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ABSTRACT 
 

The primary aim of this project is to enhance our system from the previous STRIDE F4 project to 

a parallel computing version. The original F4 system, designated as Automatic Safety Diagnosis 

in Connected Vehicle (CV) Environment, established a computational pipeline for diagnosing 

near-crash events exclusively using Basic Safety Messages (BSMs). It was implemented using a 

sequential computing paradigm. The O6 project was conceived to expedite the system by 

transitioning it to a parallel version. 

The F4 system comprised a driving anomaly detection model (DAD), a conflict identification 

model (CIM), and the data-path connecting them. The DAD was primarily situated in the core 

cloud, while the CIM was positioned within the CVs. Throughout the O6 process, notable 

advancements in in-vehicle computers (IVCs) were uncovered. In order to align our system with 

real-world operations, we opted to fully migrate the DAD component to the IVCs. 

Recognizing Domain-Specific Design (DSD) as the future of parallel computing, we propose 

configuring DSD for IVCs based on three levels of abstractions: selecting the appropriate chip 

architecture, programming language, and parallelism module. For the CIM of our system, we 

recommend utilizing ARM architecture, the C programming language, and leveraging the built-

in parallelism of the ARM chip. As for the DAD, we advocate for a complete migration to IVC, 

utilizing ARM architecture, the Python language on the CPU, and employing multiprocessing for 

parallel computing. 

 

Keywords:  

parallel computing, connected vehicle, Python, C, ARM, OpenMP, in-vehicle computer, Domain-

Specific Design. 
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EXECUTIVE SUMMARY 
The aim of this project is to enhance the system from the prior STRIDE F4 project to a parallel 

computing version. The F4 system, titled as Automatic Safety Diagnosis in the Connected 

Vehicle Environment, aimed to establish a computational pipeline for diagnosing near-crash 

events by processing BSMs generated within the CV environment. The F4 system architecture 

included two components: the DAD, primarily situated in the core cloud, and the CIM, located 

within the CVs. 

A near-crash event was defined as a situation meeting two conditions: (a) the presence of a 

conflict and (b) at least one of the drivers exhibiting abnormal driving status. The original F4 

project utilized a sequential computing paradigm. However, with the growing market 

penetration of connected vehicles, the demand for faster data processing and transmission has 

increased, necessitating the adoption of parallel computing. 

To initiate the project, an extensive study explored literature and real-world applications of 

parallel computing. This research unveiled significant advancements in IVCs in recent years and 

emphasized DSD as the future of parallel computing. 

To align our system with real-world operations, we adjusted the system architecture and fully 

migrated the DAD to the IVC. This required significant effort to determine the appropriate 

configuration for parallel computing on the IVC. We decided to configure DSD on three levels of 

abstraction: chip architecture, programming language, and the parallelism module. Based on 

system performance, we recommend utilizing ARM architecture, C programming language, and 

leveraging the built-in parallelism of the ARM chip for CIM. For DAD, we suggest employing 

ARM architecture, Python language on the CPU, and utilizing multiprocessing for parallel 

computing. 

During testing, the O6 system underwent evaluation using various programming languages, 

including C, Python, and OpenMP, on both Windows and MacOS platforms, specifically with the 

Apple M1 chip. The testing dataset included BSM data from connected vehicle pilot studies, and 

system performance was also assessed using the SHARPII naturalistic driving study crash data. 

Additionally, to gauge the applicability and effectiveness of our DAD, comparison tests were 

conducted on selected major Machine Learning (ML) packages for Object Detection (OD) using 

our working data. The results revealed that these packages were unable to meet our system's 

requirements. 
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1.0 INTRODUCTION 
Traffic accidents contribute significantly to traffic congestion and travel delays. Issuing a 

warning message to drivers as a hazardous situation approaching can prompt them to 

take necessary maneuvers and prevent accidents. Our previous STRIDE project, F4—

Automatic Safety Diagnosis in Connected Vehicle Environment—established a cloud-

based system capable of delivering timely accident warnings within the CV environment. 

As the automotive industry progresses in vehicle connectivity and automation, the 

distribution of computing tasks among central hubs, roadside infrastructure, and mobile 

units becomes a critical consideration. The Intelligent Transportation System (ITS) is 

evolving with the widespread use of CVs, leading to the generation of massive data. The 

safety diagnosis application must have the capacity to process this Big Data effectively. 

The adoption of parallel computing technology to expedite data processing and analysis 

is, therefore, an unavoidable necessity. 

The O6 research was initiated to implement parallel computing in both the cloud and 

the in-vehicle subsystem. This approach aims to enhance the system's capability to 

handle the substantial data generated by CVs and ensure efficient safety diagnosis in 

real-time scenarios. 

1.1 Objective 
 

The goal of this research is to transition our preceding STRIDE F4 study from a 

sequential version to a parallel version through the incorporation of cutting-edge 

parallel computing techniques. 

 

1.2 Scope 
 

The computational pipeline represents an automatic safety diagnosis system in the 

Connected Vehicle CV environment. In Project F4, the system comprised the DAD in the 

cloud, edge computing, all CVs under its surveillance, and the datapath connecting 

them. Figure 1  illustrates the concept of the ASDSCE. The datapath involves 

communication between the vehicle and the cloud, posing an open research problem 

and presenting a significant challenge in CV research. However, it's important to note 

that the datapath is beyond the study scope of this project. 
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FIGURE 1. THE CONCEPT OF THE ASDSCE 

 

1.3 The Practical Significance of This Study  
 

In a traffic safety diagnosis system, parallel computing is essential to guarantee real-

time processing and analysis of data. This research has the potential to elevate the 

technological capabilities of our system to align with the requirements of future modern 

transportation systems. 

1.4 The Expected Final Products  
 

The final product is a parallelized version of the computational pipeline for the 

automatic safety diagnosing system. This includes the incorporation of a MySQL 

database for handling working data, parallel computing utilizing OpenCL in the cloud 

subsystem, and parallel computing with OpenMP in the in-vehicle subsystem. The 

outcomes encompass a software package, a user's guide, instructional videos and 

webinars, publications, a final research report, and support for a PhD student. 

2.0 LITERATURE REVIEW 
2.1 A Glance of Transportation Big Data Analytics 
Decades ago, the focus of transportation shifted from infrastructure expansion to 

operational efficiency and sustainability. ITS brought forth cutting-edge technologies in 

information systems, electronics, control, communications, sensing, robotics, and more, 
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evolving into a global phenomenon crucial for economic and social development (Lin, et 

al., 2017).The widespread deployment of Global Positioning System (GPS), sensors, CVs 

and other sources has resulted in the generation of Big Data in transportation, reaching 

the scale of Petabytes and Terabytes, with projections for continued growth in volume, 

speed, and complexity (Lin, et al., 2017).This massive influx of Big Data from ITS and CVs 

necessitates a well-designed computing architecture to support Quality-of-Service 

(QoS), given the diverse requirements of different types of applications (Wang, et al., 

2020). 

In the realm of Big Data analytics, computation architectures vary based on the 
selection of data storage, compression, and processing tools from a pool of options, 
such as the Hadoop Distributed File System (HDFS), Relational Databases, Apache 
Parquet, Spark, and more. For instance, a platform with multiple engines was proposed 
to support various types of traffic data (Mian, et al., 2014). Godzilla introduced a 
conceptual architecture for real-time traffic data processing, employing a multi-cluster 
approach to handle substantial data under various workloads and user numbers (Shtern, 
et al., 2014).. Kafka, a state-of-the-art Big Data tool, was utilized for building data 
pipelines and stream processing to manage real-time traffic data (Amini, et al., 2017).. 
Sipresk proposed a platform to process urban transportation data (Khazaei, et al., 2016).  
A comprehensive review of computing architectures for Big Data of CVs can be found in 
the paper by Wang (Wang, et al., 2020). 

Despite these accomplishments, widely used parallelization algorithms for Big Data, 

such as peer-to-peer networks, MapReduce, and Spark platforms, have been reported 

to face significant issues related to speed-up, throughput, and scalability (An, et al., 

2011).  To address dynamic resource allocation, Big Data workloads were designed to be 

malleable and task oriented. 

 

2.2 Parallel Computing  
Parallel computing, a computational paradigm introduced in the late 20th century, 

involves the simultaneous execution of numerous calculations or processes to enhance 

processing speed and problem-solving capabilities (Gottlieb & Almsi, 1989). Positioned 

as the pinnacle of computing, parallel computing has been extensively applied to 

computationally intensive problems in science and engineering (Culler, et al., 1999). 

The progression of computers from vacuum tubes in the 1950s to present-day nano-

scale microchips with Very Large-Scale Integration (VLSI) has been remarkable. These 

microchips are now ubiquitous in personal computers, mobile devices, control systems, 

the internet, clouds, clusters, and high-performance computers. Over time, computers 

have become more user-friendly, evolving from a realm accessible to a few geniuses in 

the 1950s to highly trained individuals in the 1960s and 1970s, and finally, to almost 
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anyone since the 1980s. Concurrently, there has been a substantial shift in computer 

architecture from single processors to parallel processors (pheatt2008intel). This 

evolution is the result of collaborative efforts across the industry, involving vendors, 

programmers, and users working on hardware, architecture, algorithms, languages, and 

applications. Presently, parallel programming has become crucial for further 

advancements in computing  (Stoller, et al., 2019) (Asanovic, et al., 2009). 

The objective of computing improvement has been to achieve higher speedup while 

balancing factors such as cost, heat dissipation, and energy consumption (Moore, 1998). 

