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ABSTRACT 

Although adaptive signal control is a powerful strategy to address the day-to-day variation in 

traffic demands, most intersections in the United States are still operating under time-of-day 

(TOD) strategies due to the high cost and the additional requirements associated with the 

systems.  In addition, adaptive signal control may not be beneficial to address all operation 

performance issues.  Traffic responsive plan selection (TRPS) strategies have been proposed 

since the 1970s as an alternative to TOD that can address some of the issues associated with 

day-to-day variations in traffic patterns.  The requirements of these strategies are much lower 

than those of adaptive signal control strategies.  However, there are several limitations and 

issues associated with TRPS that have limited the adoption of these strategies in    This study 

developed and evaluated a TRPS strategy based on supervised and unsupervised machine 

learning combined with signal timing optimization to addresses the issues with traditional TRPS.  

The strategy fills an important gap in providing a proactive traffic control that makes use of 

Automated Traffic Signal Performance Measures (ATSPM) measures-based data that are 

becoming available sources including high resolution controller data.    

This study also explored a methodology and evaluated multiple algorithms for the short-term 

prediction of the traffic state for the next half an hour.  The traffic states are predicted as 

belonging to one of the three clusters identified based on the results of the cluster analysis.   

This prediction in real-time operations can be used to activate the signal timing plan developed 

for the signature day for the cluster that represent the predicted state. The results revealed 

that the ANN algorithm, produced the best results in terms of accuracy and areas under the 

curve.   Thus, this study used the ANN prediction model in the remaining task for the 

implementation and evaluation of the prediction to support the activation of the signal timing 

plans in real-time operations.  

The study then assessed the performance of the predictive TRPS based on clustering and 

prediction by evaluating five different scenarios of signal timing plan selection.  The results for 

the project case study showed that the predictive TRPS method can decrease the travel time by 

7 percent compared to existing traffic signals, 4% compared to optimizing for a fixed signal 

timing plan based on a signature day for the whole database, and 17% compared to optimizing 

signal timing for a random day in the data.   This shows that the TRPS based on traffic pattern 

identification and prediction has the potential of improving traffic performance compared to 

other assessed optimization scenarios.  

  



     
 
 

  
10 

Real-Time Data-Based Decision Support System for  
Arterial Traffic Management 

 

EXECUTIVE SUMMARY 

BACKGROUND 

In most cases, traffic signal management agencies have used predetermined plans that are 
changed based on time-of-day (TOD) and day-of-week (mostly weekday vs. weekend) schedules.  
The TOD plans, sometime referred to as pre-timed plans, are selected for each period (e.g., a.m. 
peak, p.m. peak, or off-peak) plan using signal timing optimization tools combined with fine-
tuning of signal timing based on field observations.   In most cases, one plan is developed for each 
peak period and used throughout the year, based on very limited amount of data, although it is 
possible to implement different signal timing plans for different seasons.  The assumption is that 
similar traffic patterns generally occur during the same times each day.  TOD plans do not work 
well when there are large day-to-day variations in traffic conditions through the year due to 
demand variations and events like incidents and adverse weather.   
 
Traffic responsive plan selection (TRPS) and traffic adaptive systems are two types of signal 
control strategies that have been used to address the day-to-day variation in traffic patterns.  
TRPS involves the real-time selection of timing plans from a library of pre-stored plans that are 
developed off-line based on traffic measurements, rather than based on TOD.    
 
In an early work (Hadi 1990), identified several issues with traditional TRPS including: 
 

• The need for the near-term prediction of traffic flow parameters for use in the plan 
selection rather than using traffic flow parameters that may change in the next period, 

• The difficulty in designing the plans to be stored in the TRPS plan library, 

• The need for a method to weight the data collected from different detectors, 

• The need for a method to set the plan activation thresholds, 

• The need for installing and maintaining additional detectors, and  

• The need to limit the number of plans switching in a peak period to reduce the delays due 
to the transition interval between the plans. 

 
In recent years, data have started to be available from multiple new sources including high 
resolution controller data, advanced detection technologies such as microwave detectors and 
video image detection, automatic-vehicle based identification technologies such as those based 
on Bluetooth readers, third party crowdsourcing data, and connected automated vehicles data. 
Many agencies have started to use the data from these systems to estimate what is referred to 
as the Automated Traffic Signal Performance Measures (ATSPMs).   ATSPMs is defined by the 
FHWA as “a suite of performance measures, data collection and data analysis tools to support 
objectives and performance-based approaches to traffic signal operations, maintenance, 
management and design to improve the safety, mobility and efficiency of signalized intersections 
for all users” (FHWA 2022b).  The ATSPMs include several performance measures, some of which 
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can be used as inputs to a new generation of TRPS to allow the implementation of better and 
more cost-effective strategies and signal control plans including better setting of the plans and 
better activation of plans in real-time operations based on traffic responsive and adaptive 
strategies.   Supervised and non-supervised data mining/machine learning algorithms combined 
with the ATSPMs will allow the application of pro-active traffic control strategies that are based 
on predicted traffic conditions in real-time operations.  Such strategies will take advantage of 
ATSPM measures that were not available for traditional TRPS.   

GOAL AND OBJECTIVES 

The goal of the study is to develop and evaluate a proactive TRPS strategy that use ATSPM 
measures as input and select the signal timing plans for implementation based on traffic flow 
parameters predicted for the near-term future.    The specific objectives are: 
 

• Develop and assess methods to categorize the traffic conditions in a peak period in traffic 
patterns that best represent the day-to-day variations in traffic flow parameters. 

• Identify a method to select signature days that best represent the identified patterns for 
use when optimizing the signal control plans that will be stored in the signal timing plan 
library as part of the TRPS implementation 

• Develop and assess a model for near-term prediction of traffic patterns in real-time 
operations for use in TRPS 

• Determine the benefits of the proactive strategies developed in this study. 
 

The proposed approach will address the issues with traditional TRPS as follows:  
 

• The need for the near-term prediction:  This study will investigate various machine 
learning techniques for short term prediction of traffic conditions for use to activate the 
plans in TRPS. 

• The difficulty in designing the plans to be stored in the TRPS plan library: The developed 
method will identify signature days that represent the traffic patterns in the network 
considering the day-to-day variation in traffic flow parameters throughout the year.   

• The need for a method to set the weights on the detectors: The developed method will 
implicitly consider the importance of the data measurements from each detector when 
categorizing and predicting the traffic states based on traffic measurements using 
machine learning. 

• The need for a method to set the activation thresholds: The developed method will 
associate a signal timing plan with each identified traffic pattern eliminating the need for 
setting the thresholds. 

• The need for installing and maintaining additional detectors: The developed method will 
use performance measures estimated as part of the ASTPMs  

• The need to limit the number of transitions between the plans: The developed system will 
limit the number of transitions between plans to one or two.  
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METHODOLOGY OVERVIEW 

To accomplish the goal and objectives, this study uses advanced machine learning approach 
combined with signal timing optimization models based on ATSPM data to select the best timing 
plan to develop and activate in a proactive TRPS framework.    
 
The proposed methodology involves first the categorization of peak period traffic conditions 
throughout the year using cluster analysis.  The next step is to identify a signature (representative) 
day for each cluster to use in developing the signal timing plan.   Then, models are developed 
using various data mining/machine learning techniques for short-term prediction of traffic flow 
for use to support signal timing plan activation in real-time operations.   Finally, traffic analysis 
models are used to assess the performance of the proposed TRPS compared to other strategies.   
Below is an overview of each of these steps.  
 
Cluster Analysis: Cluster analysis was implemented to identify traffic patterns that are 
representative of the traffic conditions, considering the variations in the day-to-day variations in 
traffic conditions throughout the years. The goal of the clustering algorithm was to categorize 
the days with similar traffic patterns within the analysis period (the AM peak). A proven and 
widely used clustering algorithm referred to as the k-means algorithm was used in this study to 
produce the clusters.   The inputs to the clustering algorithm included vehicle counts, travel times, 
Green Occupancy Ratio (GOR), and Signal Utilization Ratio (SUR); aggregated at 15-minute 
intervals.  
 
Identification of the Signature Days: The next step is to identify the signature day for each cluster.  
The signature day is identified as the best day that represents the traffic conditions.  The 
methodology to accomplish this is the based on that proposed in the Traffic Analysis Toolbox 
Volume III (Wunderlich 2019). In order to identify the signature day for each cluster, a 15-minute 
profile analysis was performed across all days considering all travel conditions (clusters), at 
multiple locations (intersections) for the key measures. The algorithm implemented to find the 
signature day can be find in Chapter 4.  
 
Development of the Signature Days: As stated earlier, the next step in the methodology is to use 
the results of the cluster analysis as inputs to a data analytic-based prediction model that uses 
data mining/machine learning to predict the traffic state in the short-term future in real-time 
operations. The investigated prediction models are classification algorithms that predict the 
traffic state in the next 30 minutes as belonging to one of the pre-identified clusters. For that 
effect, a 15-minute data across all days at multiple locations (intersections) is used as input for 
the prediction algorithms. The study implemented and evaluated seven different algorithms data 
mining/machine learning algorithms.  The evaluated algorithms are the Decision Tree (DT), 
Random Forest (RF), Gaussian Naïve Bayes (GNB), Multinomial Logistic Regression (MLR), 
Support Vector Classification (SVC), K-nearest neighbors (KN), and Artificial Neural Network 
(ANN).  
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Implementation and Assessment of the Developed TRPS: This study used five scenarios to 
investigate the improvement in system performance due to the TRPS strategy based on the traffic 
patterns identification. In each scenario, the utilized traffic signal timing is optimized for different 
traffic patterns.  The performance of the timing plans are assessed based on their performance 
for ten days randomly selected for use in the evaluation 

RESULTS 

The methodology of this study was applied to an arterial located in South Florida.  This location  
had the advantage of having data available from different sources.  This helped with the 
implementation of the clustering procedure and facilitated the identification of three signature 
days that clearly represent the traffic states at that location during the AM peak.  The three states 
represent relatively low, medium, and heavy volumes that can be used as inputs to signal 
optimization models to identify signal timing plans that can be used as the plans to select from 
in systems that use the TRPS control.   Further examination of the resulting volumes, plans, and 
the resulting performance can be done as described in Chapter 5 to determine if the resulting 
plans are significantly different to justify utilizing all of them in TRPS control.  In some cases, for 
example, it may be determined that only two of the three plans can be justified for this purpose. 
 
This study also explored a methodology and evaluated multiple algorithms for the short-term 
prediction of the traffic state for the next half an hour.  The traffic states are predicted as 
belonging to one of the three clusters identified based on the results of the cluster analysis.   This 
prediction in real-time operations can be used to activate the signal timing plan developed for 
the signature day for the cluster that represent the predicted state. The results revealed that the 
ANN algorithm, produced the best results in terms of accuracy and areas under the curve.   Thus, 
this study used the ANN prediction model in the remaining task  for the implementation and 
evaluation of the prediction to support the activation of the signal timing plans in real-time 
operations.  
 
