $y(t)=$ Response $(t+R T)$ lag by a time interval $R T$, where $t \in\{0,1,2,3, \ldots \ldots \ldots . n\}$. The cross-correlation r at lag $d, r(d)$ as follows: $r(d)=\frac{\sum_{t}\left[\left(x(t)-\mu_{x}\right) *\left(y(t-d)-\mu_{y}\right)\right]}{\sqrt{\sum_{t}\left(x(t)-\mu_{x}\right)^{2}} \sqrt{\sum_{t}\left(y(t-d)-\mu_{y}\right)^{2}}}$

The value of the lag with the highest correlation coefficient represents the best fit between the two series therefore the RT.

RESULTS

Sample 1 Follower's Response Time (s)	Sample 2 Follower's Response Time (s)	Null Hypothesis	t test p Value	At 95\% CI
AV-TV $\left(1.15 \mathrm{~s}^{*}, 0.59 \mathrm{~s}^{* *}\right)$	TV-TV $\left(1.56 \mathrm{~s}^{*}, 1.06 \mathrm{~s}^{* *}\right)$	Response time for TV is independent of lead vehicle type	0.305	Cannot reject
TV-AV $\left(2.36 \mathrm{~s}^{*}, 0.58 \mathrm{~s}^{* *)}\right.$	AV-AV $\left(1.99 \mathrm{~s}^{*}, 0.61 \mathrm{~s}^{* *}\right)$	Response time for AV is independent of lead vehicle type.	0.1829	Cannot reject
AV $\left(2.15 \mathrm{~s}^{*}, 0.59 \mathrm{~s}^{* *}\right)$	TV $\left(1.31 \mathrm{~s}^{*}, 0.76 \mathrm{~s}^{* *}\right)$	Response time for AV and TV is similar	0.0003	Reject

*Mean; **Standard deviation

Estimated response times for different car-following scenarios

CONCLUSIONS

$\$$ Response time for TVs or AVs was independent of lead vehicle type
$\star \mathrm{AV}$ response time (2.15 s) was significantly higher than the TV response time of (1.31 s)