Higher clock speeds translate to faster CPUs, and increased transistor counts result in 

greater computing power. From the 1950s to the 1970s, significant improvements were 

made in chip technology, an ongoing trend  (Saidu, 2015).  Gordon Moore's 1965 

prediction, known as Moore's Law, foresaw a doubling of the number of transistors on a 

microchip every two years. While this law accurately anticipated the consistent growth 

in transistor density, it is expected to face challenges. The size of a silicon atom being 

approximately 0.2 nm, the density of transistors on a chip cannot indefinitely increase. 

Additionally, with fundamental challenges related to heat dissipation and energy 

consumption, clock rates above 4.0 GHz are considered unsafe (Null & Lobur, 2014), 

rendering the method of frequency scaling less effective. As a result, further 

improvements in physical computer builds are likely to slow down unless new materials 

replace silicon or chip processing technology is updated with new approaches such as 

quantum computing or molecular computers. 

With Moore's Law approaching its limits, computer manufacturers are left with limited 

options for performance improvements on chips or processors, except for distributing 

the computation load among several processors using parallel computing  (Schauer, 

2008).  Parallel computing involves using multiple compute resources simultaneously to 

solve computational problems (Gottlieb & Almsi, 1989). Originating in the early 1950s, 

parallel computing was initially considered high-end, defense-oriented, and particularly 

featured for supercomputers. However, after the Cold War in the 1990s, when financial 

funding for defense decreased, parallel computing faced potential relegation. At this 

juncture, the high-performance computing community aimed to simplify the writing of 

parallel applications, realizing that wider user adoption could stimulate industry growth 

(Osuna, 1994).  Fortunately, the crisis was overcome with the widespread adoption of 

parallel architectures, making parallel and distributed computing fundamental for 

computing professionals. Today, parallel computing is more prevalent than ever, with 

expectations of innovative advancements, particularly in applications related to artificial 

intelligence (AI) and ML, which demand intensive computation. In 2009, after 

systematically studying the landscape of parallel computing, Krste Asanovic asserted 

that "the parallel computing industry needs help from research to succeed in its recent 

dramatic shift to parallel computing"  (Asanovic, et al., 2009). 
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Parallel computers are categorized by build into symmetric multiprocessor parallel 

computers, multicore parallel computers, distributed parallel computers, cluster parallel 

computers, massively parallel computers, and grid computers. In terms of processor-

memory architecture, parallel computers are categorized into shared memory 

architecture (SMA) and distributed memory architecture (DMA). SMA involves building 

parallel computers from the combination of multiple microprocessors connected via 

specialized high-speed buses. On the cutting-edge, the Apple M1 chip realizes the 

system on a chip (SoC). DMA involves constructing parallel computers from multiple 

computers connected via a network such as an Ethernet network. 

In terms of forms, computing parallelism can exist at three levels: bit-level, instruction-

level, and data-level. Bit-level parallelism is based on the processor's size. Over time, 

processor word sizes have increased from 4-bit microprocessors to 8-bit, then 16-bit, 

32-bit, and, in 1996, the introduction of 64-bit architectures that remain mainstream 

today. Larger processor word sizes reduce the number of instructions needed to 

perform tasks on large-sized data, enhancing overall performance. Instruction-level 

parallelism (ILP) involves optimizing microprocessor architecture. The CPU, the core of a 

computer, consists of an arithmetic–logic unit, processor registers, and a control unit. 

Initially, these operations were completed sequentially. By breaking instructions into 

stages and allowing a thread to run on stages of multiple instructions in parallel within 

the same clock cycle, the pipelining technique implemented ILP. A microprocessor with 

an n-stages pipeline can deliver n-times performance over a non-pipelined architecture 

(Saidu, 2015)  (Saidu, 2015).. The number of pipeline stages, however, cannot be 

increased endlessly due to control dependencies and data dependencies. The amount of 

ILP in a program is highly application-specific (Hernandez, 2009). (Hernandez, 2009). 

Data-level parallelism (DLP) involves parallelization across multiple processors to 

achieve higher throughput. DLP encompasses data parallelism and task parallelism. Data 

parallelism includes single program multiple data (SPMD), vector processing, and single 

instruction multiple thread (SIMT) (e.g., with GPUs). Task parallelism decomposes a task 

into subtasks and allocates each subtask to multiple processors for concurrent 

execution. The amount of parallelism achievable is program-specific, requiring some 

control over execution patterns and resource allocation to ensure efficient execution. 

Reconciling these two conflicting requirements is the goal of parallel computing 

systems. 

A fundamental requirement for any parallel programming system is to support 

abstraction, relieving users of the low-level complexities of parallel programming to 

work with familiar concepts from their own domain  (Darlington, 1996). However, the 

achievable level of parallelism is highly program specific. Some control over execution 

patterns and resource allocation is still necessary to ensure efficient execution. 

Reconciling these two conflicting requirements remains the goal of parallel computing 

systems. 
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2.3 DSD and IVC 

DSD has been identified as a pivotal future direction for parallel computing. The 2019 
National Science Foundation (NSF) Workshop on Future Directions for Parallel and 
Distributed Computing emphasized the centrality of parallel and distributed computing 
in computational innovation. It advocated for exploiting specialized hardware 
accelerators and adopting computational platforms through DSD to enhance 
performance. The overarching goal of DSD is to develop comprehensive algorithms-

software-hardware solutions that optimally align with the objectives of a given domain. 
For instance, in the case of convolutional neural networks (CNN), there was consensus 
on proliferating tensor processing units (ISCA, 2017), GPU tensor cores, new CPU 
instructions, new CNN chips for hardware, and incorporating frameworks built on 
common libraries such as PyTorch, Tensorflow, Horovod, etc., for software. 

However, the challenge lies in building interfaces that embody appropriate abstractions 
for specific domains, posing difficulties at both the technological and industry levels. As 
the potential benefits of DSD are substantial, achieving a balance becomes more 
challenging due to potential disruptions caused by innovations. Any perturbation to the 
ecosystem—whether in applications, compilers, operating systems, or hardware—tends 
to have cascading effects, leading to an "inherent reluctance to change" throughout the 
industry  (Stoller, et al., 2019). In this context, a pilot study that involves developing a 
DSD on a system in a formative stage could be instrumental, with In-Vehicle Computers 
(IVCs) serving as a suitable testbed. 

IVCs, designed to withstand harsh vehicle environments, including shocks, vibrations, 
extreme temperatures, and electromagnetic interferences, have become a crucial 
component with the rise of vehicle telematics and camera-based surveillance systems. 
The global IVC market is estimated to reach 1.65 billion in 2029, offering hardware and 
software solutions for various automotive applications. Top players in this market 
include S&T AG, Lanner Electronics Inc. (Taiwan), Axiomtek (Taiwan), SINTRONES 
Technology Corporation (Taiwan), NEXCOM International (Taiwan), IBASE Technology 
Inc. (Taiwan), Acrosser (Taiwan), and Premio Inc (US) (MarketsandMarkets™ Ltd., 2020). 
As the market penetration and level of automation increase, addressing how to 
integrate parallel computing into applications becomes imperative for CAVs. 

Transportation engineers and data scientists, as users of IVCs, face a dilemma due to 
inconsistencies in computing algorithms-software-hardware. Traditionally, computer 
programs were written sequentially, and when transitioning to parallel computing, the 
common practice was to rewrite the code in languages like C or C++ that have APIs 
developed for parallel computing, such as MPI, OpenMP, OpenCL, and CUDA. 

Python, with its productivity and extensive library support, has become the preferred 
programming language for many transportation data scientists, especially in machine 
learning for data analysis. However, rewriting Python code to C involves breaking down 
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functionalities encapsulated in Python libraries. The C version of the same algorithm 
might be much longer than its Python counterpart. Complicating matters further, 
popular frameworks like TensorFlow, often used in artificial intelligence and machine 
learning applications for traffic and in-vehicle systems, recommend Python as the 
language of choice. Despite the availability of open-source parallel computing libraries 
for Python, such as Multiprocessing and Dask, Python's performance is compromised as 
it is an interpreted language. This uncertainty leads data scientists to question the 
choice of parallel computing programming languages for transportation engineering 
problems. 

Both C and Python, as general-purpose programming languages, have their pros and 
cons. C is simple, flexible, and machine-independent, while Python is easy to learn and 
features numerous libraries with built-in functions. C code is compiled directly to 
machine code, executed directly by the CPU, making it a low-level language close to 
machine. In contrast, Python code is first compiled to bytecode and then interpreted by 
a C program, making it a high-level language closer to humans. While focusing on the 
intricate aspects of basic C coding, the advantages of abstractions might be lost. 
Alternatively, assigning a C programmer to perform the rewriting could introduce 
different coding habits and conventions. A middle ground could involve keeping the 
sequential parts of Python and using C or C++ for heavy calculations, with libraries like 
Ctypes and cPython developed for this purpose. 

Balancing the trade-off between productivity, portability, and performance poses a 
significant challenge. The direction parallel computation should take concerning data 
analysis on in-vehicle computers remains an open question. These issues are expected 
to be addressed in the context of DSD. 

The literature suggests that, before the settlement of DSD, three levels of abstractions 
within the users' control significantly affect the performance of in-vehicle parallel 
computing: chip architecture, language, and parallelism module. 

2.4 OD 

In the field of data science, anomaly detection is also referred to as OD, denoting the 
identification of abnormal events in data, often termed outliers. Outliers represent data 
points that significantly deviate from the majority of the dataset. In ML programs, OD 
serves as an initial step in data cleaning. However, OD itself has evolved into a complex 
and challenging field with the development of ML algorithms. 

ML algorithms are generally categorized into three fundamental types based on the 
availability of the dependent variable (or label) for the data under examination: 
Supervised Learning, Unsupervised Learning, and Reinforcement Learning. Supervised 
ML is applied to data that includes labels, unsupervised ML is designed for data lacking 
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labels, and reinforcement ML, essentially an unsupervised variant, can learn from the 
environment over time to create labels. 

