

Barriers and Facilitators of People with and without Disabilities in Accepting Autonomous Shuttle Services

Sherrilene Classen, Ph.D. *University of Florida* Seung Woo Hwangbo, OTD University of Florida

5/3/2023

UF College of Public Health and Health Professions

Institute for Driving, Activity, Participation, and Technology (I-DAPT)

UNIVERSITY of FLORIDA

STRIDE

Southeastern Transportation Research, Innovation, Development and Education Center

STRIDE

Southeastern Transportation Research, Innovation, Development and Education Center

- The STRIDE Center is the 2016 USDOT Region 4 (Southeast) University Transportation Center (UTC)
- This research was funded by the STRIDE Center (Project D2, A3, A5; #69A3551747104)

Acknowledgement

Funding Agency

U.S. DOT, Office of the Assistant Secretary for Research and Technology (OST-R) through **STRIDE** Center (Project A5).

Project Team

- Sherrilene Classen, PhD (PI)
- Virginia Sisiopiku, PhD (co-PI)
- Justin Mason, PhD
- Nichole Stetten, PhD
- Wencui Yang, PhD
- Seung Woo Hwangbo, OTD
- Brandy McKinney, MBA
- Joseph Kwan, BS

Stakeholders

- Transdev
- City of Gainesville
- Oak Hammock Residential Community
- UF Transportation Institute
- FDOT
- Center for Independent Living of North Central Florida
- Norman Fixel Institute for Neurological Diseases
- Division of Vocational Rehabilitation, Gainesville
- Participants

Background

- Transportation is a barrier to full independence for the 41 million community dwelling people with disabilities (PWDs)^{1,2}
- Autonomous vehicles (AV) hold health and safety benefits and increased community mobility options; yet has limited evidence for PWDs³
- Florida leads the U.S in aging demographics, many with disabilities, and is an ideal AV testbed⁴
- Although ADA guidelines indicate transportation equity, PWDs are not uniformly included in autonomous shuttle (AS) research studies^{5,6}
- We do not yet know:
 - PWDs' lived experiences before, during, and after (AS) exposure or
 - How their perceptions compare to able bodied adults through the lifespan

- ¹ Erickson et al., 2017
- ² American Association of Retired Persons, 2018
- ³ Claypool et al., 2017
- ⁴ The Florida Senate, House Bill 311
- ⁵ The Americans with Disabilities Act, 2018
- ⁶ Guidry-Grimes et al., 2020

Objectives

- To quantify perceptions of PWDs after riding in an AS, and compare it to younger, middle-aged, and older adults' experiences obtained from previously collected data.^{1,2}
- To understand the perceptions of all participants (with and without disabilities) before and after exposure to an AS.

Methods

Ethics: IRB-01 Approved

Design:

- Prospective: A pre-post experimental design with baseline survey, exposure to the AS, and post-exposure survey
- **Retrospective**: Combined the prospective data with previously collected data from adults across the lifespan

Participants: Prospective Sample (n=42)

Inclusion Criteria

 PWDs: Self-reported visual (n=12), hearing (n=5), ambulatory (n=23), sensory (n=5), self-care (n=17), and/or independent living impairment (n=24)

Exclusion Criteria

- Not communicate in English
- Not institutionalized
- <11 Mini Montreal Cognitive Assessment (MoCA)²

Figure. Transdev: EasyMile EZ10 (SAE Level 4)¹

<u>Retrospective Sample</u> (n=101)

Inclusion Criteria

- 18-90+ years of age Exclusion Criteria
- Not English speaking
- MoCA³ = < 18

- ² Dujardin et al., 2021
- ³ Nasreddine et al., 2005

¹ Society of Automotive Engineers International, 2018

Methods: Shuttle

- Validation paper for shuttle route¹
- Drives in autonomous mode on the pre-mapped route
- No primary controls a safety operator may manually operate via a joystick
- Uses sensors, light detection, GPS tracking system, and LIDAR to map its environment to execute the safest motion
- Achieves a max speed 25 m/hr
- Accommodates **12 passengers**: 6 seats and 6 standing