The study then assessed the performance of the predictive TRPS based on clustering and 
prediction by evaluating five different scenarios of signal timing plan selection.  The results for 
the project case study showed that the predictive TRPS method can decrease the travel time by 
7 percent compared to existing traffic signals, 4% compared to optimizing for a fixed signal timing 
plan based on a signature day for the whole database, and 17% compared to optimizing signal 
timing for a random day in the data.   This shows that the TRPS based on traffic pattern 
identification and prediction has the potential of improving traffic performance compared to 
other assessed optimization scenarios.  
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND 

Traffic congestion along arterial streets is increasingly becoming a critical issue that needs to be 
addressed by transportation agencies. Compared to the relatively mature management of 
freeways, arterial traffic operations and management are lagging behind. To address such a gap, 
a strong emphasis has been placed on arterial traffic management at the national and state 
levels. For example, the Federal Highway Administration (FHWA) has developed an Arterial 
Management Program that is dedicated to the reduction of recurring congestion along arterial 
streets (Federal Highway Administration 2022). The Transportation Systems Management and 
Operations (TSM&O) program of the Florida Department of Transportation (DOT) initiated the 
Statewide Arterial Management Program (STAMP) to improve the mobility of arterial 
transportation system (Florida Department of Transportation 2021). 
 
The selection of signal timing control strategies and the setting of signal control plan parameters 
play a crucial role in determining the network performance   The signal management agencies 
select these strategies and plans to improve performance measures such as delays, queues, 
throughputs.   In most cases, traffic signal management agencies have used predetermined plans 
that are changed based on time-of-day (TOD) and day-of-week (mostly weekday vs. weekend) 
schedules.  The TOD plans, sometime referred to as pre-timed plans, are selected for each period 
(e.g., a.m. peak, a p.m. peak, or off-peak) plan using signal timing optimization tools combined 
with fine-tuning of signal timing based on field observations.   In most cases, one plan is 
developed for each peak period and used throughout the year, based on very limited amount of 
data, although it is possible to implement different signal timing plans for different seasons.  The 
assumption is that similar traffic patterns generally occur during the same times each day.  TOD 
plans do not work well when there are large day-to-day variations in traffic conditions through 
the year due to demand variations and events like incidents and adverse weather.   
 
Traffic responsive plan selection (TRPS) and traffic adaptive systems are two types of signal 
control strategies that have been used to address the issue mentioned above with TOD plan 
activation.  Traffic responsive signal control involves the selection of timing plans from a library 
of pre-stored plans that are developed off-line based on data collected in real-time, rather than 
based on TOD.   The interval for the reselection of the plans can  be set by the user (e.g., every 
15 minute, 30 minutes, one hour, etc.) Traditionally, the utilized data in traffic responsive control 
includes volume and/or occupancy measurements from a limited number of system detectors 
(advance detectors or departure-side detectors) that are assumed to provide data that reflect 
the traffic conditions in the network. The data from the detectors can be weighted, although 
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there is no good guidance of how to set these weights.  Different signal system vendors use 
different algorithms for TRPS.  Still, there are no good methodologies implemented in practice 
for setting the thresholds to switch between the traffic plans based on detector data.  It has been 
reported that when setting up the TRPS, considerable effort is needed to identify the best 
locations for the vehicle detectors, set the parameter values and weights associated with those 
detectors, establish appropriate thresholds and associated plans, and fine tune the system 
parameters (Federal Highway Administration 2015).    
 
In an early work, (Hadi 1990) identified several issues with traditional TRPS including: 
 

• The need for the near-term prediction of traffic flow parameters for use in the plan 

Selection rather than using traffic flow parameters that may change in the next period, 

• The difficulty in designing the plans to be stored in the TRPS plan library, 

• The need for a method to weight the data collected from different detectors, 

• The need for a method to set the plan activation thresholds, 

• The need for installing and maintaining additional detectors, and  

• The need to limit the number of plans switching in a peak period to reduce the delays due 

to the transition interval between the plans. 

Adaptive traffic signal control systems have been developed as a more powerful signal control 
strategy compared to TOD and TRPS strategies.   These systems involve the use of data from 
much larger numbers of detectors compared to TRPS that provide traffic information for most 
segments and/or turn movements in a network.   The adaptive system adjusts the signal control 
parameters in real-time at short time intervals (e.g., every phase and/or every cycle).  This allows 
the signal timing to adapt to short term as well as long term fluctuation in traffic flow parameters, 
resulting in improvement in system performance.  The systems generally implement frequent 
but small changes in signal timing parameters, thus avoiding the delays due to transitions 
between plans that are significantly different. However, adaptive systems require high level of 
reliability and accuracy of the detection system.  Most adaptive systems are not proactive in that 
they do not predict near-time changes in traffic conditions.  Some adaptive systems may be also 
slow in recognizing and reacting to high surges in demands and drops in capacity such as during 
special events and incidents.  Many of these systems are optimized and fine-tuned to adapt to 
typical changes in traffic patterns and cannot adequately react to other conditions.  

Although adaptive signal control is a powerful strategy, most intersections in the United States 
are still operating under TOD strategies.  Adaptive signal control is much more expensive to 
implement than TOD and TRPS.  Thus, if a TRPS strategy can be developed and implemented to 
addresses the issues with traditional TRPS, such strategy can fill an important gap in providing a 
proactive traffic control strategies, particularly for those locations that do not have adaptive 
signal control.   
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 In recent years, data have started to be available from multiple new sources collection sources  
including high resolution controller data, advanced detection technologies such as microwave 
detectors and video image detection, automatic vehicle based identification technologies such 
as those based on Bluetooth readers, third party crowdsourcing data, and connected automated 
vehicles data. Many agencies have started to use the data from these systems to estimate what 
is referred to as the Automated Traffic Signal Performance Measures (ATSPMs).   ATSPMs is 
defined by the FHWA as “a suite of performance measures, data collection and data analysis tools 
to support objectives and performance based approaches to traffic signal operations, 
maintenance, management and design to improve the safety, mobility and efficiency of 
signalized intersections for all users” (US Department of Transportation 2022). The ATSPMs 
include several performance measures, some of which can be used as inputs to a new generation 
of can be used as inputs to TRPS to allow the implementation of better and more cost-effective 
strategies and signal control plans including better setting of the plans and better activation of 
plans in real-time operations based on traffic responsive and adaptive strategies.   Supervised 
and non-supervised data mining/machine learning algorithms combined with the ATSPMs will 
allow the application of pro-active traffic control strategies that are based on predicted traffic 
conditions in real-time operations.  Such strategies will take advantage of ATSPM measures that 
were not available for traditional TRPS.   

1.2 GOAL AND OBJECTIVES 

The goal of the study is to develop and evaluate a proactive TRPS strategy that use ATSPM 
measures as input and select the signal timing plans for implementation based on traffic flow 
parameters predicted for the near-term future.   To accomplish this goal, the researchers will use 
an advanced machine learning approach combined with signal timing optimization models to 
capture the dynamic changes in arterial network and select the best timing plan to develop and 
activate. The specific objectives are to: 
 

• Develop and assess methods to categorize the traffic conditions in a peak period in traffic 

patterns that best represent the day-to-day variations in traffic flow parameters. 

• Identify a method to select signature days that best represent the identified patterns for 

use when optimizing the signal control plans that will be stored in the signal timing plan 

library as part of the TRPS implementation 

• Develop and assess a model for near-term prediction of traffic patterns in real-time 

operations for use in TRPS 

• Determine the benefits of the proactive strategies developed in this study. 

The proposed approach will address the issues with traditional TRPS identified by (Hadi 1990) 
(See Section 1.1 above), as listed below. 
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• The need for the near-term prediction:  This study will investigate various machine 

learning techniques for short term prediction of traffic conditions for use to activate the 

plans in TRPS. 

• The difficulty in designing the plans to be stored in the TRPS plan library: The developed 

method will identify signature days that represent the traffic patterns in the network 

considering the day-to-day variation in traffic flow parameters throughout the year.   

• The need for a method to set the weights on the detectors: The developed method will 

implicitly consider the importance of the data measurements from each detector when 

categorizing and predicting the traffic states based on traffic measurements using 

machine learning. 

• The need for a method to set the activation thresholds: The developed method will 

associate a signal timing plan with each identified traffic pattern eliminating the need for 

setting the thresholds. 

• The need for installing and maintaining additional detectors: The developed method will 

use performance measures estimated as part of the ASTPMs  

• The need to limit the number of transitions between the plans: The developed system will 

limit the number of transitions between plans to one or two.  

1.4 METHODOLOGY OVERVIEW 

As stated in Section 1.3, to accomplish the goal and objectives, this study uses advanced machine 

learning approach combined with signal timing optimization models based on ATSPM data to 

select the best timing plan to develop and activate in a proactive TRPS framework.   This section 

provides an overview of the study methodology.  More details about the methodology can be 

found in Chapters 4 and 5. 

 

The proposed methodology involves first the categorization of peak period traffic conditions 

throughout the year using cluster analysis.  The next step is to identify a signature (representative) 

day for each cluster to use in developing the signal timing plan.   Then, models are developed 

using various data mining/machine learning techniques for short-term prediction of traffic flow 

for use to support signal timing plan activation in real-time operations.   Finally, traffic analysis 

models are used to assess the performance of the proposed TRPS compared to other strategies.   

Below is an overview of each of these steps.  

 
Cluster Analysis: Cluster analysis was implemented to identify traffic patterns that are 
representative of the traffic conditions, considering the variations in the day-to-day variations in 
traffic conditions throughout the years. The goal of the clustering algorithm was to categorize 
the days with similar traffic patterns within the analysis period (the AM peak). A proven and 
widely used clustering algorithm referred to as the k-means algorithm was used in this study to 
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produce the clusters.   The inputs to the clustering algorithm included vehicle counts, travel times, 
Green Occupancy Ratio (GOR), and Signal Utilization Ratio (SUR); aggregated at 15-minute 
intervals.  
 
Identification of the Signature Days: The next step is to identify the signature day for each cluster.  
The signature day is identified as the best day that represents the traffic conditions.  The 
methodology to accomplish this is the based on that proposed in the Traffic Analysis Toolbox 
Volume III (Wunderlich 2019). In order to identify the signature day for each cluster, a 15-minute 
profile analysis was performed across all days considering all travel conditions (clusters), at 
multiple locations (intersections) for the key measures. The algorithm implemented to find the 
signature day can be find in Chapter 4.  
 
Development of the Signature Days: As stated earlier, the next step in the methodology is to use 
the results of the cluster analysis as inputs to a data analytic-based prediction model that uses 
data mining/machine learning to predict the traffic state in the short-term future in real-time 
operations.   The investigated prediction models are classification algorithms that predict the 
traffic state in the next 30 minutes as belonging to one of the pre-identified clusters. For that 
effect, a 15-minute data across all days at multiple locations (intersections) is used as input for 
the prediction algorithms. The study implemented and evaluated seven different algorithms data 
mining/machine learning algorithms.  The evaluated algorithms are the Decision Tree (DT), 
Random Forest (RF), Gaussian Naïve Bayes (GNB), Multinomial Logistic Regression (MLR), 
Support Vector Classification (SVC), K-nearest neighbors (KN), and Artificial Neural Network 
(ANN).  
 