OD is typically considered unsupervised since outliers are usually rare, leading to a lack 
of labels for the data (Boukerche, 2020).  This inherent nature makes it challenging to 
define statistical and mathematical measures for deviation. Various packages of OD 
algorithms are available in different programming languages, each employing a unique 
method to measure deviation. Basic categories of unsupervised OD algorithms include 
Angle-Based OD (ABOD)  (Kriegel, et al., 2008),  Cluster-based Local Outlier Factor 
(CBLOF)  (Duan, et al., 2009),  Histogram-based OD (HBOS)  (Putrada & Abdurohman, 
2021),  Isolation Forest  (Xu, et al., 2017),, and K Nearest Neighbors (KNN) (Larose & 
Larose, 2014). For instance, in Python, the PyOD package summarizes various OD 
algorithms, featuring over forty algorithms and finding application in numerous 
academic and industrial settings, with over 10 million downloads  (Zhao, et al., 2019). 

Selecting the most suitable OD ML algorithm is challenging, as datasets may vary in 
dimensions and features, and users may have different interests. Different OD 
algorithms employ distinct methods of measuring deviation, making the algorithm 
selection a critical aspect of OD processing. 

3.0 TASK 1: ARCHITECTURAL DESIGN  
Both F4 and O6 function as a real-time near-crash warning tool at the individual level, 

exclusively using BSMs. They define a near-crash as a traffic situation meeting two conditions: 

firstly, at least one of the vehicles in a driver-vehicle unit (DVU) pair exhibits abnormal driving 

conditions, and secondly, a conflict is present. The system architecture of O6 was derived from 

F4. 

3.1 The Architecture of the F4 System 
The F4 project was structured as a two-tier hierarchical system, comprising a cloud-

based DAD and a CIM in each CV. The DAD served as a multi-dimensional anomaly 

detection model, with Modules 1, 2, 3, and 5 of the DAD processed in the cloud and 

Module 4 in the IVC alongside the CIM. Illustrated in                                                      Figure 

2,  the F4 system collected and stored BSM from the covered vehicles in the cloud. It 

determined thresholds for selected key performance indicators (KPIs) and broadcasted 

these thresholds through BSMs. Within the IVC, as real-time BSMs streamed in, the 

device compared the new values of each KPI with the received thresholds to identify 

outliers. The outliers were then analyzed to ascertain if their combination warranted an 

anomaly event, triggering the transmission of abnormal flags. Periodically, the system 

assessed impact factors to update thresholds based on the significance of the outliers. 
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                                                     FIGURE 2.THE ARCHITECTURE OF THE F4 PROJECT. 

The primary considerations for the F4 architecture were the substantial volume of Big 

Data from BSMs and the computational capacity limitations of in-vehicle computers. 

Energy conservation was also a significant consideration, with offloading presenting a 

substantial reduction in energy usage, particularly beneficial for electric vehicles amid 

global warming concerns. The architecture's advantages lay in central control of all CVs 

while keeping the in-vehicle computers lightweight. However, a drawback was the 

accumulation of massive historical BSMs in the cloud, leading to unnecessary data 

traffic. 

In our O6 project, as we delved into the latest literature on computational platforms, we 

recognized that the progress in in-vehicle computers surpassed expectations. 

Consequently, we identified the need to update our system architecture to align with 

state-of-the-art parallel computing and CV technology. 
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3.2 The Architecture of the O6 System 
The O6 system retains the two-tier architecture from the F4 project, comprising the top 

tier of the core cloud and the bottom tier of the ad-hoc vehicle cloud. In the core cloud, 

the flag list of abnormal CV IDs is stored and updated. DAD and CIM are processed in the 

IVCs. The IVCs broadcast and receive BSMs through On-board devices, forming the ad-

hoc vehicle cloud, also known as vehicle-to-everything (V2X) BSMs. Figure 3 illustrates 

the architecture of the O6 system, which has been updated based on the advancements 

in IVC technology to meet the system's requirements. 

The O6 system architecture brings improvements in performance, including reduced 

latency and substantial data traffic reduction. However, it is not without its drawbacks: 

1. Data Loss in CV Malfunction: 

In the event of a CV malfunction within the O6 architecture, there is a risk of 

data loss, making it challenging to maintain the accuracy of the flag list. The 

system may struggle to assess abnormal CV situations accurately if malfunctions 

result in data loss, impacting the overall effectiveness of the safety diagnosis 

system. 

2. Limitation for Future Development: 

As traffic safety requirements evolve to encompass factors such as roadway 

geometry, real-time traffic signal control, traffic flow, and travel demand 

analysis, the O6 architecture may encounter limitations. Integrating these 

additional elements for comprehensive traffic analysis might prove challenging 

within the confines of the O6 architecture. 

Realizing the F4 system is a complex task that necessitates seamless collaboration 

between auto manufacturers, BSM central control, and government support. This 

cooperation is identified as a significant challenge for successful implementation. 

Concurrently, the prevailing trend in the automotive market emphasizes the shift 

towards flexible and lightweight CAVs. The O6 architecture, with its advantages in 

latency performance and reduced data traffic, aligns well with the current trend 

favoring lightweight solutions in the CAV market. 

Given the intricacies of the transportation industry, addressing challenges related to 

potential data loss during CV malfunctions and adapting to evolving demands for 

comprehensive traffic analysis require thoughtful consideration and strategic planning. 

However, it's essential to note that addressing these broader challenges extends beyond 

the scope of the current project. 
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FIGURE 3. THE ARCHITECTURE OF THE O6 PROJECT. 

4.0 TASK 2: DATABASE CONSTRUCTION 
While the database plays a crucial role in our system, it is not the primary emphasis of the O6 

Project. Fundamental stages of constructing the database were undertaken, encompassing 

tasks such as defining the database's purpose, segmenting the working data into tables, 

transforming the working data into columns, designating primary keys, establishing table 

relationships, and refining the database using normalization rules. 

4.1 MySQL Database 

A Database Management System (DBMS) serves as the repository for storing, accessing, 

modifying, and overseeing data, contributing to enhanced data integration, consistency, 

security, and efficiency. Numerous DBMS options exist in the market, including SQL, 

Oracle, MariaDB, MySQL, and PostgreSQL, with MySQL being notably popular. MySQL 

stands as a versatile relational DBMS owned by Oracle Corporation, operating as open-

source software under the GNU General Public License, while also being available for 

proprietary licenses. Recognized for its widespread use, MySQL is established as a 
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preferred choice for various applications. 

In our project, MySQL, as a relational database management system (RDBMS), was 

employed for handling BSMs. The installation of MySQL proved to be straightforward, and 

comprehensive documentation in the Oracle reference manual (Oracal, 2023) facilitated 

the process. For script development, the MySQL/Python Connector was generated, and 

database management was carried out using MySQL Workbench. 

4.2 Database Schema 

The database schema represents the logical configuration of a relational database, and 

for the BSM database, it was devised based on the characteristics of the working data and 

the requirements of the DAD. The working data for the O6 project consisted of the same 

BSM data collected during the F4 project. 

BSM, a fundamental application of CVprograms, serves as the "Here I Am" data message. 

Originating from OBDs specifically designed for CVs, BSMs are broadcasted in the air at 

the dedicated 5.9 GHz spectrum with a frequency of 10 Hz (Henclewood, 2014). Nearby 

CVs and roadside units (RSUs) can receive these BSMs. The format of a BSM is defined by 

the Society of Automotive Engineers J2735: The Dedicated Short-Range Communications 

(DSRC) Message Set Dictionary. Typically, a BSM comprises two parts: the main part of 

the message, containing vehicle ID, epoch time, GPS location, speed, acceleration, yaw 

rate, and associated accuracy measurements; and the supplementary part providing 

additional information. Initially, BSMs were regarded as disposable and not intended for 

reuse. 

The BSMs utilized in our project were part of the test data from the Safety Pilot Model 

Deployment (SPMD) project conducted in Ann Arbor, Michigan, in October 2012. These 

data were obtained from the ITS DataHub (its.dot.gov/data/). The BsmP1 file, formatted 

as Comma Separated Values (CSV), had a size of 67GB and stored all BSMs generated by 

the 1527 test vehicles during the test. The original downloaded data file contained 19 

attributes and over 500 million records. During the data pre-processing phase of the F4 

project, irrelevant attributes were filtered out, resulting in a data file with 11 attributes, 

including DevID for vehicle ID, EpochT for timestamp, and attributes for latitude, 

longitude, accelerations, heading, and yaw-rate. Descriptions of these attributes are 

detailed in Table 1.  
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TABLE 1. ATTRIBUTE LIST OF THE BSM DATA OF THE F4 PROJECT 

Attributes Name Type Units Description 

DevID Integer None Test vehicle ID assigned by the CV 
program 

EpochT Integer seconds Epoch time, the number of seconds since 
the January 1 of 1970 Greenwich Mean 
Time (GMT) 

Latitude Float Degrees Current latitude of the test vehicle  

Longitude Float Degrees Current longitude of the test vehicle 

Elevation Float Meters Current elevation of test vehicle 
according to GPS 

Speed Real m/sec Test vehicle speed 

Heading Real Degrees Test vehicle heading/direction 

Ax Real m/sec^2 Longitudinal acceleration 

Ay Real m/sec^2 Lateral acceleration 

Az Real m/sec^2 Vertical acceleration 

Yawrate Real Deg/sec Vehicle yaw rate  

 

For the O6 project, a table named ID_flag was established to store vehicle IDs along with 

corresponding driving status flags, utilizing ID as the primary key. Another table named 

BSM was created to house historical BSM data, encompassing vehicle ID, time, latitude, 

longitude, speed, and longitudinal and lateral accelerations. In the BSM table, DevID 

serves as the primary key. The attributes of these tables are detailed in Table 2 and Table 

3. The ID in ID_flag and DevID in the BSM table function as foreign keys interchangeably. 

The entity-relationship (ER) diagram depicting these tables is presented in Figure 4. 