EasyMile EZ10 Automated Shuttle (SAE Level 4)

Methods: Shuttle Route

- Route
 - 20 minutes
 - Traffic, roadworks, road users, traffic circles
 - Low speed (~10 mph)
 - Downtown Gainesville
 - To and from a parking garage (220 SE 2nd Ave, Gainesville FL → 2nd Avenue S → SW 2nd Ave W → three traffic circles → SW 12th Str → SW 4th Ave → SW 13th Str → SW 3rd Ave → SW 12th Str)

Figure. Autonomous shuttle route in downtown Gainesville, Florida

Methods: Recruitment, Screening, Enrollment

Recruitment

- Stakeholder networks
- Center for Independent Living
- Norman Fixel Institute for Neurological Diseases
- Local communities (e.g., libraries, churches)

Screening

• Potential participants were screened according to study criteria via a scripted telephone interview

Enrollment

- Participants who were screened positive:
 - Enrolled in the study
 - Provided written informed consent
 - Were compensated (\$25 retrospective study; \$30 prospective study)

NORMAN FIXEL INSTITUTE FOI NEUROLOGICAL DISEASES Center FOR Independent Living OF NORTH CENTRAL FLORIDA

EMPOWERING INDIVIDUALS WITH DISABILITIES

Methods: Data Collection

Pre-Exposure Measures

- Independent Variables
 - Demographics
 - Trail-Making Test A & B
 - Technology Acceptance Model (TAM)
 - Technology Readiness Index 2.0 (TRI)
 - Driving Habits Questionnaire (DHQ)
 - Life Space Questionnaire (LSQ)
- Dependent variables
 - AV User Perception Survey (AVUPS)^{1,2}
 - Consists of 24 items
 - Visual analog scale (0=disagree to 100=agree)
 - 4 open-ended questions
 - The AVUPS had four domains:
 - Intention to Use Perceived Barriers Well-being Acceptance
- Shuttle Exposure

Post-Exposure Measures

AVUPS

Autonomous Shuttle Exposure

¹ Mason et al., 2020 ² Mason et al., 2021

Methods: Data Collection & Management

Data Collection:

- Trained Research Assistants
- Research Electronic Data Capture (REDCap)

Data Management:

- All data were stored, and managed in REDCap
- Data analyst provided quality control
- No missing data were detected

- Due to the number of inactive drivers (n=26), driver status (active vs. inactive) was used to explore the effects of maintaining an active driver's license
- Due to small sample of younger and middle-aged adults, older adults were contrasted to a combined group (younger + middle-aged adults)
- Coefficient variables were compared because variables in the model were scaled to control for the level of measurement
- The independent variables (active driving status, age group, disability status, employment, race/ethnicity, gender, and marital status) were categorized as dummy variables and relabeled

Methods: Data Analysis

- Objective 1: To quantify perceptions of PWDs after riding in an AS, and compare it to younger, middle-aged, and older drivers' experiences
 - Descriptive Statistics, ANOVA, Post-hoc analysis
 - Data normality: *i.e., probability plots, histograms, stem and leaf plots, Fisher's skewness and kurtosis, Shapiro-Wilks tests*
 - A series of repeated measures ANOVAs
 - PWDs' perceptions: Intention to Use, Perceived Barriers, Well-being, and Acceptance
 - Two-way mixed ANOVAs
 - Between-subjects differences (disability status)
 - Within-subjects differences (time, i.e., exposure to the AS)
 - Post-hoc power analysis
 - Intention to use (Cohen's d effect size=0.5) as the main outcome variable for 42 PWDs and 101 able-bodied adults (alpha = 0.05; power = 0.771)

Methods: Data Analysis

 Objective 2: To understand the perceptions of all participants (with and without disabilities) before and after exposure to an AS