Implementation and Assessment of the Developed TRPS:  To evaluate traffic performance with 
the developed TRPS method, we first optimized the traffic signals (using HCS7) for the signature 
day of each of the two clusters, the signature day of the entire database, and a random day in 
the database. The objective of the optimization was to minimize the delay in the network. Then, 
10 sample days were randomly selected from the database and the average travel time in the 
network was calculated and compared under five different traffic signal timing. These five 
scenarios are: 1- the existed signal timing in the field, 2- Optimized signal timing for the signature 
day of the detected cluster for that day, 3- Optimized signal timing for the signature day of the 
predicted cluster for that day, 4- Optimized signal timing for the signature day of the entire 
database, 5- Optimized signal timing for a randomly selected day in the database. 
 

1.5 OVERVIEW AND REPORT ORGANIZATION 

In the remainder of this report, Chapter 2 presents the literature review. Chapter 3 provides the 
descriptions of the selected study locations for use in the case studies. Chapter 4 presents the 
methodology and results for the identification of the traffic patterns and signature days using an 
unsupervised clustering technique and the development of a model to predict the traffic state I 
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real-time operations. Chapter 5 describes the methodology and results of the assessment of the 
pro-active TRPS developed in this study. 
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CHAPTER 2: LITERATURE REVIEW 

As stated in Chapter 1, this study developed and assessed methods to categorize the traffic 
conditions in a peak period in traffic patterns that best represent the day-to-day variations in 
traffic flow parameters using cluster analysis.   The first section in this presents a review of the 
use of cluster analysis for traffic pattern identification.   This study also developed and assessed 
model for near-term prediction of traffic patterns in real-time operations for use in TRPS.  Section 
2.2 presents a review of past studies that used data mining and machine learning to predict the 
traffic state in the near future in real-time operations.   Finally, this study used traffic analysis 
tools to estimate the benefits of the produced methodology.  Section 2.3 presents a review of 
signal control strategies, while the last section summarizes the conclusions from the literature 
review. 
 

2.1 REVIEW OF CLUSTER ANALYSIS FOR TRAFFIC PATTERN 
IDENTIFICATION 

As discussed in Chapter 1, this study investigates the use of clustering as an unsupervised 
machine learning technique to categorize the traffic into traffic patterns.  Several studies 
explored the use of clustering for the identification and classification of traffic states based on 
traffic measurements (Xia 2012), introduced an agglomerative clustering method that can 
identify congestion levels based on traffic characteristics such as flow, speed, and occupancy 
measures. The study used data collected from loop detectors located on Interstate 80 in the Bay 
Area, CA. The obtained traffic measurements were aggregated at 5-minute intervals for the 
analysis. The objective was to classify the traffic data into clusters of homogeneous 
characteristics by minimizing the inter-cluster data point distances while maximizing the intra-
cluster data point distances. Their study concluded that the algorithm performed well in the 
identification of the traffic states on freeways by being able to provide an optimal fit based on an 
assessment using the Bayesian Information Criteria (BIC) along with the ratio of change as a 
dispersion measurement. The study reported that the test results were satisfactory for both real-
time traffic monitoring and off-line traffic system performance evaluation.  
 
Azimi and Zhang investigated pattern recognition methods using three clustering approaches to 
categorize freeway traffic conditions: the k-means, fuzzy C-means, and Clustering Large 
Applications (CLARA) algorithms (Azimi 2010). To perform the study, the researchers utilized field 
data collected from loop detectors located along US-290 in Austin, TX. The data consisted of 
timestamp, volume, occupancy, speed, and number of trucks and were  aggregated at 15-minute 
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intervals.  The density was computed using the fundamental relationship from the measured 
speed and flow values.  To facilitate the comparison of the produced traffic states with the level 
of service (LOS) according to the Highway Capacity Manual (HCM) classification, a total number 
of six clusters were introduced. The data were  normalized and used as an input for the clustering 
algorithms. Then the data were  clustered based on their density values. The comparison of the 
produced clusters with the level of service criteria specified in the HCM revealed that k-means 
performed better in terms of being consistent with the HCM LOS classification. Once the best 
clustering method was identified, the study performed a further categorization of the cluster 
corresponding to the LOS F into three separate subgroups. This time the input features 
considered for the categorization were speed and flow, and only the k-means and CLARA 
algorithms were used for this secondary analysis given the inconsistent results of Fuzzy C-means 
in the initial phase of the project. The possibility given by the clustering algorithms for classifying 
the oversaturated flow conditions provided an alternative for the analysis of the congested 
regime. The study demonstrated that for the subcategorization of LOS F, density is not a valid 
criterion, but attributes related to the theoretical shock wave speed are better for this type of 
classification.  
 
Wu and Liu evaluated the impacts of signal operations on the Arterial Fundamental Diagram (AFD) 
by analyzing signal-based occupancy data from point detectors located on a major arterial in the 
Twin Cities, MN area (Wu 2011). The study utilized high resolution data and analyzed individual 
vehicle trajectories to assess the effect of the green-to-cycle (g/C) ratio, signal coordination, 
turning movements, and queue over detector (QOD) on the AFD. The analysis used a cycle-based 
approach to define the AFD based on flow and occupancy data from detectors located at a 
signalized intersection. The use of the cycle-based approach showed how signal operations 
interrupt the traffic operations for each cycle.  Therefore, the cycle-based AFD was able to depict 
transitions between traffic states from cycle-to-cycle including under saturation, saturation, and 
oversaturation. The AFD was based on the flow-occupancy relationship producing cycle-based 
flow-occupancy diagrams utilizing data from both stop line and advance detectors at the selected 
intersections for the AM peak, PM peak, and off-peak time periods. The AFDs for different times 
of the day over two weeks were consistent in showing that different capacity values appear in 
the AFD for the morning and afternoon peaks. The results also revealed that the queue over 
detector (QOD) has an important effect on the AFD. When a queue spills back it can produce 
much higher occupancy readings while leaving the flow values unchanged and producing 
saturated and over-saturated areas of the AFD for low flow rate areas, with high occupancy 
values may result from the queue that builds up during the red signal period. By removing the 
QOD effect, the researchers produced a more stable form of the AFD that was used to quantify 
the effects of signal operations.  The study concluded that not only does the g/C ratio constrain 
the capacity of a signalized approach, but poor signal coordination and turning movements also 
have a significant effect on the capacity.  
 
Kianfar and Edara studied the application of diverse clustering techniques for the categorization 
of traffic flow data into free-flow and congested regimes (Kianfar 2013). The application is based 
on a framework that consists of clustering the fundamental traffic flow parameters (speed, flow, 
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and occupancy) obtained from traffic sensor data from two major US metropolitan areas (San 
Louis, MI, and Twin Cities, MN). Three types of clustering algorithms were implemented for this 
study including the connectivity-based clustering, the k-means algorithm as a centroid-based 
clustering, and a general mixture model (GMM) algorithm as a distribution-based clustering 
algorithm. The objective  of the study was  to test different combinations of traffic variables to 
be used as input to the models and compare the results to evaluate the accuracy of the different 
algorithms with the aim  to use the output (partitioned data) to generate the corresponding 
fundamental diagrams. The study identified the best clustering approach as the one with the 
minimum Davies-Bouldin Index (DBI), maximum Dunn Index (DI), and with a Silhouette 
Coefficient very close to one. The results of the experiment revealed that either the combination 
of speed and occupancy or the use of such parameters separately produced the best results for 
the algorithms in terms of accuracy. It was also found that the k-means and the hierarchical 
clustering algorithms performed better than the GMM algorithms by achieving higher accuracy 
for the same input features. The k-means algorithm was the one with the highest accuracy overall. 
Finally, the study used the output of the partitioned data form k-means to plot a flow-occupancy 
diagram and fit a linear regression model to define the flow-occupancy relationship. The 
experiment demonstrated that clustering is an effective way to categorize the traffic data into 
free flow and congested regimes.  
 
Sun and Zhou derived a multi-regime fundamental traffic relationship based on cluster analysis 
for the segmentation of speed-density data. Three different datasets were utilized to develop 
and test the model (Sun 2005). The datasets included  occupancy, flow, and speed for each lane 
collected at every 20 seconds from loop detectors and video image detectors installed at multiple 
locations in San Antonio, TX. Since the raw data as it was collected from loop detectors did not 
include densities, the traffic densities were derived from the occupancies based on flow rate and 
space mean speed. Once the density was computed the data were  standardized to make the 
relative weight of each one of the traffic variables equal for the computation of the relative 
distances when implementing the clustering algorithm. For clustering the data, a k-means 
algorithm was implemented and the results were assessed with several alternatives regarding 
the numbers of clusters as well as standardized and non-standardized features. The study 
concluded that the k-means algorithm is an effective way for partitioning the traffic data for the 
development  of speed-density models. The application of the clustering method produced 
clusters that can be visualized based on the speed-density relationship. After the segmentation, 
the subsets were individually fit to a regression model to produce an accurate representation of 
the speed-density relationship for each cluster. The experiment also revealed that the original 
(non-standardized data) also works well by producing clusters that give an accurate 
representation of different traffic states.  
 
Previous research  also explored the implementation of clustering algorithms to data collected 
from arterial streets. For example, Yang et al., utilized a spectral clustering algorithm to analyze 
the traffic state variations at the network level based on speed data (Yang 2017). With the 
implemented clustering approach, the authors identified five different traffic states that were 
later related to different locations and type of road section. The study highlights the importance 
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of the knowledge on the spatiotemporal diversity of the network in combination with the 
clustering algorithm for further discovery and classification of traffic patterns. The authors also 
recommend the utilization of the clustering output for network level traffic predictions. Another 
study by Theofilatos, implemented an expectation maximization clustering algorithm to classify 
the traffic into multiple regimes in urban arterials for safety analysis (Theofilatos 2017). The study 
used the average occupancies, standard deviation of occupancies, and incident data as input for 
the implemented clustering algorithm. The implementation resulted in the identification of nine 
significant traffic regimes that were further analyzed using Bayesian logistic regression to model 
the likelihood of an incident and its severity.   
 
Gu et al. employed a k-means clustering algorithm to analyze arterial traffic flow (Gu 2016). The 
study utilized high-resolution controller data and video images from multiple locations 
(intersections) along the network to categorize the existing traffic patterns before and after the 
closure and reopening of an arterial corridor to show how the traffic patterns evolve after the 
road closes or reopens. The study concluded that the employed clustering approach utilizing 
traffic counts and occupancies from high resolution data is effective in classifying different traffic 
patterns and has the potential to be used on large networks. A study by Mosammat in 2021 
combined the use of high-resolution controller data and travel time measurements in a two-level 
clustering technique using the k-means algorithm (Tariq 2021). First, travel time data were  
classified into four separate clusters that represented different levels of congestion, then in a 
second clustering level the cluster that represented the highest congestion (peak period) was 
further partitioned using the green occupancy ratios derived from event-based controller data.  
 

2.2 REVIEW OF DATA MINING AND MACHINE LEARNING TO PREDICT 
TRAFFIC STATE 

As stated in the overview of the methodology proposed in this paper presented in Chapter 1, the 
next step is to use the results from clustering as input to train data mining/machine learning 
models for short term prediction of the traffic state in real-time operations.  This section presents 
a review of the use of data mining and machine learning to predict the traffic state in traffic 
engineering literature. 
 