To facilitate data insertion into the database, Oracle's standardized API, MySQL 

Connector/Python, was employed. Additionally, MySQL Workbench, an all-encompassing 

visual tool catering to data modeling, SQL development, and administration, was utilized 

for generating the ER diagram and managing the data. 

 

TABLE 2. DESCRIPTION OF TABLE ID_FLAG OF O6 

Attributes Name Type key Units Description 

ID Integer PRI None Test vehicle ID assigned by the CV 
program 

Flag Integer  None Epoch time, the number of seconds since 
the January 1 of 1970 Greenwich Mean 
Time (GMT) 

    

TABLE 3. DESCRIPTION OF TABLE BSM OF O6 

Attributes Name Type key Units Description 
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DevID Integer PRI None Test vehicle ID assigned by the CV 
program 

EpochT Integer  seconds Epoch time, the number of seconds since 
the January 1 of 1970 Greenwich Mean 
Time (GMT) 

Latitude Float  Degrees Current latitude of the test vehicle  

Longitude Float  Degrees Current longitude of the test vehicle 

Speed Real  m/sec Vehicle speed 

AccX Real  m/sec^2 Longitudinal acceleration 

AccY Real  m/sec^2 Lateral acceleration 

 

FIGURE 4. ER DIAGRAM OF THE DATABASE. 

5.0 TASK 3: PARALLEL COMPUTING IMPLEMENTATION 
Similar to the F4 project, the O6 system triggers a near-crash warning when a conflict arises 

between the ego CV and a neighboring CV, provided that any CV in the pair exhibits abnormal 

driving behavior. In the updated O6 architecture, both the DAD and CIM are executed within 

the IVC, leaving only the flag list of abnormal CVs stored in the core cloud. Consequently, the 

implementation of parallel computing is bifurcated into two distinct components: the CIM 

within the IVC, where the IVC serves as the primary hardware for parallel computing tasks of 

both DAD and CIM. While DAD involves predominantly offline processing, CIM demands real-

time computations and places a higher emphasis on computing speed. Hence, the careful 

selection of a parallel computing platform for the IVC emerges as a pivotal consideration for the 

success of the O6 system. 

5.1 Parallel Computing of CIM  
In the O6 system, once a CV’s engine starts running, its Collision Impact Mitigation (CIM) 

module becomes operational and examines the flag list containing identification 

numbers of CVs identified with abnormal driving status. Upon receiving BSM of a new 

CV_B, CV_A checks the ID of CV_B to determine if CV_B is listed in the flag list. If either 
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CV_A or CV_B is found on the list, the CIM proceeds to assess whether the CV pair 

(CV_A and CV_B) warrants a conflict. This process occurs at the same frequency as BSM 

generation and is applied to all CVs. 

For the CIM to effectively operate, it must have the capacity to process the maximum 

number of BSMs generated by nearby CVs. Given that BSMs are generated at a 

frequency of 10 Hz, the CIM risks overload if the entire computing time for one BSM per 

CV exceeds 0.1 seconds. Therefore, our research goal was to identify the optimal 

computational setup for the CIM, balancing capacity and execution speed, while 

considering factors such as market availability, energy consumption, and the global 

trends in computing technology. 

5.1.1 Test Data 
As mentioned earlier, the test data utilized in this project were obtained from 

the Naturalistic Driving Study (NDS) conducted for the second Strategic Highway 

Research Program (SHRP 2). The NDS is a research initiative aimed at 

understanding the influence of driver performance and behavior on traffic 

safety. The Virginia Tech Transportation Institute (VTTI) serves as the technical 

coordination and study design contractor for the NDS and manages the InSight 

Data Access Website (Jafari, 2017). A sample dataset is presented in Table 4: 

TABLE 4. SAMPLE INPUT DATA OF PROCESSED BSMS 

vtti_timestamp vtti.file_id vtti.speed_network x_position y_position x_ego y_ego 

199500 18539287 3 408 -1073 292 -1067 

113400 44909777 0 0 0 73 -171 

17000 44909777 0 0 0 73 -171 

10567500 41894439 46 14779 27624 14665 27464 

9783800 26026997 34 232345 39413 232490 39364 

1027000 39534577 32 16996 -1145 16995 -1419 

1871800 61805034 0 -9754 7404 -9771 7386 

6000 44909777 0 0 0 73 -171 

2324200 55152798 0 -32326 -9433 -32252 -9205 

 

The maximum number of CVs were estimated using counting the CVs in the 

roadway network in the effective range of BSMs. Considering in the most 

congested condition, suppose the effective range of BSM is 1000 meters in radio, 

the area it covers3,140,000m2. In the condition of high density of road network, 

the road grids are of the size of 300 meters long, so every gird covers 300 *300 = 

9,000m2 and 90000 m2 and can have road of 600 meters long. Therefore, the 

maximum road length in the effective range is about to be 21,000 m, as in 

Equation (1). 
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 3140000
90000⁄ ∗ = 21000 (𝑚)                                     (1) 

Each CV occupy a street length of 40 feet /12 meters (20 feet for vehicle length 

and another 20 feet for safety spacing). Assuming all the roads are 4-lane road, 

the maximum number vehicle around 7000 CVs, as calculated in Equation (2). 

21,000/12 ∗  4 =  7000 (CVs)                                             (2) 

Based on the assumptions, as shown in Figure 5, when the CV penetration rate 

reaches 0.14, in the most congested scenario the CIM on a single thread will be 

overloaded and experience malfunction. 

 

FIGURE 5. THE RELATIONSHIP OF CIM CAPACITY (SEQUENTIAL) AND VARIOUS CV 

MARKET PENETRATION RATES. 

To assess the consistency of scenario performance, we generated 70 input files 

simulating varying numbers of Connected Vehicles (CVs) within the effective 

Basic Safety Message (BSM) range, ranging from 100 CVs to 7000. Assuming that 

10% of them carried an abnormal flag, triggering the CIM, we randomly selected 

10 to 700 BSMs from the available BSM data to form the 70 input files. Taking 

into account a 25% capacity reserve, the runtime was set to be less than 0.075 

seconds. 

For testing purposes, a MacBook Pro and a NUC were chosen as hardware 

platforms. The MacBook Pro was equipped with an Apple M1 Pro chip featuring 

10 cores, 32GB memory, and macOS Ventura 13.1, used for testing on the 

ARM_64 architecture. The NUC, equipped with an Intel chip boasting 7 cores, 
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8GB memory, and running Windows 11, was utilized for testing on a different 

architecture. All codes were executed in the Visual Studio Code IDE version 

1.74.2. The compiler used for Mac was Apple clang version 14.0.0 (Target: 

arm64-apple-darwin22.2.0), and for the NUC, Ming64 was employed. Python 

version 3.9 was used. 

When the number of CVs exceeded 1000 (resulting in a CV penetration rate 

exceeding 0.14, as shown in Appendix C – Sample Results), the capacity of the 

NUC was no longer sufficient. On ARM_64, performance issues only occurred 

with Pandas sequential when the number of CVs exceeded 2500 (CV penetration 

rate exceeded 0.25, as shown in the figure), and with Pandas multiprocessing 

when the number of CVs exceeded 3500 (CV penetration rate exceeded 0.5, as 

shown in Figure 5). 

5.1.2 Scenario Configuration 
As mentioned earlier, the performance of IVC is influenced by factors such as 

chip architecture, programming language, and the parallelism module, all within 

the users' control range. Accordingly, testing scenarios were configured based on 

different selections of these abstractions. For chip architecture, the primary 

types for PCs and mobile devices currently include ARM_64 and X86_64. 

Regarding programming languages, Python and C were chosen, with Python 

being used for the sequential program of Collision Avoidance System (CIM) and C 

being known for its speed and widespread use. 

Given the need to handle tabular data, particularly in CIM's sequential program, 

two widely-used Python libraries—Pandas (for data frames and series) and 

Numpy (for numerical data stored in arrays)—were selected for performance 

comparison. Numpy, known for its memory efficiency, enables C libraries to 

operate on the same memory. To explore the performance of Pandas versus 

Numpy, both were included in the scenarios. 

For parallelism modules, Python's multiprocessing and C's OpenMP were 

included in the scenarios to leverage parallel programming capabilities. The 

testing scenarios are detailed in Table 5, with the aim of utilizing Python parallel 

programming libraries and extending heavy computations to C. 

TABLE 5. SCENARIO SETUP OF IVC PARALLEL COMPUTING TESTS 

Scenario Chip Architecture Language Parallelism Module 
1 ARM_64 Python: Pandas None 
2 ARM_64 Python: Pandas Multiprocessing 
3 ARM_64 Python: Numpy None 
4 ARM_64 Python: Numpy Multiprocessing 
5 ARM_64 C None 
6 ARM_64 C OpenMP 
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7 X_86_64 Python: Pandas None 
8 X_86_64 Python: Pandas Multiprocessing 
9 X_86_64 Python: Numpy None 

10 X_86_64 Python: Numpy Multiprocessing 
11 X_86_64 C None 
12 X_86_64 C OpenMP 

 

5.1.3 Test Results 
Excluding the scenarios deemed incapable (S1 and S2), as illustrated in 9.3 

Appendix C – Sample Results, the candidate scenarios were refined to Scenario 3 

through 6. Subsequent tests were conducted to ascertain the fastest scenario 

among the capable options. The results of 15 runs for scenarios 3 to 6 were 

averaged and presented in as Figure 7and Table 6. Notably, the outcomes reveal 

that Scenario 5 exhibited the shortest running time, indicating that employing C 

on ARM architecture represents the fastest hardware-software solution for the 

CIM model. 