Linear Regression Models

- Independent Variables
 - Age, gender, driver status, disability status, employment, education, marital status, race/ ethnicity
 - Optimism, perceived ease of use, life space
- Dependent Variables
 - Four AVUPS scores: Intention to Use, Perceived Barriers, Well-being, Acceptance

Data Processing

- R Studios and R version 4.0.4
- "MASS" and "CAR" packages
- *p* = 0.05

Methods: Qualitative Analysis

• AVUPS Questions 25-28

- Describe what promotes your willingness to use AVs
- Describe what deters you from using AVs
- Describe potential benefits of AVs
- Describe disadvantages of AVs
- Currently in the process of comprehensively analyzing the narrative responses

Results: Descriptive Results

		Group				
Factor	Value	PWDs Frequency (%)	Able-bodied drivers Frequency (%)			
	Asian/Pacific Islander	0 (0%)	18 (18%)			
	African American/Black	25 (60%)	10 (10%)			
	White	14 (33%)	64 (63%)			
Race/Ethnicity	Hispanic/Latino	0 (0%)	5 (5%)			
	Multiracial	2 (5%)	1 (1%)			
	Would rather not say	0 (0%)	2 (2%)			
	Other	1 (2%)	1 (1%)			
	No high school diploma	4 (10%)	0 (0%)			
	High school graduate	14 (33%)	3 (3%)			
Education	Some college credits	8 (19%)	16 (15%)			
	Trade, technical, vocational training	1 (2%)	1 (1%)			
	Associate degree	1 (2%)	11 (11%)			
	Bachelor's degree	9 (22%)	28 (28%) 81%			
	Master's degree	4 (10%)	28 (28%)			
	Doctorate	1 (2%)	14 (14%)			

Results: Descriptive Results

		Group				
Factor	Value	PWDs Frequency (%)	Able-bodied drivers Frequency (%)			
Marital Status	Single	0 (0%)	18 (18%)			
	Married or domestic partnership	25 (60%)	10 (10%)			
	Widowed	14 (33%)	64 (63%)			
	Divorced	0 (0%)	5 (5%)			
	Part-time	4 (10%)	0 (0%)			
	Full-time	14 (33%)	3 (3%)			
	Retired	8 (19%)	16 (15%)			
Employment	Unable to work	1 (2%)	1 (1%)			
	Student	1 (2%)	11 (11%)			
	Homemaker	9 (22%)	28 (28%) 67%			
	Unemployed	4 (10%)	28 (28%)			

Results: Within (PWDS) Group Differences

- Increase Acceptance (F (1,41) = 22.93, *p* < 0.001)
- Increase Intention to Use (F (1,41) = 22.05, *p* < 0.001)
- Decrease Perceived Barriers (F (1,41) = 15.75, p < 0.001)
- No SS Well-being (F (1,41) = 3.83, p = 0.057)

Time 主 Pre 哇 Post

Results: Between Group Differences

No SS for AVUPS domain scores (range p's = 0.406 - 0.986 for group effect) No SS group-by-time interactions for AVUPS domain scores (range p's = 0.419 - 0.826)

Disability Group 📕 Healthy 📕 Disability

Results: Objectives 2—Descriptives of All Participants

Variables	Value	Frequency (%)
Driver status	Active	117 (81.8)
	Inactive	26 (18.2)
Age group	Older adult	58 (40.5)
Age group	Younger to Middle-aged adult	85 (59.5)
Sex	Male	63 (44.1)
JEX	Female	80 (55.9)
Disability status	PWD	42 (29.4)
Disability status	Able-bodied adult	101 (70.6)
Employment	Full-time and Part-time	109 (76.2)
	Other classification	34 (23.8)
Education	Bachelor's, Master's, or Doctorate degree	84 (58.7)
Lucation	Other classification	59 (41.3)
Marital status	Married or domestic partnership	61 (42.7)
	Other classification	82 (57.3)
Race/ethnicity	White	89 (62.2)
21	Other classification	54 (37.8)