Some studies have utilized a combination of unsupervised (clustering) and supervised learning 
for the prediction of the traffic states. In a study by Azizi and Hadi (2021) , a freeway segment 
was utilized as a use case to propose a methodology that includes the utilization of disturbance 
metrics including the number of oscillations, and Time to Collision (TTC) as input to a clustering 
algorithm for the off-line categorization of the traffic states. Once the traffic states were 
identified the study investigated the implementation of machine learning based classifiers for the 
recognition and ultimately the prediction of the traffic state based on available historical data 
generated from simulation. The study concluded that the proposed disturbance metrics were 
significant variables for the prediction model. Other studies, implemented neural network 
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architecture models to predict the traffic state. For example, Hosseini et al., (2019) utilized time-
space diagrams constructed from connected vehicles data in combination with a convolutional 
neural network (CNN) for the prediction of the traffic state which was defined based on the 
density flow relationship. The  traffic states ranged from free flow to fully congested. For 
evaluation purposes, the study compared the predictions made by the CNN-based model with 
the prediction made using other algorithms including a multilayer perceptron, vector regression, 
and autoregressive moving average models. The study concluded that one of the benefits of the 
proposed architecture resides in its capability to capture the interaction between individual 
vehicles and their impact on the traffic stream that are otherwise not easily perceived by other 
types of architectures. According to the study, the CNN demonstrated a better performance in 
its prediction capabilities when compared with the other models. 
 
To solve the complications inherent to the traffic fluctuations and signal control on arterials, Li 
and Ban developed a deep learning-based method for short-term traffic volume prediction of all 
movements at signalized intersections (Li 2019). The authors proposed a model that integrates a 
Convolutional Neural Network (CNN) with a Long-Sort Term Memory (LSTM) algorithm. In their 
model, a CNN is first implemented to account for the spatial dependencies of traffic flow by 
transferring the lane-based volume data from each intersection to a 2D image that is equivalent 
to an origin-destination (OD) matrix. The OD matrices form multiple adjacent intersections are 
stacked together and then used as an input to the CNN. The LSTM takes the CNN output as an 
input for each time step and is trained to learn the temporal dependencies of the data. The 
output of the model was validated using simulation. The results of the evaluation show that the 
combined CNN-LSTM model outperforms several other models in terms of prediction accuracy. 
 
Iqbal and Hadi (2017),Error! Reference source not found. developed a model to predict the 
breakdown probability on urban arterial streets utilizing ITS data collected from detectors located 
along Glades Road in Boca Raton, FL. The study defined the breakdown occurrence in arterials 
based on the HCM 2010 threshold for LOS F on urban segments, which can be otherwise 
explained as the point where the speed decrease to a value that is less than 30% of the base free 
flow speed. The developed model utilized a 10-minute time horizon for the breakdown prediction 
to provide the facility operator with enough time to implement countermeasures that lower the 
probability of breakdown occurrence once a high probability of breakdown is predicted by the 
model. To address  the complexities of the many parameters associated with signal control and 
traffic movements in arterials, the model utilizes not only data from point detectors along the 
road but also data form automatic vehicle identification technologies that was used as input for 
the model. The model utilizes a combination of decision tree and binary logistic regression 
algorithms to predict the breakdown probability. First, the top levels of the decision tree are built 
using a top-down induction decision tree algorithm (TDIDT), then a Recursive Partitioning and 
Regression Tree (RPART) algorithm is implemented to construct the lower levels of the tree. It 
was found that using multiple algorithms to construct the tree rather than a single algorithm 
helps to increase the proportion of breakdown data points at the higher levels of the tree, 
allowing a more effective performance of the RPART at the lower levels of the tree. Once the tree 
is fully developed, the final step consists in the implementation of a logistic regression model by 
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fitting the data at the end nodes of the tree to improve the classification of the breakdown 
depending on the node attribute values. Additionally, a random forest analysis was used to 
identify the features that had a higher contribution to the prediction. It was found that the 
downstream occupancy, downstream speed, upstream occupancy, and upstream speed are the 
features that have a higher predictive power in the model. Root Mean Square Error (RMSE), and 
Mean Percentage Error (MPE) were the two metrics employed to validate the model. It was 
concluded that the model was able to classify conditions with high probability of breakdown 
occurrence for a 10-minute time horizon. Also, in the validation phase, the model revealed a 
satisfactory performance by achieving an RMSE of 13.6% and MPE of 11%. 
 
Elfar et al. (2018), performed a study where three factors were identified as the main causes of 
traffic breakdown. Those factors were described by the authors as high traffic loads, bottlenecks, 
and disturbances caused by individual drivers such as abrupt braking or lane-change maneuvers. 
The authors noted that the first two factors are easily identifiable and measurable using 
traditional detectors data. However, the third factor is more difficult to observe because they 
occur at an individual vehicle level and thus, they are not easily identified by traditional sensors. 
Therefore, the study focused on the capability of machine learning based models to predict traffic 
congestion based on individual vehicles trajectory data available form connected vehicles 
technology. The study employed logistic regression, random forest, and neural network 
algorithms to develop prediction models for both offline and online operations. The vehicle 
trajectory data set used for the model was collected form available data form US 101 in Los 
Angeles, CA. The dataset includes information such as speed, acceleration, location, and 
headways at 0.1 seconds resolution. The data were first preprocessed to estimate traffic flow, 
density and mean speed aggregated at 10 second-time steps. Also, the segment was divided into 
sections whereby the speed standard deviation (SDD) was computed for the average speeds of 
every individual vehicle for all sections. The authors recognized that the SDD could be a good 
measure for the level of traffic disturbance provoked by individual vehicles given that in 
microscopic models the increase in SDD among individual vehicles is a good indicator for 
anticipating traffic breakdown according to (Treiber 2006). The first step of the analysis consisted 
of the identification of traffic states using the k-means clustering algorithm. For simplicity, during 
the study only two traffic states were identified (uncongested and congested). With the traffic 
states being identified, the next step consisted of  the implementation of the prediction 
algorithms for 10 sec and 20 sec time horizons. Also, different levels of market penetration of 
connected vehicles were considered for the model implementation. The accuracy for the 
prediction of the congested traffic state was measured separately from the accuracy for 
prediction of the uncongested traffic state. The results showed that high accuracy (between 89% 
and 93%) was achieved when predicting for shorter time horizons. Regarding the prediction of 
the congested state, the three algorithms showed satisfactory results achieving accuracy scores 
from 94% to 97%. The accuracy for the prediction of the uncongested state, however, was much 
lower, achieving accuracy scores from 68% to 85%. The results also showed  that the logistic 
regression and random forest algorithms were more accurate in prediction  compared to the 
investigated neural network. In reference to the market penetration  levels  the models 
performed well under partially connected traffic streams achieving accuracy scores from 88% to 
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92% for low and medium connectivity percentages. For full connectivity, the achieved accuracy 
ranged from 92% to 96% for the congested state and achieved a significantly lower accuracy for 
the uncongested state with scores ranging from 68% to 83%. 
 
Adu-Gyamfi and Zhao (2018), introduced a methodology for traffic speed prediction in urban 
arterials using a combination of LSTM Neural Network with an Empirical Mode Decomposition 
(EMD) algorithm. The model is intended to adaptively perform pattern recognition on historical 
traffic flow data using the EMD algorithm for multiscale pattern recognition. The EMD pattern 
recognition algorithm obtains information from the historical traffic speed fluctuation patterns 
to later serve as a guide to train the LSTM model to help achieve higher accuracy in speed 
prediction. Data obtained from US 50 in northern Virginia was used to feed the model. The 
dataset includes 15-minute traffic counts and average speeds collected from over 200 detectors 
located at 38 different intersections.  A time-varying volatility index (VI) was added to the dataset 
to represent the variability of the traffic speeds across different scales. To compute the VI, the 
EMD algorithm is used to extract the underlying traffic speed patterns at each detector over the 
full period of analysis. Once the VIs are produced, the patterns detected at all detectors are re-
grouped into high-frequency patterns that represent short-term events and low-frequency 
patterns that represent the general (common) traffic speed patterns. Once the high and low 
frequency VIs were aggregated, the LSTM model was implemented by testing multiples 
architectures by varying the number of historical input features as well as the output vector 
shape. The experiment also includes the testing of the model with and without the use of the 
high and low frequency VI to assess the benefits of the EMD algorithm. The study found that the 
speed prediction error ranged from 2 to 6 mph with an average of 3 mph. The study  concluded 
that the use of the EMD algorithm to add volatility information to the model could significantly 
improve the model capability to learn and predict traffic speed patterns in about 35% on average. 
 

2.3 REVIEW OF TRAFFIC SIGNAL CONTROL STRATEGIES 

One of the most effective and critical methods to control traffic and create safe and fast travel is 
traffic signal control (TSC). Since the introduction of TSC in 1913 in Cleveland, Ohio, U.S.A. 
(Mueller 1970), research has been conducted to improve their safety and efficiency. TSC 
regulates vehicle movements based on a signal phase sequence that periodically repeats.  
Three types of intersection TSC problems are defined in the literature review: isolated 
intersections, arterial networks, and general networks (Eom 2020). A single intersection that 
works separately is an isolated intersection, while a sequence of consecutive intersections forms 
an arterial. A general network includes several intersections that are not necessarily all along the 
same axis.   
 
Four general TSC strategies have been developed: fixed time, actuated, responsive, and adaptive. 
In the fixed-time (or pre-timed) strategy, the cycle length, phase plan, and duration are 
predetermined based on the historical traffic information. This strategy assumes the traffic 
demand remains nearly constant, and the optimal signal timing plan can be calculated based on 
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this demand. Several fixed-time plans may be deployed for different hours of the day; however, 
this strategy cannot handle traffic fluctuations very well, especially when demand variability is 
large. 
 
The actuated control strategy uses sensor data (typically from loop detectors) and applies simple 
logic and rules such as maximum green time, green time extension, and gap out to change the 
traffic signal timings based on real-time traffic conditions. While this strategy is flexible based on 
the traffic demand at the intersections, it cannot react to significant changes in traffic patterns.  
Any traffic signal control system that collects the traffic data analyzes and optimizes the traffic 
signal performance and then modifies signal timing in response to that is described as adaptive 
signal control technology (Mueller 1970), (Eom 2020), (Lo 2002). The main objective of these 
systems is to minimize travel time and reduce the number of stops through the corridors. While 
these systems are expensive, and their installation is time-consuming, previous studies have 
shown that they can improve traffic performance. Several types of adaptive strategies have been 
developed, such as Insync, SynchroGreen, Split Cycle Offset Optimization Technique (SCOOT), 
Sydney Coordinated Adaptive Traffic System (SCATS), Los Angeles Adaptive Traffic Control 
System (LA-ATCS), Real-Time Hierarchical Optimized Distributed Effective System (RHODES), 
Optimized Policies for Adaptive Control (OPAC), and Adaptive Control Software Lite (ACS-Lite). 
Each of these strategies requires a different type of detection and equipment, and uses a 
different algorithm to calculate split, cycle, offsets, and phase sequences. The following 
paragraphs briefly describe InSync and SynchroGreen,  as examples of adaptive signal control 
(Dell 1995).  
 
Insync Adaptive Traffic Signal Control System: The InSync adaptive traffic control system was 
released in 2008 by Rhythm Engineering (Lee 2017a). According to a Federal Highway 
Administration report, adaptive signal control systems, continuously adjust daily signal schedules 
to account for traffic demand, respond quickly to any change in traffic patterns, and gradually 
make the travel time reliability better in the corridor (Lee 2017b). InSync uses the idea of states, 
where each state is a phase or pair of phases that occur concurrently but without conflicting with 
each other (Rhythm Engineering 2014). The InSync adaptive signal control system adjusts 
dynamically the signal states, sequences, and/or the green time to take into account the traffic 
demand at any time.  
 