 

 

FIGURE 6. EXECUTION TIME OF ALL SCENARIOS. 
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FIGURE 7. AVERAGE EXECUTION TIME OF SCENARIO 3 TO 6. 

 

TABLE 6. AVERAGE EXECUTION TIME OF SCENARIO 3 TO 6. 

N_CV S3_Numpy_Sequencial S4_Numpy_Multithreading S5_C_Sequencial S6_C_OpenMP 

100 0.00037618 0.00039701 0.00021555 0.00048691 
200 0.0006278 0.00066274 0.00040401 0.00068768 
300 0.00091147 0.00092614 0.00042075 0.00068067 
400 0.00116693 0.00242577 0.00059257 0.00080706 
500 0.00120098 0.00281097 0.00059716 0.00086295 
600 0.00146801 0.00147554 0.00069116 0.00107881 
700 0.00324532 0.00286123 0.00095795 0.00118876 
800 0.00422285 0.0069939 0.00499573 0.00736597 
900 0.00339616 0.00459367 0.00103703 0.00145898 
1000 0.00375341 0.00239828 0.0012018 0.00193734 
1100 0.00421241 0.0029459 0.00120867 0.00189303 
1200 0.00412151 0.00370491 0.00151504 0.00201797 
1300 0.00413102 0.00689872 0.00135786 0.00194823 
1400 0.00709357 0.00636341 0.00229295 0.00293517 
1500 0.00505778 0.00361713 0.00161853 0.00206482 
1600 0.00659817 0.0060202 0.01086928 0.00784216 
1700 0.00701656 0.0064436 0.00184089 0.00256166 
1800 0.00386368 0.00505366 0.00177991 0.00270373 
1900 0.00638371 0.00524933 0.00204767 0.00253048 
2000 0.00642845 0.00453205 0.00185722 0.00300344 
2100 0.00452328 0.00744322 0.00214489 0.00283408 
2200 0.00877123 0.00895325 0.00207504 0.00334992 
2300 0.00519767 0.0050756 0.00208824 0.00313733 
2400 0.00523845 0.00619318 0.0022426 0.00350714 
2500 0.00815277 0.00801045 0.00232366 0.00365728 
2600 0.00814398 0.00828927 0.00231625 0.00373872 
2700 0.00931892 0.00973814 0.00247366 0.0038118 
2800 0.00910473 0.00882055 0.00259752 0.00375961 
2900 0.00735723 0.00848298 0.00326271 0.00414349 
3000 0.00811946 0.00851868 0.00399947 0.00490901 
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3100 0.00679641 0.01324968 0.0030122 0.00404466 
3200 0.0099538 0.00861047 0.01322333 0.00875519 
3300 0.01048598 0.0095562 0.00293357 0.00452545 
3400 0.01119514 0.01259559 0.00383368 0.00522283 
3500 0.01170475 0.01117643 0.00308412 0.0047664 
3600 0.01174002 0.0087731 0.00424633 0.0051192 
3700 0.01174207 0.00915731 0.00332821 0.00502855 
3800 0.01365021 0.0106485 0.00338833 0.00508666 
3900 0.01089614 0.01427571 0.00337915 0.00523122 
4000 0.00950856 0.01040309 0.00349126 0.00533462 
4100 0.01213601 0.01013807 0.00355094 0.00556459 
4200 0.01278113 0.01237793 0.00362884 0.00548917 
4300 0.01229172 0.0129449 0.00399906 0.00530767 
4400 0.01071588 0.01375863 0.00396601 0.0052048 
4500 0.01163241 0.01495471 0.00424627 0.00581616 
4600 0.0167098 0.01179102 0.00395652 0.00624658 
4700 0.01407057 0.01542074 0.00415324 0.00608387 
4800 0.01624705 0.01727096 0.00902251 0.00764454 
4900 0.01855477 0.01355395 0.00445479 0.00618682 
5000 0.01434414 0.0172863 0.00462782 0.00623991 
5100 0.01474716 0.01537808 0.00522788 0.00786392 
5200 0.01601187 0.01572582 0.00482818 0.00688977 
5300 0.04119802 0.03925424 0.02044813 0.02353403 
5400 0.0152188 0.01872145 0.00488667 0.00679941 
5500 0.01685316 0.01377551 0.00521146 0.00812666 
5600 0.01523064 0.02000707 0.00492196 0.00700733 
5700 0.02127318 0.01949736 0.00568476 0.00753218 
5800 0.01958623 0.01707579 0.00491247 0.00717864 
5900 0.02087779 0.01757984 0.00509493 0.00730913 
6000 0.01695126 0.01942582 0.0051034 0.00719953 
6100 0.02139595 0.01875671 0.00525125 0.00755448 
6200 0.01806939 0.01703672 0.00519245 0.00782825 
6300 0.01482445 0.01563784 0.00545565 0.00784276 
6400 0.01789223 0.01613706 0.00528502 0.00824817 
6500 0.0173605 0.02133476 0.00585688 0.00822589 
6600 0.02113012 0.01844281 0.00543628 0.0077957 
6700 0.01932419 0.01844972 0.00560497 0.00832198 
6800 0.02394835 0.02482243 0.00617112 0.00920216 
6900 0.0201206 0.01718718 0.00610511 0.00889285 
7000 0.0197974 0.01916796 0.00573654 0.00858847 

 

5.1.4 Performance Evaluation  
The test results reveal distinctions in computation setups for the CIM. 

Specifically: 

• The execution times of ARM scenarios are faster than the corresponding 

X86 scenarios. 

• For the same ARM-based PC, Python Pandas scenarios are considerably 

slower than C, and Python Numpy scenarios are slightly slower than C. 

• On the same ARM-based PC, scenarios with parallel versions of Python 

Pandas and NumPy are faster than their sequential counterparts, while C 

with OpenMP is slower than without. 
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It is logical that the execution times of ARM scenarios are faster than their 

corresponding X86 scenarios, as depicted in Table 6, because the Mac M1 Pro is 

well-equipped and currently stands as one of the fastest PCs on the market. Our 

test indicates that this type of X86 is not sufficiently fast for the CIM. 

As illustrated in Figure 8, for the same ARM-based PC, Python Pandas scenarios 

are significantly slower than C, and Python Numpy scenarios are slightly slower 

than C. Python is an interpreted programming language, implying that the source 

code of a Python program is converted/interpreted into bytecode, which is then 

executed one instruction after another. In contrast, compiled languages like C 

and C++ require the entire program to be built and compiled ahead of time 

before execution. Consequently, Python is slower in execution than C. Another 

factor contributing to Python's slowness is its Global Interpreter Lock (GIL), 

which reduces the chances of race conditions with multiple threads but also 

prevents multiple threads from running in parallel. The Multiprocessing library 

can circumvent the GIL, thereby accelerating speedup. Ultimately, while Python 

is written in C and can be close to but not faster than C, Numpy, the fundamental 

Python library, is more memory-efficient and much faster in indexing than 

Pandas. However, Pandas is easier to use and has higher industry application. 
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FIGURE 8.EXECUTION TIME OF SCENARIO 1 TO 6. 

For both Pandas and NumPy, utilizing multiprocessing results in faster execution 

compared to the sequential approach. On the other hand, the OpenMP 

paradigm represents one of the most widely employed parallel programming 

models on desktop machines, particularly with C or C++. OpenMP operates 

under the single program multiple data (SPMD) parallelism model, assuming 

shared memory between threads and introducing overhead to the execution. 

The benefits of Data Level Parallelism (DLP) on speedup are contingent on the 

specific program. Users must identify the parallelizable sections of the program 

in advance. Amdahl’s law articulates that "the overall performance improvement 

gained by optimizing a single part of a system is limited by the fraction of time 

that the improved part is actually used”  (Mian, et al., 2014),as expressed in 

Equation 1, where 𝑓 is the fraction of operations in a computation that must be 

performed sequentially, and 𝑝 is the speedup of the part of the task that benefits 

from improved system resources. 

𝐬𝐩𝐞𝐞𝐝𝐮𝐩_𝐨𝐯𝐞𝐫𝐚𝐥𝐥 ≤
𝟏

𝐟 +
𝟏 − 𝐟

𝐩

 (𝟑)
 

 

Moreover, an additional factor is the advancement of the Apple M1 chip, which 

is a system-on-a-chip that already incorporates built-in optimized parallelism. 

Enforcing OpenMP may lead to less optimized parallelism in this context. 

ARM architecture is extensively utilized in smartphones, offering advantages 

such as low energy consumption and minimal heat generation. Coupled with its 

shorter running time, ARM can be an ideal choice for IVCs. Consequently, the 



Real-time Safety Diagnosis System for Connected Vehicles  
with Parallel Computing Architecture 

  
32 

recommended computational setup for the CIM is determined to be ARM 

architecture with the C programming language, leveraging the M1 chip's 

inherent parallelism. 

 

5.2 Parallel Computing of DAD  
Exclusively utilizing the BSM data, the DAD determines whether a CV is in abnormal 

driving status. The DAD consists of five modules: Module 1: Data Preprocessing and 

Selecting KPIs; Module 2: Learning Normal Behavior; Module 3: Detecting Outliers; 

Module 4: Determining Abnormal Driving Events; and Module 5: System Updating, as 

illustrated in Figure 9. In the O6 project, all these modules will be executed on the IVC. 

As discussed in in 5.1 Parallel Computing of CIM, ARM architecture is recommended as 

the hardware for the CIM model. This section presents the parallel computing 

implementation of the DAD running on ARM architecture. Similar to the CIM, a Mac Pro 

with an M1 chip and macOS Ventura 13.3.1 was employed for these computations. 