Results: Objectives 2—Descriptives of All Participants

Variables		N	Mean	SD	Median	Min	Max	Total Score
Optimism (TRI)		143	4.43	0.55	4	3	5	5
Perceived ease of u	ise (TAM)	143	5.13	1.07	5	2	7	7
Life space		143	5.34	1.15	5	0	7	9
Age		143	53.42	20.99	59	19	85	-
AVUPS	Intention to Use	143	69.58	15.32	68	0	100	100
(Pre)	Perceived Barriers	143	33.33	19.46	31	33	100	100
	Well-being	143	69.81	22.42	74	0	89	100
	Acceptance	143	67.13	15.44	65	3	100	100
AVUPS	Intention to Use	143	75.60	15.86	78	31	100	100
(Post)	Perceived Barriers	143	24.63	16.24	24	0	64	100
	Well-being	143	75.88	19.56	79	0	100	100
	Acceptance	143	73.61	15.17	76	34	100	100

Intention to Use:

- Optimism, perceived ease of use, driver status (inactive), and race/ethnicity (White) were positive predictors of *Intention to Use*
- 25.8% of the variance (R²=0.258; R_{adjusted²}=0.231; F (5,137) = 9.543; p < 0.001)

Variables	β	SE	t	р
(Intercept)	1.03	3.03	0.338	0.736
Optimism (TRI)	6.68	2.15	3.11	0.002
Perceived Ease of Use (TAM)	5.32	1.13	4.72	<0.001
Driver Status (Active)	-7.75	3.19	-2.43	0.017
Marital Status (Married/Domestic Partnership)	4.66	2.542	1.83	0.069
Race/Ethnicity (White)	5.34	0.47	2.16	0.032

Perceived Barriers:

- Optimism, perceived ease of use, and race/ethnicity (White) were predictors of *Perceived Barriers*
- 23.8% of the variance (R²=0.238; R_{adjusted²}=0.216; F (4,138) = 10.77; p < 0.001)

Variables	β	SE	t	p
(Intercept)	6.04	2.01	3.01	<0.003
Optimism (TRI)	-7.22	2.22	-3.26	<0.001
Perceived Ease of Use (TAM)	-5.20	1.15	-4.53	<0.001
Life Space Questionnaire (LSQ)	1.79	1.09	1.65	0.102
Race/Ethnicity (White)	-9.71	2.58	-3.76	<0.001

Well-being:

- Optimism, perceived ease of use, driver status (inactive), and age group (older) were predictors of *Well-being*
- 27.4% of the variance (R²=0.274; R_{adjusted²}=0.253; F (4,138) = 13.00; p < 0.001)

Variables	β	SE	t	p
(Intercept)	2.30	3.38	0.682	0.497
Optimism (TRI)	11.00	2.62	4.20	<0.001
Perceived Ease of Use (TAM)	4.89	1.37	3.56	<0.001
Driver Status (Active)	-8.81	3.86	-2.28	0.024
Age Group (Older)	12.10	3.09	3.91	<0.001

Acceptance:

- Optimism, perceived ease of use, driver status (active), marital status (married/domestic partnership), and race/ethnicity (White) were predictors of Acceptance
- 30.7% of the variance (R²=0.307; R_{adjusted²}=0.277; F (6,136) = 10.05; p < 0.001)

Variables	β	SE	t	p
(Intercept)	-0.170	3.01	-0.057	0.955
Optimism (TRI)	7.11	2.02	3.53	<0.001
Perceived Ease of Use (TAM)	5.40	1.05	5.14	<0.001
Life Space Questionnaire	-1.49	1.03	-1.46	0.148
Driver Status (Active)	-7.53	3.08	-2.44	0.016
Marital Status (Married/Domestic Partnership)	5.03	2.36	2.13	0.035
Race/Ethnicity (White)	6.72	2.34	2.87	0.005