After collecting all available detection data, a "greedy" optimization algorithm's logic is applied 
at the "local" intersection level to reduce the overall delay. In this algorithm, tokens are given out 
to vehicles approaching the intersection on red, and the vehicles receive a token every five 
seconds they are stopped at the intersection. The algorithm seeks to reduce the number of 
tokens distributed in order to reduce the delay at the intersection. The InSync system's goal is to 
ensure the delay along the corridor is minimized by establishing speed lines through the corridor 
and optimizing the traffic signal times locally (Chandra 2010). In order for the vehicles traveling 
at the desired speed to pass through the corridor without stopping, the global optimizer ensures 
the platoons of vehicles through the corridor move with minimum delay (Whitelock 2014). 
Then at each intersection, by calculating the optimal phase combination, the optimizer tries to 
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minimize delay to serve all demands at the intersection. The timing plan or cycle length 
requirements for this process don't need to be fixed (Siromaskul 2010). Since 2008 the InSync 
adaptive signal control has been installed at various corridors. These installations report  4-42% 
travel time reduction (TJKM Transportation Consultants 2011), (E. Hathaway 2012), (Inc. 2012), 
(Sprague 2012), (J. N. Hutton 2010).  
 
Synchrogreen Adaptive Traffic Signal Control System: SynchroGreen takes into the account side 
street, pedestrian, and mainline traffic to provide an adaptive response to the dynamic traffic 
demands. SynchroGreen has the following characteristics:  1) adjusts traffic signal timing in real-
time based on current traffic demand 2) uses three optimization engines to achieve better traffic 
flow and green time allocation 3) is compatible with the current infrastructure for traffic control, 
including numerous common traffic controllers and many types of detection 4) provides users 
with the option to choose from a variety of ways to support balanced traffic flow, progression 
bandwidth, and critical movements 5) interacts with SimTraffic and Synchro to model and test 
various system parameters before deployment (Trafficware 2012). 
 
The main objective of the SynchroGreen algorithm is to maximize mainline progression 
bandwidth while minimizing network delay. SynchroGreen additionally offers three alternative 
adaptive control modes: a) The Balanced Mode offers acceptable mainline bandwidth while 
distributing green time fairly; b) Mainline progression is prioritized in the Progression mode; and 
c) The detected critical movements are given more weight in the Critical Movement Mode. In 
summary, SynchroGreen uses a more traditional approach to signal control optimization and 
adapts the phase allocation (splits), period (cycle length), and start time (offsets) in real-time 
based on the traffic conditions. 
 
 TRPS strategies have been proposed since the 1970s as an alternative to TOD that can address 
some of the issues associated with day-to-day variations in traffic patterns.  The requirements 
of these strategies are much lower than those of adaptive signal control strategies   Hadi (1990) 
presented a detailed review of the different variations of TRPS and classified the TRPS 
algorithms into two types. In the first, the timing plans are selected based on comparison 
function of volume and occupancy measured based on few detectors located at strategic 
locations in the network.   The value of the function is calculated in real-time operations and 
compared to preset transfer thresholds to switch between the plans.  In the second type, 
preset transfer thresholds are used to select the cycle length, offsets, and splits separately 
based on volume measurements from few specific detectors in the network.     There are 
variations of how this second method is applied.  For example, one system selects the cycle 
length based on main street traffic volume, the offsets based on the difference between the 
inbound and outbound volume levels, and the split based on the difference or ratio between 
the side street and main street volumes.  There are several limitations and issues associated 
with TRPS that have limited the adoption of these strategies as listed below (Hadi 1990).   
 



     
 
 

  
30 

Real-Time Data-Based Decision Support System for  
Arterial Traffic Management 

 

• The need for the near-term prediction of traffic flow parameters for use in the plan 

selection rather than using traffic flow parameters that may change in the next period, 

• The difficulty in designing the plans to be stored in the TRPS plan library, 

• The need for a method to weight the data collected from different detectors, 

• The need for a method to set the plan activation thresholds, 

• The need for installing and maintaining additional detectors, and  

• The need to limit the number of plans switching in a peak period to reduce the delays due 

to the transition interval between the plans. 

2.4 REVIEW OF TRAFFIC SIGNAL CONTROL STRATEGIES 

The following conclusions can be drawn from the review of literature on cluster analysis for traffic 
state identification. 
 

• Clustering methods have proven to be a useful tool for pattern recognition in traffic analysis. 

Clustering works by grouping similar patterns into clusters whose members are more 

similar to each other than to members of other clusters.   Such grouping is directly 

applicable to signal control as timing plans can be designed off-line for each traffic pattern 

identified using cluster analysis.   The identified clusters can also be used in combination 

with other data mining/machine learning techniques to predict the traffic patterns in real-

time operations, as is done in this study.   

• Generally, traffic pattern clustering has been based on fundamental macroscopic traffic 

variables including flow, density/occupancy, and speed/travel time.   More detailed 

measures based on high resolution data and vehicle trajectories have also proven to be 

useful to categorize the traffic states using clustering.  

• Overall, the k-means cluster algorithm, which is the most widely used algorithm, has been 

demonstrated to produce better categorization of the traffic states than other types of 

investigated algorithms such as the hierarchical, centroid based, and density-based 

algorithms.  Hence, k-means is selected in this study to produce the categorization of the 

traffic states for the use case. 

• Valid ways to evaluate the produced clusters include several statistic measures and traffic 

measures including the visualization of the clusters using the fundamental diagram.  

The following conclusions can be drawn from the review of literature on data mining and machine 
learning techniques to predict traffic state in real-time operations. 
 

• Traffic state prediction plays a significant role in Intelligent Transportation Systems.  
However, it’s used in signal control has been limited.   There is a need for additional 
research to develop and assess methods for using data-based prediction models as part 
of proactive signal control in real-time operations.  
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• A popular approach for predicting the traffic states is a combination of unsupervised and 

supervised learning methods where, first the traffic data is categorized in different traffic 

states using clustering, and then a prediction algorithm is implemented to determine the 

probability of occurrence of a given traffic state (cluster) in the short term, given the 

existing conditions expressed as a set of traffic variables. 

• Among the most used traffic variables as input for the prediction models are speed, travel 

time, volume, density, and occupancy. Additional metrics have been derived and proven 

useful for prediction purposes. Such metrics include different variants of the standard 

deviation of speed, time to collision (TTC), and number of oscillations. 

The following conclusions can be drawn from the review of literature on signal control. 
 

• Four general TSC strategies have been implemented including fixed time, actuated, 

responsive, and adaptive. 

• When there is a high variation in traffic demand, agencies have implemented traffic 

responsive and adaptive strategies.  

• The adaptive strategies have the potential of improving system performance.  However, 

these strategies require additional resources and costs to design, install, and maintain. In 

addition, adaptive traffic systems may not be appropriate for all locations.  Thus, there is 

a need to explore the use of next generation traffic responsive strategies that utilize 

ATSPMs already estimated by an increasing number of TSC around the nation. 
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CHAPTER 3: DESCRIPTION OF THE STUDY LOCATIONS 

AND THEIR DATA  

In this study, two locations were initially selected as case studies for the application and the 
evaluation of the methodology developed in this study.   The first case study is Newberry Road 
in Gainesville, FL, and the second is NW 119th Street in Miami, FL. This chapter describes each 
location and presents the issues encountered in the collected data sets.  

3.1 NEWBERRY ROAD CASE STUDY 

Along most of its length, Newberry Road has three lanes in each direction.  As shown in Figure 1, 
the facility contains six intersections from Newberry Rd @ I-75 W to Newberry Rd @ 66th St. The 
speed limit of Newberry Road varies between 35 and 45 mph. The City of Gainesville provided 
the traffic data, including average travel time for each direction from BlueToad, as well as traffic 
volume and turning movements for every 15 minutes obtained from Iteris VantageLive video 
image detection system, in addition to signal timing information. The data obtained for this study 
is from January 1st, 2019 to August 28th, 2019. 
 

 
FIGURE 1. NEWBERRY ROAD STUDY CORRIDOR, IN GAINESVILLE, FL 

One of the main issues with the data obtained from this site was the high number of records with 
missing values. Also, blank records in consecutive time steps were consistently present during 
long periods.  For example, there were missing records for the whole month of January at the 
first intersection (NewberryRd@1-75 W), around 40 consecutive days with missing records at the 
second intersection (NewberryRd@1-75 E) during July and August, and so on.  Significant periods 
with consecutive blank records result in  having to eliminate them from the analysis.  Generally, 
there were many data points with missing records in between detector readings during the peak 
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hour. This means that even though the data resolution was 5 minutes, there were many instances 
where the records were available only every hour, or there were other instances where the data 
were  available only every other record (i.e., every 10 minutes instead of every 5 minutes). 
Missing values could be estimated by interpolation but when the failure lasted for more than two 
consecutive records , estimating the missing values accurately is not possible. Therefore, taking 
such days out of the dataset was preferred to avoid biased results.  Dismissing records comes 
with a cost, namely reducing the sensitivity of the model by either having a much lower number 
of instances to train the model or by losing examples that represented a particular traffic pattern 
in the real world but will be not present in the dataset. In total, 70 days’ worth of data had  to be 
dismissed. Also, the reported travel times in the database were found not to logically match the 
traffic volume. For example, Figure 2 shows the relationship between traffic volume and travel 
time on May 9, 2019. from 3 pm to 6 pm. Based on this figure, while the traffic volume slightly 
decreases in the eastbound direction and does not have many variations for the westbound 
direction, the travel times in both directions increase dramatically. However, the measured traffic 
volume is much lower than the capacity of these intersections. Since there is no logical 
correlation between travel time and traffic volume at this site, we decided not to use this site in 
our analysis.     
 

  
FIGURE 2. RELATIONSHIP BETWEEN TRAFFIC VOLUME AND TRAVEL FOR THE NEWBERRY ROAD SITE   

3.2 NW 119TH ST CASE STUDY 

Given the challenges regarding data collection faced in the first location, as described in Section 
3.1, the team opted to analyze a second location to test the proposed methodology. The second 
location is NW 119 Street in Miami Dade County, which is an important east-west arterial in 
Miami, FL.  The analyzed segment  is a two-mile segment between NW 32nd Avenue and NW 7th 
Avenue, containing nine signalized intersections, as shown in Figure 3. The speed limit for the 
entire segment is 40 mph. Available data for this location includes high-resolution controller data 
(HRC) from all the signalized intersections within the site, travel time data  for both directions 
from the Regional Integrated Transportation Information System (RITIS) database (obtained from 
HERE a third-party vendor data), as well as data from Bluetooth detectors. The utilization of the 
HRC from the signalized intersections allowed the derivation of metrics such as the green 
occupancy ratios (GOR), split utilization ratio (SUR), and vehicle counts from each approach. 
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FIGURE 3. NW 119TH STREET IN MIAMI DADE, FL 

The obtained data for this site were found to be of good quality with almost no missing records. 
Also, the data from different sources or databases for this location are  consistent in terms of 
showing the same patterns during the analyzed period.  
 