 

 

FIGURE 9. THE FLOWCHART OF DAD. 
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Since the DAD can operate offline, and the O6 system has mitigated the extensive data 

transfer observed in the F4, this section concentrates on the integration of GPU for 

parallel computing and assesses the suitability of OD ML packages. 

5.2.1 Test Data 
The Test Data used the historical BSMs of a selected CV used in F4 project, the 

attributes are as described in section 4.0 TASK 2: DATABASE CONSTRUCTION. As 

in F4, the longitudinal acceleration and lateral acceleration were found have 

some relationship with speed, as shown in the visualization of the raw data of 

Figure 10.  

 
 

(A) (B) 

FIGURE 10. THE SCATTER PLOT OF SPEED AND ACCELERATION. (A) LONGITUDINAL 

ACCELERATION AND SPEED. (B) LATERAL ACCELERATION AND SPEED 

5.2.2 Scenario Configuration 
Apple's M1 chip incorporates a built-in graphics GPU that facilitates parallel 

computing, utilizing the Metal Performance Shaders (MPS) framework as the 

Graphics and Compute API. PyTorch, an open-source ML framework based on 

the Python programming language and the Torch library, employs MPS as a 

backend for GPU acceleration on Mac systems with the M1 chip. PyTorch utilizes 

tensors to represent model inputs, outputs, and parameters, with the ability to 

run on GPUs and share memory with NumPy arrays, eliminating the need for 

data copying. For this task, PyTorch was installed on a Mac Pro with an M1 chip 

running macOS Ventura 13.3.1, and Jupyter Lab served as the integrated 

development environment (IDE). 

The test scenarios for this section were configured as follows: DAD on CPU, DAD 

on GPU, and the application of OD ML algorithms, including Angle-based Outlier 

Detector (ABOD), Cluster-based Local Outlier Factor (CBLOF), Histogram-based 

Outlier Score (HBOS), Isolation Forest (IF), and K Nearest Neighbors (KNN). 

TABLE 7. SCENARIO SETUP OF DAD PARALLEL COMPUTING TESTS 

 Algorithm Name Algorithm Type 
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1 ABOD ML open source 
2 CBLOF ML open source 
3 HBOS ML open source 
4 IF ML open source 
5 KNN ML open source 
6 DAD on CPU STRIDE F4  
7 DAD on GPU STRIDE O6  

 

5.2.3 Test Results 
As the OD ML algorithms output the number of outliers, thresholds and plots to 

show the outlier, as shown in Table 8 and Figure 11. 

TABLE 8. OUTPUT OF OD ALGORITHMS AND DAD MODELS 

 Algorith
m Name 

Outliers Threshold 

  Longitudinal Lateral Longitudinal Lateral 

1 ABOD 0 0 nan nan 
2 CBLOF 158345 158344 -

0.11175434977
913001 

-
0.1091907175736
9557 

3 HBOS 153140 
 

135949 -
1.90786343337
17992 

0.2580508062387
792 

4 IF 158348 0 
158335 

-
2.08012101255
44493e-17 

0.0 

5 KNN 142490 142490 -
0.00015036090
22556196 

-
0.0005055611805
69658 

6 DAD on 

CPU with 
multipro
cessing 

Output Alarm Once 
Detected 

Threshold Pannal 

7 DAD on 
GPU 

Output Alarm Once 
Detected 

Threshold Pannal 
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(1) 
ABO
D 
 

 
  

(2) 
CBLO
F 

  
(3) 
HBOS 
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(4) 
IF 

 
 

(5) 
KNN 

  
FIGURE 11. THE OUTPUT PLOTS OF OD ML ALGORITHMS 

The average execution times for DAD were approximately 13 seconds on CPU and 23 seconds 

on GPU when processing a dataset with 3 million instances. While calculations on the GPU 

demonstrate faster performance, the data loading time was significantly slower. This disparity 

raised from storing the data in CSV format, with loading CSV data to a tensor being notably 

slower than loading it to a Pandas DataFrame with multiprocessing. 

TABLE 9. THE EXECUTION TIME OF DADS 

 Total Execution Time Data Loading 
DAD on CPU with 
multiprocessing 13 seconds 

CSV to Pandas 
DataFrame 2 seconds 

DAD on GPU 23 seconds CSV to Tensor of Torch 20 seconds 

 

5.2.4 Performance Evaluation  
The OD ML algorithms yielded approximately 5 percent outliers of the total 

instances, as indicated in Table 10. This percentage resulted from setting the 

parameter "outliers_fraction" to 0.05. Similar to F4, the output thresholds 
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served as the threshold panel for real-time detection of abnormal driving. 

However, the thresholds generated by the ODs are not applicable to our system, 

lacking any association with transportation terms or phenomena. 

TABLE 10. THE OUTPUT OF OD ALGORITHMS 

Algorithm 

Name

Total 

Instance

Longitudinal
Longintudin

al Persentage
Lateral

lateral 

Persentage
Longitudinal Lateral

1 ABOD 3166950 0 0 0 nan nan

2 CBLOF 3166950 158345 0.04999921 158344 0.04999889 -0.1117543 -0.1091907

3 HBOS 3166950 153140 0.04835567 135949 0.04292742 -1.9078634 0.25805081

4 IF 3166950 158348 0.05000016 158335 0.04999605 -2.08E-17 0

5 KNN 3166950 142490 0.04499282 142490 0.04499282 -0.0001504 -0.0005056

Outliers Threshold

 

 

6.0 CONCLUSIONS 
The O6 project marks a substantial improvement over F4, driven by advancements in both 

system architecture and computing paradigm. Our journey commenced with an extensive 

literature review on parallel computing, revealing the prevailing trend in the automotive market 

towards flexible and lightweight CAVs. Recognizing the significant advancements in IVCs, we 

identified DSD as the future of parallel computing. 

Both F4 and O6 feature a two-tier hierarchical structure with an upper-tier core cloud and a 

lower tier consisting of CVs monitored by the core cloud. In F4, the core cloud manages the flag 

list of abnormal CVs and major DAD modules, while the IVC handles a portion of DAD in 

conjunction with the CIM. In contrast, O6 relocates the entire DAD to the IVC, assigning the 

core cloud exclusive responsibility for the flag list. 

F4's success relies on seamless cooperation between auto manufacturers, BSM central control, 

and government support—an identified challenge for the near future. Meanwhile, O6, while 

potentially susceptible to minor data loss and unsuitability for comprehensive traffic analysis, 

presents significant benefits in reducing data traffic and improving latency performance. 

Considering O6's advantages over its drawbacks and its alignment with the prevailing trend 

towards flexible and lightweight solutions, we adapted the O6 architecture to fully migrate DAD 

to the IVC. 

Moving from F4's sequential computation paradigm, O6 underwent a crucial upgrade to a 

parallel version, resulting in notable improvements in processing speed, efficiency, and 

scalability. We designed the DSD process with considerations at three levels of abstraction: chip 

architecture, programming language, and parallelism module. Testing configurations included 
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C, Python, and OpenMP on both Windows and MacOS platforms, specifically targeting the M1 

chip for MacOS, using Visual Studio Code. 

Our working datasets comprised BSM data from CV pilot studies, with performance evaluation 

utilizing crash data from the SHRPII NDS. Both datasets were in CSV format. In evaluating our 

DAD, we compared its performance in F4 and O6 with various established OD packages 

designed for outlier detection. The findings indicated that existing OD models fell short of 

meeting our system requirements. Focused on minimizing processing time and based on our 

working data, we concluded to employ ARM architecture, C programming language, and 

leverage the built-in parallelism of the ARM chip for CIM. For DAD, ARM architecture and 

Python language on the CPU with multiprocessing were deemed suitable for parallel 

computing. 

 

7.0 RECOMMENDATIONS AND FURTURE WORK 
This project's primary contribution lies in its innovative approach to configuring DSD for IVCs 

across three levels of abstraction: chip architecture, programming language, and the parallelism 

module. For the CIM of our system, we recommend utilizing ARM architecture, the C 

programming language, and leveraging the built-in parallelism of the ARM chip. For the DAD, 

we propose fully migrating DAD to IVC, employing ARM architecture, and using Python 

language on the CPU with multiprocessing for parallel computing. It is important to note that 

these recommendations are based on datasets in CSV format, and if binary format data is used, 

which is the format of the BSM in real-world operation, additional testing is necessary. 

Several significant challenges lie ahead for future work on DSD and IVC. These challenges 

include understanding emerging trends in the IVC market, exploring the integration of 

automated and connected vehicles, assessing the impact of connected and automated vehicles 

on intelligent transportation systems, and examining how market players would adopt DSD. 

Regarding technologies, thoughtful consideration is needed to address challenges related to 

potential data loss in the event of CV malfunctions and evolving demands for comprehensive 

traffic analysis in the future. 

There is also considerable future work anticipated for DAD. Recognizing that driving behaviors 

are complex processes involving actions controlled by both conscious and subconscious aspects 

of the human brain, relying solely on the vehicle's footprint to determine behavior status may 

be insufficient. When scoring outliers, the relative impacts of different key performance 

indicators lack clarity, and auto-tuning was not possible due to a lack of data. 

The scope of this project does not encompass the data path, which involves the vehicle cloud, 

and remains an open research problem representing one of the most significant challenges for 

CAV development. Further research and development in the data path are anticipated for the 
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realization of our system. While this project only scratches the surface, it serves as a case that 

showcases the initial research conducted on DSD for IVC. 
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9. APPENDICES   
9.1 Appendix A – Acronyms, abbreviations, etc. 
 