Qualitative Results

Qualitative Responses from AVUPS (PWDS only)

- Content and Themes
 - Safety (e.g., ability to keep pedestrians, cyclists, passengers, and drivers safe in traffic)
 - Availability of the shuttle (i.e., expansion of schedules to nights and weekends)
 - Adaptability (i.e., securement of passengers of all mobility levels)
 - **Affordability** (i.e., will cost be a limiting factor in using the shuttle)
 - **Accessibility** (i.e., the installation of handrails or ramps for wheelchair users)
 - Acceptability (e.g., desire for human intervention when sharing space with other able-bodied persons in the shuttle)

Objective 1

- PWDs expressed increased *Intention to Use* and *Acceptance*, and decreased *Perceived Barriers* after riding the AS
- This suggests a *positive shift in perception of the PWDs* pertaining to these domains, showing consistent results with recent AV studies^{1,2}
- This information may positively influence³
 - industry's marketing and deployment strategies
 - policy makers passing laws to increase access for PWDs
 - advocacy organizations to disseminate information on AS

Objective 2

- No SS differences between PWDs and able-bodied persons, suggesting the perceptions were similar
- No significant group-by-time interactions existed for AVUPS scores between PWDs and able-bodied persons, suggesting the perceptions were similar

¹ Classen et al., 2021
² Classen et al., 2023
³ Howard & Dai, 2014

Intention to Use:

- Optimism, perceived ease of use, driver status (inactive), and race/ethnicity (White) positively predicted **Intention to Use**
- This suggests that White Americans who shows optimism and find the AS easy to use, prefer not to drive/ use public transportation/ or who are transportation-challenged, may more readily adopt the AS.

Perceived Barriers:

- Optimism, perceived ease of use, and race/ethnicity (White) predicted
 Perceived Barriers
- This suggests:
 - These predictors must be considered by transportation providers, policy makers, industry partners, and advocacy organizations, for future deployment decisions of ASs.
 - Focus on the groups who did not show these characteristics to identify limiting factors for adopting the AS.

Well-being:

- Optimism, perceived ease of use, (inactive) driver status, and older age predicted Well-being.
- For adoption of ASs, industry partners and policy makers may want to focus on *deployment in communities with <u>similar</u> characteristics; and further understand the limiting factors among those with <u>different</u> characteristics.*

Acceptance:

- Optimism, perceived ease of use, driver status (inactive), marital status (married/domestic partnership), and race/ethnicity (White) predicted Acceptance.
- For adoption of the AS: Industry partners may want to deploy the AS in communities with similar characteristics; <u>and</u> understand limiting factors among those with differing characteristics.

Qualitative Responses

- Early identified themes suggest *industry partners and policy makers must* consider
 - on-board attendant (acceptability)
 - cost (affordability)
 - design issues (acceptability)
 - schedules, time of night/day/weekends (availability)
 - implications of ADA legislation (accessibility; adaptability)

Limitations

- Over or underrepresented variables (e.g., education), self-report (e.g., life space) may have influenced the estimates of this study
- The AS **route was extended** on June 1, 2021 (adding four more right turns, one left turn, and one stop), and this was not controlled in the analysis
- Due to **weather** (e.g., thunderstorm) and **mechanical issues** (e.g., battery required replacement taking weeks, issues with rebooting), participants had to be rescheduled on short notice which could have led to participant bias
- Convenience sample of PWDs
- Inadequate power to run analyses between different groups of PWDs to assess differing perceptions of AS
- **Biases** (e.g., selection bias, spectrum bias, response bias, racial bias, interpretation bias)
- This study's findings are **only generalizable** to study participants and settings that fit the demographic profile and context of this study