The main challenge that was identified with the  data is related to the configuration of the sensors 
on the through movements of the main approaches, since they were not located at ideal 
locations to estimate the performance metrics for all links. It was determined that it is impossible 
to get accurate vehicle counts and other metrics for the through movements from the stop bar 
detectors at most intersections in the EB direction. This is due to the configuration and dimension 
of the loop detectors installed at the stop bar locations, which may result in several vehicles being 
counted as a single one if they are over the detector at the same time.  Exit detectors at the main 
approaches were used as alternative detector locations for vehicle count purposes to overcome 
this problem. Exit detectors are installed around 200 ft to 300 ft downstream of several 
intersections. Cross street detectors, where available, were also utilized to get approximate 
vehicle counts of the through movements from the northbound and southbound cross street 
approaches. By using a combination of exit detectors on the main approaches and cross street 
detectors, it was determined that it was possible to get an  accurate representation of the traffic 
patterns for the purpose of this study considering that the intersections with available exit 
detectors happen to be the major intersections in this segment. These intersections are NW 32nd 
Ave, NW 27th Ave, NW 22nd Ave, and NW 17th Ave.  Due to the difficulty in estimating the turn 
movement volumes because of the detector configurations, the turn movement volumes at the 
analyzed locations were determined based on the total link volumes using turn movement 
proportions movements as reported in the final report of the 2018 Operational Analysis study by 
District Six. (Florida Department of Transportation 2018). 
 
The data were first filtered to include only the data points belonging to the peak period. Through 
a preliminary analysis, it was observed that the study location presented a pattern of recurring 
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congestion during both the AM peak (weekdays from 7:00 am to 10:00 pm) and PM peak 
(weekdays from 4:00 pm to 8:00 pm) with the AM peak being the most critical one of the two 
referenced periods by having higher volumes and travel times than the PM peak. Figure 4 
compares the average travel times in the eastbound (EB) and westbound (WB) directions. As the 
figure depicts, the travel time in the EB direction is significantly higher and has more variability  
than the travel time in the WB direction, in the AM peak. This is due to the fact that many vehicles 
use NW 119th St to access the I-95 south during the morning peak, as many of the drivers are 
heading to downtown Miami.  Considering the described factors, it was decided to utilize the 
GOR, SUR, travel times, and volumes from the EB direction as features in the clustering algorithm 
as they are more likely to explain the traffic states or levels of congestion that may occur during 
the morning peak period. 
 

 
FIGURE 4. AVERAGE TRAVEL TIMES DURING THE AM PEAK ON THE 119TH STREET  
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CHAPTER 4: IDENTIFICATION OF TRAFFIC STATES FOR 

PLAN DEVELOPMENT AND ACTIVATION 

This chapter presents more details about the proposed methodology to identify the traffic 
patterns for which signal plans can be designed and activated and the results from applying the 
methodology.  The chapter first describes the method and results of categorizing the traffic data  
based on clustering analysis and presents the process of identifying a signature (representative) 
day for each cluster to use in developing the signal timing plan.   Then, it describes the 
development of and assessment of predictive models using various data mining/machine 
learning techniques based on the results of cluster analysis. Due to the issues observed in the 
database of the Newberry Rd. site, it was not possible to obtain clusters that represented 
distinctive traffic states for that location. Thus, the rest of this document presents results only 
for NW 119th St case study.    
 
 

4.1 MEASURES OBTAINED BASED ON HIGH- RESOLUTION 
CONTROLLER 

In recent years there has been an increasing interest in utilizing high-resolution controller data 
that includes signal timing and detection at the highest resolution of the controller (0.1 seconds), 
in combination with data from other sources to support signal optimization systems. The high-
resolution controller data provides significant support of the operation and maintenance of 
traffic signals by allowing the identification of capacity utilization level, determining progression 
quality, estimating performance measures, and assessing detection and communication 
malfunctions. The measures estimated based on high resolution controller data can be used for 
daily operations including setting basic parameters, identification of detection problems, and 
estimating impacts under non-recurrent conditions. The measures can also be used for off-line 
modeling and optimization of the signals and for prioritizing signal improvement needs and to 
communicate the system status to the decision makers. 
 
Examples of derived measurements based on high-resolution controller data include approach 
delay, Purdue phase termination, volume/capacity (v/c) ratio, green occupancy ration (GOR), and 
split utilization ratio (SUR). The last two, (the GOR and SUR) have been utilized in this study for 
the identification of the traffic states.  These two measures can be categorized as capacity 
utilization performance measures.  Below is a description of two measures calculated based on 
high-resolution controller data and utilized in this study.    
. 
 
Green Occupancy Ratio (GOR) 
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GOR is a measure that is intended to reflect the phase utilization. It is defined as the stop bar 
detector occupancy during the green interval. Higher values of GOR reflect higher utilization of 
the green time. This measure can be used under different detector configurations. However, it 
requires stop bar detection for the movements. Higher values of GOR reflect higher usage of the 
green time. This value increases to values above 0.5 in the peak periods. 
 
Split Utilization Ratio (SUR) 
The split utilization ratio (SUR) measure is derived for each intersection movement to allow the 
assessment of congestion levels in all directions. The SUR is defined as the ratio of the number 
of vehicles passing the detector to the maximum number of vehicles that can pass during the 
effective green time. 
 

4.2 CLUSTER ANALYSIS 

Cluster analysis was implemented in this study  to identify traffic patterns that are representative 
of the traffic conditions present at the site, considering the variations in the day-to-day 
variations. The categorization of traffic patterns using clustering was implemented to support 
data modeling for short-term prediction as described in Section 4.4 and signal timing plan 
development and implementation, as described in Chapter 5. The goal of the clustering algorithm 
was to categorize the days with similar traffic patterns within the analysis period (the AM peak).  

 
As described in the previous studies reviewed in this report, the k-means algorithm has been 
proven to be effective in categorizing the traffic states using real-world and or simulation data. 
Therefore, the k-means algorithm was adopted in this study to produce the corresponding 
clusters. The K-means algorithm starts by generating “k” centroids randomly from the data points 
and assigning each data point to the nearest centroid. Once all data points have been assigned, 
the centroids are recomputed and relocated  such that the intra-cluster distance is minimized, 
and the inter-cluster distance is maximized (Tan 2016). This process repeats until either the 
maximum number of iterations are reached, or when the data points stop changing cluster 
(centroid assignment does not change). If the k-means algorithm works properly, the obtained 
clusters are expected to represent accurately the traffic states at the study location. Vehicle 
counts, travel times, GOR, and SUR from the selected intersections were utilized as the input for 
the clustering algorithm. The data from all intersections and segments for all days were compiled 
together and aggregated in intervals of 15 minutes for the analysis period which is the AM peak 
period in the EB and NB directions.  
 
The K-means algorithm requires the specification of the number of clusters as an input to the 
algorithm.  This study obtained the number of cluster (k) based on the elbow technique and 
also based on examining the results from the cluster analysis. The elbow technique is a plot that 
depict the total within clusters sum of squares (WCSS) for each value of k. The k value is 
selected at the point in the graph where the decrease in WCSS stop being significant as the 
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value of k.  The output of the clustering procedure allowed the categorization of the data points 
into three different clusters or traffic states representing uncongested, intermediate, and 
congested conditions. Clustering has been used to identify operational patterns for use in 
combination with traffic management and  traffic simulation modeling.  For example, Xia and 
Chen (2007) used K-means clustering to identify the traffic flow phases based on traffic density 
and speed data aggregated in 15 minutes. The best and most extensive example of the 
utilization of cluster analysis in transportation engineering is its use in efforts funded by the 
Federal Highway Administration (FHWA) to assess AMS Testbeds. Although the K-means 
clustering method has been widely used, there are several other clustering methods, each with 
its advantages and disadvantages. Some of these methods are K-prototypes, K-medoids, 
Hierarchical Clustering, clustering with dimension reduction using principal component analysis 
(PCA), fuzzy clustering, Gaussian mixture models (GMM) clustering, and clustering using 
Wavelet transformation, among others. 

4.3 IDENTIFICATION OF THE SIGNATURE DAYS 

The next step sought to identify the signature day for each cluster.  The signature day is identified 
as the best day that represents the traffic conditions.  The methodology to accomplish this is the 
based on that proposed in the Traffic Analysis Toolbox Volume III (Wunderlich 2019). In order to 
identify the signature day for each cluster, a 15-minute profile analysis was performed across all 
days considering all travel conditions (clusters), at multiple locations (intersections) for the key 
measures. The algorithm implemented to find the signature day is and is as follows:   

1. For a particular key measure, list the analyzed locations (intersections) 

o Let M be the set of measures, considered over J (set of locations).  

o Ncluster is going to represent the number of days in each cluster. 

o Mi,j (t) is the value of measure on day i, in time interval t, at location j.  

2. The average value for each 15-minute time interval across all days in the travel condition 

for each location is computed for each measure as: 

�̅�𝑡,𝑗 =
∑ 𝑚𝑖,𝑗(𝑡)𝑖

𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟
 ∀𝑚, 𝑡, 𝑗 (2) 

3. The percentage difference between the average value and the value observed on a 

particular day is computed by means of: 

�̇�𝑖,𝑗(𝑡) =

√(�̅�𝑡,𝑗 − �̅�𝑖,𝑗(𝑡))2

�̅�𝑡,𝑗
 ∀𝑚, 𝑡, 𝑗 (3) 

4. Finally, the signature day is identified as the individual day that minimizes the difference 

between the individual day and the average values, considering all the selected locations 

and measures. The signature day is then identified as: 
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𝑖∗ = 𝑚𝑖𝑛𝑖 [∑ ∑ ∑ �̇�𝑖,𝑗(𝑡)

𝑡𝑖𝑚

] (4) 

For example, suppose we have a cluster of 30 data points representing the performance of 
different locations or intersections over a period of time. We want to identify a signature day 
that can be used as  a day with performance that best represents the performances of all days in 
the cluster. To do this, we compute the average value of each measure for each time interval 
across all intersections. Then, for each day, we calculate the distance between the daily values 
and the centroid of each cluster using a distance metric such as the Euclidean distance. We then 
identify the day, which we refer to as the signature day, where the distance to the centroid is the 
smallest relative to other days within the cluster.  

4.4 CLUSTERING RESULTS  

The above-described methodology allowed the identification of three signature days (one for 
each cluster at the study location). November 27, 2019, was identified as the signature day for 
Cluster 1, which is the cluster with the lowest volumes (uncongested conditions). November 4th, 
2019 was identified as the signature day for Cluster 2, which represents the medium volume 
cluster.  November 20th, 2019 was identified as the signature day for Cluster 3, which represents 
the clusters with the highest volumes (congested conditions).  
 