AASHTO -- American Association of State Highway and Transportation Officials  

ACC -- adaptive cruise control 

ADAS -- advanced driver assistance systems  

AV -- autonomous vehicle  

BSM -- basic safety message 

CIM -- conflict detection model  

CPU – central processing unit 

CSV -- comma-separated values  

CV -- connected vehicle 

DA -- driving anomaly  

DVU -- driver-vehicle unit 

ESA -- emergency steering assistance 

FCW -- forward collision warning  

FHWA -- Federal Highway Administration  

GPS -- Global Positioning System  

GPU -- graphic processing unit 

ITS -- intelligent transportation system  

ITS -- intelligent transportation system  

IVC – in-vehicle computer 

KPI -- key performance indicator 

LDW -- lane departure warning  

MTC -- margin to collision 

ML – machine learning 

NDS -- Naturalistic Driving Study  
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NHTSA -- National Highway Traffic Safety Administration  

OBU -- on-board unit  

OD – outlier detection 

SHRP II -- the Strategic Highway Research Program 

SPMD -- Safety Pilot Model Deployment (SPMD) 

US DOT -- United States Department of Transportation  

V2X -- vehicle-to-everything 

 

9.2 Appendix B – Associated websites, data, etc., produced 
 

https://insight.shrp2nds.us/login/auth 

https://www.its.dot.gov/pilots/ 

 

9.3 Appendix C – Sample Results 
 

TABLE 11. SAMPLE RESULTS OF CIM TESTS 

 

https://insight.shrp2nds.us/login/auth
https://www.its.dot.gov/pilots/
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9.4 Appendix C – Summary of Accomplishments 
 

Senario 1 2 3 4 5 6 7 8 9 10 11

Chip ArchitectureARM_64 ARM_64 ARM_64 ARM_64 ARM_64 ARM_64 X_86_64 X_86_64 X_86_64 X_86_64 X_86_64

Language Python: PandasPython: PandasPython: NumpyPython: NumpyC C Python: PandasPython: PandasPython: NumpyPython: NumpyC C

Parallelism 

Module None

Multi-

processing None

Multi-

processing None OpenMP None

Multi-

processing None

Multi-

processing None OpenMP

Number of 

CVs

100 0.00429201 0.00332403 0.00040698 0.00067616 0.00040698 0.00033522 0.01000428 0.42237091 0.0049665 0.007448196 0.04725337 0.02999187

200 0.00748396 0.0053091 0.00056028 0.00081587 0.00056028 0.00047421 0.02094364 0.02293873 0.03153634 0.027921677 0.04986644 0.04240489

300 0.01085591 0.00771785 0.00082994 0.00211692 0.00082994 0.00041032 0.03191423 0.03291106 0.00997353 0.011114597 0.07082629 0.0603807

400 0.0144062 0.00942016 0.00096703 0.0013268 0.00096703 0.00052214 0.03195238 0.03937244 0.01132965 0.010575056 0.09146738 0.07830667

500 0.01669312 0.01131201 0.00116611 0.00198483 0.00116611 0.00051785 0.0379293 0.04665184 0.01492238 0.015585899 0.09450936 0.0882802

600 0.01969886 0.01348829 0.00134683 0.00166297 0.00134683 0.00074196 0.04585123 0.05714822 0.01486421 0.018205404 0.11897254 0.10922432

700 0.0219121 0.01606083 0.00185299 0.00181794 0.00185299 0.00141501 0.05291629 0.06013083 0.01892138 0.022853136 0.13623095 0.12899113

800 0.02668405 0.02652001 0.00253701 0.14537883 0.00253701 0.002424 0.05982566 0.07143044 0.02166271 0.023399353 0.1381712 0.13116503

900 0.02828598 0.02003813 0.00205708 0.00246119 0.00205708 0.00090909 0.06910825 0.08158398 0.02876735 0.025264263 0.18258572 0.15561771

1000 0.03151202 0.02217722 0.002069 0.00315118 0.002069 0.00094604 0.12100649 0.1173737 0.14495349 0.153775215 0.18631101 0.17424822

1100 0.03502989 0.02435803 0.00229812 0.00328922 0.00229812 0.00105023 0.11597252 0.13612103 0.15599346 0.163504839 0.26481223 0.2264719

1200 0.03716707 0.02656794 0.00609803 0.03028297 0.00609803 0.00109482 0.1209352 0.12613964 0.16299796 0.168321133 0.26494193 0.22693276

1300 0.04067302 0.02855802 0.00272107 0.03237104 0.00272107 0.00131679 0.13162899 0.12879753 0.18548393 0.184026003 0.25668073 0.25335836

1400 0.04358602 0.03031683 0.00308394 0.02391315 0.00308394 0.00235295 0.14062428 0.15455627 0.18382478 0.189732075 0.31196404 0.27647924

1500 0.0453701 0.03273988 0.0034492 0.00369716 0.0034492 0.00145817 0.14261174 0.1595521 0.20149493 0.214132547 0.27720904 0.25530648

1600 0.04923391 0.03453326 0.00548077 0.00366902 0.00548077 0.00181794 0.16057396 0.17607522 0.20114112 0.211987972 0.35357213 0.34597898

1700 0.05234599 0.03706384 0.00485778 0.00403214 0.00485778 0.00159693 0.17008185 0.18514919 0.23613167 0.245057344 0.39316535 0.36128139

1800 0.05502319 0.03887391 0.04587793 0.00403118 0.04587793 0.00157213 0.17810822 0.20143437 0.24134612 0.260811567 0.37075448 0.32193041

1900 0.05624127 0.04099798 0.003865 0.00404096 0.003865 0.0016439 0.19704866 0.19946647 0.25033164 0.286137342 0.41273069 0.37731099

2000 0.06018209 0.04334688 0.02271175 0.00474286 0.02271175 0.00202894 0.20320582 0.20744467 0.25274277 0.269272089 0.38930583 0.35352397

2100 0.06390095 0.04583287 0.00509501 0.00546098 0.00509501 0.00185394 0.20765328 0.2179873 0.28843451 0.299110174 0.41801858 0.40740204

2200 0.06696868 0.04690409 0.02555323 0.03523827 0.02555323 0.00209403 0.21573567 0.21374846 0.28095841 0.301294327 0.47151041 0.41031218

2300 0.06888318 0.04974008 0.00499296 0.00559282 0.00499296 0.00197506 0.2354722 0.23235106 0.31105065 0.326141357 0.47870421 0.44242859

2400 0.07221198 0.05184412 0.00591779 0.00553012 0.00591779 0.00213003 0.23475385 0.2315731 0.31867313 0.339980602 0.50282359 0.47680211

2500 0.07550097 0.05370903 0.00506902 0.00529909 0.00506902 0.00221801 0.23958158 0.23113537 0.08731699 0.091241121 0.49235654 0.44285512

2600 0.07803607 0.05612493 0.00566602 0.04267502 0.00566602 0.00234413 0.26354957 0.25238514 0.06856537 0.072802067 0.53151226 0.50442815

2700 0.0794251 0.05800605 0.00529623 0.00573301 0.00529623 0.00255013 0.26410007 0.25739884 0.07271957 0.078794241 0.55112195 0.51250148

2800 0.08438015 0.05989313 0.00580907 0.00655913 0.00580907 0.00261712 0.27882576 0.28970337 0.06973648 0.079763651 0.57380581 0.51705551

2900 0.08534122 0.06212306 0.0058639 0.00626516 0.0058639 0.00581717 0.28030658 0.29051495 0.07081032 0.077032328 0.56930375 0.52127504

3000 0.08858895 0.06606412 0.00646615 0.00709009 0.00646615 0.0060401 0.25731134 0.26477313 0.07552624 0.082663059 0.61696768 0.56082106

3100 0.09173393 0.06655526 0.00858307 0.00681686 0.00858307 0.00291395 0.22984457 0.24993563 0.08187342 0.083248854 0.63488913 0.58375812

3200 0.09356594 0.0682528 0.00805092 0.00680614 0.00805092 0.0027051 0.24381566 0.27155805 0.0897646 0.08727622 0.68250275 0.60802078

3300 0.09818721 0.07070637 0.00664878 0.00696206 0.00664878 0.00271606 0.24830914 0.28316426 0.0829246 0.093607187 0.70081687 0.63822627

3400 0.100703 0.072649 0.00769687 0.0073328 0.00769687 0.00361109 0.25926304 0.29145908 0.09075427 0.094763041 0.7255621 0.6684916

3500 0.10507798 0.07501388 0.02608299 0.00716496 0.02608299 0.00351906 0.26723337 0.28853798 0.08828092 0.096373558 0.70801377 0.67594814

3600 0.10738468 0.07719016 0.04316306 0.00761127 0.04316306 0.00336099 0.27160835 0.30055833 0.08967853 0.10043931 0.74398541 0.70848989

3700 0.10955191 0.07916379 0.00743914 0.00840497 0.00743914 0.00308108 0.27563572 0.30564761 0.09872246 0.097474813 0.7554512 0.70304918

3800 0.11369991 0.08129668 0.03263998 0.0426681 0.03263998 0.00350094 0.28411269 0.31417251 0.09733391 0.104615927 0.76152325 0.68849373

3900 0.11545897 0.083606 0.00978899 0.00844002 0.00978899 0.00343895 0.29102874 0.31859159 0.09759212 0.105899811 0.76780462 0.76397443

4000 0.11907315 0.0855701 0.00822473 0.00804925 0.00822473 0.00410819 0.29966378 0.33915305 0.10105801 0.111937523 0.86891389 0.85162234

4100 0.12264919 0.08797002 0.00916791 0.04037595 0.00916791 0.00425196 0.3029201 0.35322428 0.10399985 0.111816883 0.75805068 0.76595831

4200 0.12462425 0.08988309 0.00908804 0.00901413 0.00908804 0.0040791 0.29707432 0.36963272 0.10570931 0.110432625 0.7802484 0.78466702
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	ABSTRACT 
	 
	The primary aim of this project is to enhance our system from the previous STRIDE F4 project to a parallel computing version. The original F4 system, designated as Automatic Safety Diagnosis in Connected Vehicle (CV) Environment, established a computational pipeline for diagnosing near-crash events exclusively using Basic Safety Messages (BSMs). It was implemented using a sequential computing paradigm. The O6 project was conceived to expedite the system by transitioning it to a parallel version. 
	The F4 system comprised a driving anomaly detection model (DAD), a conflict identification model (CIM), and the data-path connecting them. The DAD was primarily situated in the core cloud, while the CIM was positioned within the CVs. Throughout the O6 process, notable advancements in in-vehicle computers (IVCs) were uncovered. In order to align our system with real-world operations, we opted to fully migrate the DAD component to the IVCs. 
	Recognizing Domain-Specific Design (DSD) as the future of parallel computing, we propose configuring DSD for IVCs based on three levels of abstractions: selecting the appropriate chip architecture, programming language, and parallelism module. For the CIM of our system, we recommend utilizing ARM architecture, the C programming language, and leveraging the built-in parallelism of the ARM chip. As for the DAD, we advocate for a complete migration to IVC, utilizing ARM architecture, the Python language on the
	 
	Keywords:  
	parallel computing, connected vehicle, Python, C, ARM, OpenMP, in-vehicle computer, Domain-Specific Design. 
	  