Strengths

- Participants (N=143) were from **three different cohorts**, exposed to the AS
- Despite only enrolling 42 PWDs, the findings for the PWDs have a bigger than moderate **effect size** (0.5) and **power of 77%**
- **Predictors of user** *Acceptance* include optimism, ease of use, driver status, marital status, and race/ethnicity
- This study utilized **collaborations** between two universities, the city's transportation department, industry partners, independent living facilities, and various rehabilitation and community facilities
- We used **team science**, rigorous analyses, and predictive models to better understand the AS acceptance practices of younger, middle-aged, and older persons who are able-bodied or who are living with disabilities

Conclusions

- Because PWDs experience an increase of Intention to Use and Acceptance, this may suggest plausibility for them using the AS in future.
- Positive predictors: Among all participants, those who were optimistic and reported ease of use identified Perceived Barriers to a lesser extend; and demonstrated an increase in Intention to Use, Well-being, and Acceptance of AS.
- <u>Negative predictors:</u> *Driving status* (active) negatively predicted *Intention to Use, Well-being, and Acceptance* – therefore those who drive (vs. those who do not drive) are less likely to use and accept the AS.
- Overall, predictors of user Acceptance of AS include optimism, ease of use, driver status, and race (White), with a third of the variance explained – suggesting that other predicting factors still need to be uncovered.
- All groups (i.e., younger, middle-aged, older adults, and PWDs) showed enhanced perceptions of the AS after exposure – suggesting that this mode of transportation may be suitable for individuals, with and without disabilities, through the lifespan.

Automated Vehicle User Perception Survey:

- Mason, J., Classen, S., Wersal, J., & Sisiopiku, V. (2020). Establishing face and content validity of a survey to assess users' perceptions of automated vehicles. *Transportation Research Records*, 2674(9). DOI: <u>10.1177/0361198120930225</u>
- Mason, J., Classen, S., Wersal, J., Sisiopiku, V. (2021). Construct validity and test-retest reliability of the automated vehicle user perception survey. *Frontiers in Psychology: Quantitative Psychology and Measurement*. DOI: <u>10.3389/fpsyg.2021.626791</u>

Driving Scenario Validation:

- Classen, S., Wersal, J., Mason, J., Rogers, J., & Sisiopiku, V. (2020) Face and content validity of an automated vehicle road course and a corresponding simulation scenario. *Frontiers in Future Transportation*, DOI: <u>10.3389/ffutr.2020.596620</u>
- Simulated driving scenario: <u>https://www.youtube.com/watch?v=kDObiycJUxA</u>

Simulator and Motion Sickness with AV Technology:

- Classen, S., Hwangbo, S. W., Mason, J., Wersal, J., & Sisiopiku V. (2021). Older drivers' motion and simulator sickness before and after automated vehicle exposure. *Safety*, 7(2):26. DOI: <u>10.3390/safety7020026%20</u>
- Hwangbo, S. W., Classen, S., Mason, J., Yang, W., McKinney, B., Kwan, J., & Sisiopiku, V. (2022). Predictors of simulator sickness provocation in a driving simulator operating in autonomous mode. *Safety, 8*(4), 73. DOI: <u>10.3390/safety8040073</u>

Older Drivers' Experiences with AV Technology:

- Classen, S., Mason, J., Hwangbo, S-W., Wersal, J., Rogers, J., & Sisiopiku, V. (2021). Older drivers' experience with automated vehicle technology. *Journal of Transport* & *Health.* DOI: <u>10.1016/j.jth.2021.101107</u>
- Classen, S., Mason, J., Wersal, J., Rogers, J., & Sisiopiku, V. (2020). Older drivers' experience with automated vehicle technology: Interim analysis of a demonstration study. *Frontiers in Sustainable Cities*, 2(27), 1-12. DOI: <u>10.3389/frsc.2020.00027</u>
- Classen, S., Mason, J., Hwangbo, S-W., & Sisiopiku, V. (2021). Predicting autonomous shuttle acceptance in older drivers based on technology readiness, life space, driving habits, and cognition. *Frontiers in Neurology - Neurorehabilitation*. DOI: <u>10.3389/fneur.2021.798762</u>