Figure 4 shows the volumes of the signature days for all approaches on three of the intersections 
within the study segment. Note that due to space limitations, only three intersections are shown 
in the figure. As Figure 4 shows that the produced clusters from the clustering procedure 
implemented for NW 119th St confirms clearly represent different traffic states in the facility. As 
indicated by  the through volumes in the EB direction (the peak direction), Cluster 1 exhibits the 
lowest volumes of all intersections relative to the other clusters, whereas Cluster 3 exhibits the 
highest volumes overall for the EB through movements at all intersections. The difference in 
volume is significant. For example, for the intersection of NW 19th Street with NW 32nd Avenue, 
Cluster 1 shows an average hourly volume of 1,740 vph during the AM peak for the EB through 
movement. Cluster 2, for the same intersection and same movement, shows a significantly higher  
average hourly volume (2,068 vph) which is 328 vph (or 19%) higher than Cluster 1.  Finally, 
Cluster 3 shows an hourly volume of 2,292 vph, which is 11% higher than the volume of Cluster 
2 and a 31% higher than the volume of Cluster 1.  
 
The signature days provided the average hourly volumes for each traffic level (cluster) at each 
approach in the analyzed intersections, that is, the intersections where vehicle count was 
possible due to the existence of exit detectors. For the rest of the intersections in the system, the 
vehicle counts were estimated using an intersection volume balancing tool (Wisconsin DOT 2018) 
which is based on the Furness method where the average volumes for each cluster are used as 
target values to balance the volumes in the rest of the intersections in the system. In order to do 
that, the Furness method employs a gravity model where the volumes are arranged into an OD 
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matrix form. Then the rows and columns are factored by multiplying the values in the matrix cells 
by the ratio of the desired to actual values (Wiscosin DOT 2019), (Ren 2009). The software kept 
iteratively multiplying the rows and columns of the OD matrix until the row and column sums 
meet the targets, or the error (deviation between desired to actual values) is small enough to be 
tolerated. 

 
FIGURE 5. OUTPUT OF THE CLUSTERING PROCEDURE: AVERAGE VOLUMES OF THE SIGNATURE DAYS AT SELECTED 

INTERSECTIONS 
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4.5 IMPLEMENTATION AND EVALUATION OF THE PREDICTION 
ALGORITHMS 

As stated earlier, the next step in the methodology is to use the results of the cluster analysis 
described in the previous sections as inputs to a data analytic-based prediction model that uses 
data mining/machine learning to predict the traffic state in the short-term future in real-time 
operations.   The investigated prediction models are classification algorithms that predict the 
traffic state in the next 30 minutes as belonging to one of the pre-identified clusters, identified 
in the previous section. For that effect, a 15-minute data across all days at multiple locations 
(intersections) is used as input for the prediction algorithms. The study implemented and 
evaluated seven different data mining/machine learning approaches. The evaluated approaches 
to predict the traffic states categorized based on cluster analysis are the Decision Tree (DT), 
Random Forest (RF), Gaussian Naïve Bayes (GNB), Multinomial Logistic Regression (MLR), 
Support Vector Classification (SVC), K-nearest neighbors (KN), and Artificial Neural Network 
(ANN).  Below are descriptions of these approaches. 
 
Decision Trees and Tree Ensembles 
The decision tree (DT) is a very popular supervised machine learning tool that can be used for 
both classification and regression. DT has been widely used in transportation engineering 
research literature. A DT can classify measurements and can also estimate the probability of an 
instant belonging to a particular class (for example, the probability of traffic breakdown 
occurrence). The DT algorithms search for the dominant attribute from all attributes. Then, this 
most dominant attribute is put on the top of the tree as decision node. A similar process is 
repeated for the other attributes at the next level of the DT.  DT has been one of the most popular 
data mining techniques. It can work with high dimensional data, be developed in an efficient 
manner, and does not require any domain knowledge or parameter setting (Han and Kamber, 
2006) (Tan et al., 2016). The results are also easy to present, and are well understood by humans. 
DT generally has good accuracy, but the accuracy may vary depending on the data. Scalability 
issues have been identified with the popular DT algorithms for very large data sets, and 
algorithms have been proposed for use on very large data sets. However, this should not be an 
issue for most transportation system and management and operations (TSMO) applications with 
currently available data.  
 
Bayesian Classification 
Bayesian classification uses the Bayes’ probability theorem to predict the class membership 
probabilities. Naïve Bayesian classifiers assume the effect of each attribute on the classification 
is independent of each other to simplify the required computation. As an extension of this 
approach, the Bayesian Belief Networks allow the consideration of the dependencies between 
the attributes. For example, incident duration and severity can both affect the probability of 
secondary incidents. However, incident duration and severity are related to each other and thus 
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Bayesian Belief Networks rather than Naïve Bayesian classifiers could be used. It was reported 
that the performance of Naïve Bayesian classifiers can be comparable to classification DTs and 
some neural networks. 
 
Artificial Neural Network 
ANN is a very power machine learning technique and is considered to be the core of deep learning. 
It can deal with very the complex and large classification, recognition, prediction, and 
recommendation of action tasks. In an analogy to human brain structure, the ANN consists of 
nodes (emulating neurons) that are assembled in layers, and links that connect these nodes. The 
most basic form is a single node referred to as a perceptron, which has inputs and outputs that 
can be trained (e.g., to solve classification problems). However, most utilized ANN are multi-layer. 
The most common ANN is a supervised learning method referred to as the multilayer perception 
(MLP). An MLP consists of one input layer, one or more intermediate layers referred to as hidden 
layers, and an output layer. When the ANN has two or more hidden layers, it is called a deep 
neural network. MLP is trained using an optimization process referred to as the backpropagation 
training algorithm. In many applications, even in cases of complex functions, it has been shown 
that a single hidden layer is sufficient, as long as it has enough neurons. However, deep networks 
have proven to be much more efficient in modeling complex functions with fewer numbers of 
neurons (Geron, 2017). 
 
Support Vector Machine 
SVM is a powerful supervised machine learning tool allowing classification, regression, and 
outlier detection. The SVM algorithm classifies the data instances in a manner that minimizes the 
possibility of the misclassification when used to classify new instances not used in the training. 
Thus, it is less susceptible to overfitting compared to DTs. Model parameters can be selected to 
reduce the impacts of outliers on the training. linear SVM classifiers separate the instances into 
different classes by straight lines. In some cases, linear SVM is not sufficient, and the nonlinear 
SVM classification has been used. Thus, the option of nonlinear classifiers has to be assessed to 
determine if it produces better results. Classification and regression using SVM are highly 
accurate, since SVM algorithms can deal with nonlinear decision boundaries. They are much less 
likely to over-fit the model to the training data, and can provide a compact description of the 
learned model (Han and Kamber, 2006). However, the computation associated with SVM is slow 
and not efficient for large data. 
 
K-Nearest Neighbor 
KNN works by using the values or classes of the “nearest neighbors” to the data point to find its 
value or for classification. For classification, the classes of all neighbors of the data point are 
identified and counted. The class with the highest count is assigned to the data point. For 
regression, the value of the data point is determined by averaging the values of all neighbors. 
The user must select the specific distance metric to use in determining the nearest neighbor. 
 
The classification algorithms were evaluated in terms of the accuracy as well as the areas under 
the curve of the receiving operating characteristic (AUC ROC), and precision recall curve (AUC 
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PRC). In order to assess the accuracy of the predictions in a classification model, one of the first 
metrics to look at is the accuracy score, which is computed as the ratio of the correct predictions 
made by the model and the total number of predictions, that is, the fraction of the correct 
predictions over 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 as follows: 

 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦, �̂�) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ 1(�̂�𝑖 = 𝑦𝑖)

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

 (1) 

 
The AUC ROC is determined based the plot of the True Positive Rate (TPR) versus the False 
Positive Rate (FPR) and reflects how well the model can distinguish between two different  and 
is  a measure of how well the model is predicting when there are imbalanced classes. Imbalanced 
classes are a common problem in machine learning and occurs when the data points in one class 
is significantly higher than the observation in other classes and can affect the performance of the 
machine learning algorithms. 
 
In order to prepare the input data for the prediction algorithms, the records were filtered and 
aggregated for every 30 minutes.  This allows the use of the models to predict the traffic state 
(identified by the predetermined cluster) for the next 30 minutes based on the available historical 
data during the previous “n” 30-minute periods since the start of the AM peak. For example, 
considering that the AM peak started at 7:00 am,  data for the 7:00 am to 7:30 am interval across 
multiple locations are used as input to predict the of the traffic state that will likely occur from 
7:30 am to 8:00 am. Then, in the second prediction interval during the AM peak, volume data 
from 7:00 am to 7:30 am and 7:30 am to 8:00 am are used to predict the traffic state that will 
likely occurs from 8:00 am to 8:30 am, and so on. This will allow the implementation of traffic 
responsive control plans that are activated based on the prediction of traffic conditions in the 
next 30 minutes.  
 
 
The results of the evaluation of the implemented prediction models are summarized in Table 1.  
Higher values of the Accuracy, ROC AUC, and PR AUC indicate better performance of the 
prediction model.  By observing the summary of the results depicted in Table 1, it can be 
concluded that in general, the predictions become more accurate and the areas under the curves 
become larger as more data are incorporated into the input, as data from more 30-minute 
intervals are incorporated in the training data used as input to the model in later 30-minute 
intervals of the AM peak period. In some cases, Table 1 shows that algorithms such as the MLR, 
KNN, and ANN can produce predictions with a high degree of accuracy even with just half an hour 
input data (for the first prediction interval). It is clear from the table as well that, the ANN model 
performed better than the other algorithms by producing the best results overall for each stage 
of the prediction. 
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TABLE 1. SUMMARY OF THE EVALUATION OF THE IMPLEMENTED PREDICTION MODELS 

 
Note: The algorithm in bold font indicates a better performance model. 
 

4.6 CONCLUSIONS 

As mentioned earlier, the clustering task proved to be challenging due to the lack of variability 
and the inconsistencies detected in the data from the Gainesville location. Several blank records 
in the data made it necessary to eliminate  a large number of records. This affected  the model 
sensitivity as data from a large proportion of the periods were lost. Another aspect that 
contributed to the complexity of the analysis in the first location was the fact there was only one 
data source available with nothing to validate against and the quality of the data was determined 
to be suspicious based on careful examinations of the clustering results.  
 
The South Florida  location  had the advantage of having data available from different sources 
including high-resolution controller data. This helped with the implementation of the clustering 
procedure and facilitated the identification of three signature days that clearly represent the 
traffic states at that location during the AM peak.  The three states represent relatively low, 
medium, and heavy volumes that can be used as inputs to signal optimization models to identify 
signal timing plans that can be used as the plans to select from in systems that use the TRPS 
control.   Further examination of the resulting volumes, plans, and the resulting performance can 
be done as described in Chapter 5 to determine if the resulting plans are significantly different to 
justify utilizing all of them in TRPS control.  In some cases, for example, it may be determined 
that only two of the three plans can be justified for this purpose.    
 
This study also explored a methodology and evaluated multiple algorithms for the short-term 
prediction of the traffic state for the next half an hour.  The traffic states are predicted as 
belonging to one of the three clusters identified based on the results of the cluster analysis.   This 
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prediction in real-time operations can be used to activate the signal timing plan developed for 
the signature day for the cluster that represent the predicted state. The results revealed that the 
ANN algorithm, produced the best results in terms of accuracy and areas under the curve.   Thus, 
the ANN prediction model will be used in the implementation and evaluation of the prediction 
to activate the signal timing plans, described in Chapter 5.  
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CHAPTER 5: EVALUATION OF THE PREDICTIVE TRAFFIC 

RESPONSIVE SIGNAL CONTROL  

5.1 INTRODUCTION 
This chapter presents the evaluation of a predictive TPRS developed based on traffic clustering 
and prediction, as explained in the previous chapter. First, the research team randomly selected 
ten days and obtained the respective real-world traffic data. These data were used as an 
evaluation dataset and are discussed in the first subsection of this chapter. Next, we defined 
scenarios to evaluate the traffic control plan development and selection. For these scenarios, the 
study optimized the timing plans for the traffic signals based on the traffic volumes of the 
signature day of each cluster as well a random day among the evaluation dataset. The process of 
signal optimization is explained next. Finally, the results of the comparison between different 
scenarios are presented. 

