

Effects of Loop Detector Position on the Macroscopic Fundamental Diagram

Garyoung Lee^a, Zijian Ding^a, Jorge Laval^{a*}

^aSchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, United States

↑ Download this paper

D (81.9%)

U (6.6%)

Introduction

- ➤ This study aimed to investigate two distinguished MFD biases induced by the nature of loop detectors
- LD bias: the bias between the link MFD and loop detector (LD)-MFD
- Subset bias: the bias between position-based subsets of LD-MFD
- Objectives
- Analytically investigate the condition and the extent of the LD-bias and subset bias occurrence in a corridor.
- Empirically analyze the characteristics of loop detector position that generate subset bias.
- Simulate the impact of different network topology on the biases.

Analytical Corridor Approximation

To analyze LD bias and subset bias, we assume a homogeneous corridor that obeys a symmetric triangular fundamental diagram (FD)

- > Three types of time-space diagrams under saturated condition
- **\(\lapprox Case 1: No queues** \(\lambda = 2n(\rho + 1) \)

Case 2: Jam exists & Finite Voids $2n(\rho + 1) < \lambda \le 2n(\rho + 1) + 2$

Upstream subset: $\frac{1}{1+\rho}k_c$

Subset bias: $\frac{2\rho}{1+\rho}k_c$

Case 3: Jam exists & Infinite Voids $2n(\rho + 1) + 2 < \lambda \le 2(n + 1)(\rho + 1)$

- Subset bias = Range to which LD-MFDs can exist = Max amount of LD bias
- Subset bias is inevitable unless the traffic signal system:
 - (i) is perfect that never forms queue (Case1)
 - (ii) has negligibly small red time under Case 2
 - (iii) satisfies diminutive $2(n+1) \lambda/((1+\rho))$ under Case 3

Empirical Data Analysis

- > Existence of LD bias and subset bias in empirical data from UTD-19
- > The distribution of loop detector positions varies by city: e.g.,

- Position-based subsets of MFD
 - Different slopes vs. Same slope
- Subset bias is not always extant
- Cities with no subset bias = no LD-bias
- ➤ Logistic regression find variables to explain subset bias

Variables	Coeff.	Std.Err	p-val.
Mean of Relative Position	-0.087	0.042	0.040
Std. Dev. of Relative Position	0.170	0.075	0.023

- Rel. Pos. = distance to downstream signal ÷ link length
- Odds ratio: $e^{-0.087} = 0.92$ and $e^{0.170} = 1.19$
- If LDs are mostly located downstream and have a large variation, subset MFDs are more likely to have different free-flow branch slope

Simulation

- \triangleright Investigate the effect of network parameters λ on the subset bias
- \triangleright SUMO, 10 \times 10 grid, one lane per direction, two-phase signal

As λ increases, (1) Max. avg. flow increases (2) MFDs approach to upstream subset (3) Smaller subset bias (4) $u_{\gamma_{max}}$ approaches free-flow speed $u_f=54$

Main Findings

- Analytical approach based on KW theory explained the impact of LD position under saturated condition LD bias and subset bias
- Logistic regression model based on empirical data provided variables that are significant to the occurrence of bias
- Simulation results indicated that the network parameter λ plays a key role in the bias magnitude
- Opened the possibility of LD-MFD correction method