Experiences of Drivers Across the Life Span with AV Technology:

- Sisiopiku, V.P., Yang, W., Mason, J., McKinney, B., Hwangbo, S. W., Classen, S. (2022). Users' perceptions and attitudes toward autonomous vehicle technologies after simulation exposure A study across the lifespan. *Proceedings of the 2022 Road Safety and Simulation International Conference, Athens, Greece*. DOI: <u>RSS2022_Paper</u>
- Mason, J.*, Classen, S., Hwangbo, S. W., & Sisiopiku, V. (2023). Age and technology readiness influences on adults' experiences with highly autonomous vehicles. *Transportation Research Record*. DOI: <u>10.1177/03611981221145128</u>
- Classen, S., Sisiopiku, V. P., Mason, J. R., Yang, W., Hwangbo, S. W., McKinney, B., & Li, Y. (2023). Experience of drivers of all age groups in accepting autonomous vehicle technology. *Journal of Intelligent Transportation Systems*, 1-17. DOI: <u>10.1080/15472450.2023.2197115</u>
- Sisiopiku, V.P., Yang, W., Mason, J., McKinney, B., Hwangbo, S. W., Classen, S. (2023). Users' perceptions and attitudes toward autonomous vehicle technologies after simulation exposure A study across the lifespan. Special Issue: *Journal of Traffic and Transportation Engineering: Advanced Road Safety Technologies*. (In press)
- Classen, S., Sisiopiku, V. P., Mason, J. R., Stetten, N. E., Hwangbo, S. W., Kwan, J., & Yang, W. Barriers and Facilitators of People With and Without Disabilities Before and After Autonomous Shuttle Exposure. *Future Transportation*. (Under review)

Published Reports

Final Reports:

- Classen, S., Sisiopiku, V., Mason, J., Stetten, N., Yang, W., Hwangbo, S. W., McKinney, B., & Kwan, J. (2022). Final STRIDE project A5: *Barriers and facilitators of people with disabilities in accepting and adopting autonomous shared mobility services*. <u>https://stride.ce.ufl.edu/wp-content/uploads/sites/153/2022/12/STRIDE-Project-A5-Final-Report-Nov-2022.pdf</u>
- Classen, S., Sisiopiku, V., Mason, J., Hwangbo, S. W., McKinney, B., Li, Y., Yang, W., & Rogers, J. (2021). Final STRIDE project A3: UF & UAB's Phase II Demonstration Study: *Developing a model to support transportation system decisions considering the experiences of drivers of all age groups with autonomous vehicle technology*. https://stride.ce.ufl.edu/wp-content/uploads/sites/153/2022/08/STRIDE-Final-Report-Project-A3-Classen-S..pdf
- Classen, S., Sisiopiku, V., Mason, J., Wersal, J., Hwangbo, SW., & Rogers, J. (2021). Final STRIDE Project D2: UF & UAB phase I demonstration study: Older driver experiences with autonomous vehicle technology. <u>https://stride.ce.ufl.edu/wp-content/uploads/2021/07/STRIDE-Final-Report-Project-D2-Classen-updated.pdf</u>
- Classen, S., Mason, J., Manjunatha, P., & Elefteriadou, L., Florida Survey Research Center (2021). Final Report. *Develop, Refine, and Validate a Survey to Assess Adult's Perspectives of Autonomous Ride-Sharing Services for Human Factors and Traffic Operational Observations*. Contract No.: BDV31-977-128.
- Elefteriadou, L., Manjunatha, P., Srinivasan, S., Agarwal, N., & Semensky, S. (2019). *Public Acceptance of Autonomous Vehicle (AV) Technology*. University of Florida Research Report

UF Transportation Institute UNIVERSITY of FLORIDA

STRIDE

Southeastern Transportation Research, Innovation, Development and Education Center

Questions & Survey

Please enter your questions in the Chat Box

Please complete our very brief survey by clicking on the link in the chat box.