5.2 EVALUATION DATASET 
Table 2 shows the data obtained for ten days randomly selected to evaluate the efficiency of the 
traffic patterns identification and prediction methodology which explained in Chapter 4. This 
table presents the cluster that each day belong to in addition to the cluster that is predicted from 
applying the prediction model in an emulated real-time environment. Given that the centroids of 
cluster 2 and cluster 3 were relatively close to each other (i.e., similar clusters), it was decided to 
merge these clusters for the purposes of the evaluation, thus Error! Reference source not found. 
refers to cluster 2 or cluster 3 indistinctively as cluster 2. Under the said consideration, Table 1 
also shows that the prediction algorithm could accurately predict the traffic cluster for eight out 
of ten days.  Please, note that the prediction of different clusters than the true clusters is 
expected to be for those days that are on the boundary between the two clusters and thus the 
impact of the misclassification can be less significant as confirmed by the results presented later 
in this chapter.  
 

TABLE 2. TRUE AND PREDICTED CLUSTERS FOR TEN RANDOM DAYS 
Date True Cluster Predicted Cluster Accuracy of the Prediction 

Algorithm 

11/1/2019 2 2 T 

11/5/2019 1 2 F 

11/7/2019 2 2 T 

11/8/2019 2 2 T 

11/13/2019 2 2 T 

11/15/2019 1 1 T 

11/19/2019 1 2 F 

11/21/2019 1 1 T 

11/25/2019 1 1 T 

11/26/2019 1 1 T 
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 Accuracy of prediction algorithm 80% 

5.3 EVALUATED SCENARIOS  

This study used five scenarios to investigate the improvement in system performance due to the 
TRPS strategy based on the traffic patterns identification and as developed in this scenario. In 
each scenario, the utilized traffic signal timing is optimized for different traffic patterns.  The 
performance of the timing plans are assessed Error! Reference source not found. based on their 
performance for the ten days randomly selected for use in the evaluation.  The timing plans in 
the five scenarios are calculated based on the followings.  

 

• Scenario 1 - Base condition using the existed signal timing in the field: In this scenario, 

the existing signal timing is modeled in the network. Scenario 1 is used as a benchmark 

to determine whether the recommended process provides improved performance 

compared to the existing signal timing.  

 

• Scenario 2 - Optimized signal timing based on the signature days of the true clusters: 

This scenario is meant to show the performance of the network when using plans 

optimized for the signature days of the true clusters.  This means that this scenario 

assumes that the prediction algorithm is able to accurately predict the traffic patterns 

in all days.  Thus, this scenario test the performance of the clustering in identifying 

the traffic patterns but not the performance of the predictive model.  

 

• Scenario 3- Optimized signal timing based on the signature days of the predicted 

clusters: This scenario is meant to show the performance of the network when using 

plans optimized for the signature days of the predicted clusters.  This scenario 

evaluates the impacts of using signal timing plans that may not be optimal for those 

days, for which the predicted clusters are different from the true clusters (in our case 

study two of the ten days).  Thus, this scenario test the combined performance of the 

clustering and the predictive model. 

 

• Scenario 4 - Optimized signal timing for the signature day of the entire database:   In 

this scenario, a signature day was selected for the entire database, representing the 

traffic demand for the entire database. In this scenario, the utilized traffic signal 

timing is that optimized for this database-wide signature day. This scenario is designed 

to evaluate the benefits of activating signal timing plans based on the predicted 

clusters versus having a fixed timing plan optimized for the whole year. This scenario 

test the performance of using the signature day identification methodology based on 

the whole year data rather than using a random day in the year or a day selected 
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based on limited amount of data in the optimization of signal timing.  However, this 

scenario does not test the performance of the clustering or the predictive model. 

 

• Scenario 5 - Optimized signal timing for a randomly selected day in the database: In 

this scenario, the signal timing plan is optimized based on the data for a day selected 

randomly among the ten sample days (November 13 is randomly selected in the case 

study). This scenario is meant to assess the traffic performance when the traffic 

signals are designed and optimized based on collected traffic data from a random day 

or a day selected based on limited amount of data, as may be used in common 

practice.  

5.4 SIGNAL TIMING OPTIMIZATION 

Software programs such as TRANSYT-7F, PASSER II, SYNCHRO, Highway Capacity Software (HCS), 
and PTV Vistro have been used to optimize the timing plans for signalized intersections and 
evaluate the overall performance of the network. This study used the seventh version of the HCS 
(HCS7) to develop the optimal signal timing plans for the evaluated scenarios and assess the 
performance. The HCS7 follows the procedures of the sixth edition of the highway capacity 
manual  to evaluate the traffic performance.  
 
To calculate the optimal signal plan, the network and intersections were coded in the HCS-Streets 
module (McTrans Center, 2021). As recommended by the HCS7, the GA optimization algorithm 
was used to optimize the cycle length, followed by splits and offsets. The existing signal plan was 
input as the initial signal timing plan in the optimization.  The optimization uses this information 
as the initial timing in the optimization process. The overall delay was selected as the objective 
function for the optimization algorithm. The GA optimization parameters were set as 
recommended by the HCS7.  
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FIGURE 6. EXISTING INTERSECTIONS AND GEOMETRY OF119TH STREET AS INPUT TO HCS7 

5.5 SCENARIO EVALUATION  

The average travel time in the system was used as the performance measure to evaluate and 
estimate the benefits of the traffic clustering and prediction method to support signal control, 
Error! Reference source not found. provides the average travel time for the ten sample days and 
for each of the five evaluated scenarios described above.  As shown, Scenarios 2 and 3 have the 
same average performance across all scenarios and similar performance for the days with wrong 
prediction, confirming that the patterns for these two days (November 5th and November 19th) 
fall on the boundary between the two clusters.  Scenario 2 and 3 produced the lowest travel 
times among the evaluated scenarios with 7% improvement compared to the existing plan 
(Scenario 1), 4% compared to optimizing for a fixed signal timing plan based on a signature day 
for the whole data (Scenario 2), and 17% improvement compared to optimizing signal timing for 
a random day in the data.   This shows that the TRPS based on traffic pattern identification and 
prediction, as assessed in the evaluation of Scenario 4, has the potential of improving traffic 
performance compared to other assessed optimization scenarios. 
 
For all days except two days (November 13 and November 19) the optimized signal timing for the 
signature day of the entire database provides a lower travel time than the existing traffic signal 
timing. This signifies the importance of selecting a representative day and optimize signal timings 
based on date collected from multiple days and processing the data to identify the best day to 
use in the optimization.  
 

TABLE 3. AVERAGE TRAVEL TIME FOR EACH SCENARIO FROM HCS7. 

Date  
Existing 

situation  
(Sc.1)  

Optimized for 
true cluster 

(Sc.2) 

Optimized for 
predicted cluster 

(Sc.3)  

Optimized for 
the signature 

day 
(Sc.4)  

Optimized for 
the random 

day 
(Sc.5)  
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Average travel time (s)  

11/1/2019  386  351  351  375  483  
11/5/2019  350  319  327  331  336  
11/7/2019  382  348  348  355  394  
11/8/2019  389  362  362  367  415  

11/13/2019  388  367  367  420  576  
11/15/2019  392  368  368  368  399  
11/19/2019  398  388  377  420  461  
11/21/2019  400  369  369  369  507  
11/25/2019  390  369  369  371  377  
11/26/2019  378  354  354  358  358  

Weighted average TT 
over ten days  

385  360  359  375  433  

Ratio of Scenario TT / 
existing TT   

1  0.93  0.93  0.97  1.12  
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CONCLUSIONS 

Although adaptive signal control is a powerful strategy to address the day-to-day variation in 
traffic demands, most intersections in the United States are still operating under TOD strategies 
sue to the high cost and the additional requirements associated with the systems.  In addition, 
adaptive signal control may not be beneficial to address all operation performance issues.  TRPS 
strategies have been proposed since the 1970s as an alternative to TOD that can address some 
of the issues associated with day-to-day variations in traffic patterns.  The requirements of these 
strategies are much lower than those of adaptive signal control strategies.  However, there are 
several limitations and issues associated with TRPS that have limited the adoption of these 
strategies in    This study developed and evaluated a TRPS strategy based on supervised and 
unsupervised machine learning combined with signal timing optimization to addresses the issues 
with traditional TRPS.  The strategy fills an important gap in providing a proactive traffic control 
that makes use of ATSPM measures-based data that are becoming available sources including 
high resolution controller data.    
 
This study used k-means clustering, a widely used clustering algorithm to identify the traffic 
patterns to use in signal timing plan development.  The cluster analysis identified three traffic 
patterns or states that have different demands in the AM peak of the case study used in the 
project.  The three states represent relatively low, medium, and heavy volumes that can be used 
as inputs to signal optimization models to identify signal timing plans that can be used as the 
plans to select from in systems that use the TRPS control.   Further examination of the resulting 
volumes, plans, and the resulting performance indicates that only two patterns should be used.  
When the demands from the three patterns were used in signal timing optimization, it was found 
that signal timing optimization software produced similar signal timings for two of the three 
identified patterns.  Thus, these two patterns were combined in one pattern and only two 
patterns were used in the optimization and real-time activation of the signal timing plans.  
 
 
This study also explored a methodology and evaluated multiple algorithms for the short-term 
prediction of the traffic state for the next half an hour.  The traffic states are predicted as 
belonging to one of the patterns identified based on the results of the cluster analysis.   This 
prediction can be used in real-time operations to activate the signal timing plan developed for 
the signature day of the cluster that represent the predicted state. The evaluated algorithms to 
predict the traffic states categorized based on cluster analysis are the Decision Tree (DT), Random 
Forest (RF), Gaussian Naïve Bayes (GNB), Multinomial Logistic Regression (MLR), Support Vector 
Classification (SVC), K-nearest neighbors (KN), and Artificial Neural Network (ANN). The results 
revealed that the ANN algorithm, produced the best results in terms of various prediction 
performance measures. 
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The performance of the predictive TRPS based on clustering and prediction was assessed by 
evaluating five different scenarios of signal timing plan selection.  The results showed that the 
predictive TRPS method can decrease the travel time by 7 percent compared to existing traffic 
signals, 4% compared to optimizing for a fixed signal timing plan based on a signature day for the 
whole database, and 17% compared to optimizing signal timing for a random day in the data.   
This shows that the TRPS based on traffic pattern identification and prediction has the potential 
of improving traffic performance compared to other assessed optimization scenarios.  For eight 
of the ten days used in the evaluation, the optimized signal timing for the signature day of the 
entire database provides a lower travel time than the existing traffic signal timing. This signifies 
the importance of selecting a representative day and optimize signal timings based on date 
collected from multiple days and processing the data to identify the best day to use in the 
optimization. 
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