	EXECUTIVE SUMMARY 
	The aim of this project is to enhance the system from the prior STRIDE F4 project to a parallel computing version. The F4 system, titled as Automatic Safety Diagnosis in the Connected Vehicle Environment, aimed to establish a computational pipeline for diagnosing near-crash events by processing BSMs generated within the CV environment. The F4 system architecture included two components: the DAD, primarily situated in the core cloud, and the CIM, located within the CVs. 
	A near-crash event was defined as a situation meeting two conditions: (a) the presence of a conflict and (b) at least one of the drivers exhibiting abnormal driving status. The original F4 project utilized a sequential computing paradigm. However, with the growing market penetration of connected vehicles, the demand for faster data processing and transmission has increased, necessitating the adoption of parallel computing. 
	To initiate the project, an extensive study explored literature and real-world applications of parallel computing. This research unveiled significant advancements in IVCs in recent years and emphasized DSD as the future of parallel computing. 
	To align our system with real-world operations, we adjusted the system architecture and fully migrated the DAD to the IVC. This required significant effort to determine the appropriate configuration for parallel computing on the IVC. We decided to configure DSD on three levels of abstraction: chip architecture, programming language, and the parallelism module. Based on system performance, we recommend utilizing ARM architecture, C programming language, and leveraging the built-in parallelism of the ARM chip
	During testing, the O6 system underwent evaluation using various programming languages, including C, Python, and OpenMP, on both Windows and MacOS platforms, specifically with the Apple M1 chip. The testing dataset included BSM data from connected vehicle pilot studies, and system performance was also assessed using the SHARPII naturalistic driving study crash data. 
	Additionally, to gauge the applicability and effectiveness of our DAD, comparison tests were conducted on selected major Machine Learning (ML) packages for Object Detection (OD) using our working data. The results revealed that these packages were unable to meet our system's requirements. 
	 
	 
	 
	1.0 INTRODUCTION 
	Traffic accidents contribute significantly to traffic congestion and travel delays. Issuing a warning message to drivers as a hazardous situation approaching can prompt them to take necessary maneuvers and prevent accidents. Our previous STRIDE project, F4—Automatic Safety Diagnosis in Connected Vehicle Environment—established a cloud-based system capable of delivering timely accident warnings within the CV environment. 
	As the automotive industry progresses in vehicle connectivity and automation, the distribution of computing tasks among central hubs, roadside infrastructure, and mobile units becomes a critical consideration. The Intelligent Transportation System (ITS) is evolving with the widespread use of CVs, leading to the generation of massive data. The safety diagnosis application must have the capacity to process this Big Data effectively. The adoption of parallel computing technology to expedite data processing and
	The O6 research was initiated to implement parallel computing in both the cloud and the in-vehicle subsystem. This approach aims to enhance the system's capability to handle the substantial data generated by CVs and ensure efficient safety diagnosis in real-time scenarios. 
	1.1 Objective  
	The goal of this research is to transition our preceding STRIDE F4 study from a sequential version to a parallel version through the incorporation of cutting-edge parallel computing techniques. 
	 
	1.2 Scope 
	 The computational pipeline represents an automatic safety diagnosis system in the Connected Vehicle CV environment. In Project F4, the system comprised the DAD in the cloud, edge computing, all CVs under its surveillance, and the datapath connecting them. 
	 The computational pipeline represents an automatic safety diagnosis system in the Connected Vehicle CV environment. In Project F4, the system comprised the DAD in the cloud, edge computing, all CVs under its surveillance, and the datapath connecting them. 
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	  illustrates the concept of the ASDSCE. The datapath involves communication between the vehicle and the cloud, posing an open research problem and presenting a significant challenge in CV research. However, it's important to note that the datapath is beyond the study scope of this project. 

	 
	Figure
	FIGURE 1. THE CONCEPT OF THE ASDSCE 
	 
	1.3 The Practical Significance of This Study  
	 In a traffic safety diagnosis system, parallel computing is essential to guarantee real-time processing and analysis of data. This research has the potential to elevate the technological capabilities of our system to align with the requirements of future modern transportation systems. 
	1.4 The Expected Final Products  
	 The final product is a parallelized version of the computational pipeline for the automatic safety diagnosing system. This includes the incorporation of a MySQL database for handling working data, parallel computing utilizing OpenCL in the cloud subsystem, and parallel computing with OpenMP in the in-vehicle subsystem. The outcomes encompass a software package, a user's guide, instructional videos and webinars, publications, a final research report, and support for a PhD student. 
	2.0 LITERATURE REVIEW 
	2.1 A Glance of Transportation Big Data Analytics 
	Decades ago, the focus of transportation shifted from infrastructure expansion to operational efficiency and sustainability. ITS brought forth cutting-edge technologies in information systems, electronics, control, communications, sensing, robotics, and more, 
	evolving into a global phenomenon crucial for economic and social development (Lin, et al., 2017).The widespread deployment of Global Positioning System (GPS), sensors, CVs and other sources has resulted in the generation of Big Data in transportation, reaching the scale of Petabytes and Terabytes, with projections for continued growth in volume, speed, and complexity (Lin, et al., 2017).This massive influx of Big Data from ITS and CVs necessitates a well-designed computing architecture to support Quality-o
	In the realm of Big Data analytics, computation architectures vary based on the selection of data storage, compression, and processing tools from a pool of options, such as the Hadoop Distributed File System (HDFS), Relational Databases, Apache Parquet, Spark, and more. For instance, a platform with multiple engines was proposed to support various types of traffic data (Mian, et al., 2014). Godzilla introduced a conceptual architecture for real-time traffic data processing, employing a multi-cluster approac
	Despite these accomplishments, widely used parallelization algorithms for Big Data, such as peer-to-peer networks, MapReduce, and Spark platforms, have been reported to face significant issues related to speed-up, throughput, and scalability (An, et al., 2011).  To address dynamic resource allocation, Big Data workloads were designed to be malleable and task oriented. 
	 
	2.2 Parallel Computing  
	Parallel computing, a computational paradigm introduced in the late 20th century, involves the simultaneous execution of numerous calculations or processes to enhance processing speed and problem-solving capabilities (Gottlieb & Almsi, 1989). Positioned as the pinnacle of computing, parallel computing has been extensively applied to computationally intensive problems in science and engineering (Culler, et al., 1999). 
	The progression of computers from vacuum tubes in the 1950s to present-day nano-scale microchips with Very Large-Scale Integration (VLSI) has been remarkable. These microchips are now ubiquitous in personal computers, mobile devices, control systems, the internet, clouds, clusters, and high-performance computers. Over time, computers have become more user-friendly, evolving from a realm accessible to a few geniuses in the 1950s to highly trained individuals in the 1960s and 1970s, and finally, to almost 
	anyone since the 1980s. Concurrently, there has been a substantial shift in computer architecture from single processors to parallel processors (pheatt2008intel). This evolution is the result of collaborative efforts across the industry, involving vendors, programmers, and users working on hardware, architecture, algorithms, languages, and applications. Presently, parallel programming has become crucial for further advancements in computing  (Stoller, et al., 2019) (Asanovic, et al., 2009). 
	The objective of computing improvement has been to achieve higher speedup while balancing factors such as cost, heat dissipation, and energy consumption (Moore, 1998). Higher clock speeds translate to faster CPUs, and increased transistor counts result in greater computing power. From the 1950s to the 1970s, significant improvements were made in chip technology, an ongoing trend  (Saidu, 2015).  Gordon Moore's 1965 prediction, known as Moore's Law, foresaw a doubling of the number of transistors on a microc
	With Moore's Law approaching its limits, computer manufacturers are left with limited options for performance improvements on chips or processors, except for distributing the computation load among several processors using parallel computing  (Schauer, 2008).  Parallel computing involves using multiple compute resources simultaneously to solve computational problems (Gottlieb & Almsi, 1989). Originating in the early 1950s, parallel computing was initially considered high-end, defense-oriented, and particula
	Parallel computers are categorized by build into symmetric multiprocessor parallel computers, multicore parallel computers, distributed parallel computers, cluster parallel computers, massively parallel computers, and grid computers. In terms of processor-memory architecture, parallel computers are categorized into shared memory architecture (SMA) and distributed memory architecture (DMA). SMA involves building parallel computers from the combination of multiple microprocessors connected via specialized hig
	In terms of forms, computing parallelism can exist at three levels: bit-level, instruction-level, and data-level. Bit-level parallelism is based on the processor's size. Over time, processor word sizes have increased from 4-bit microprocessors to 8-bit, then 16-bit, 32-bit, and, in 1996, the introduction of 64-bit architectures that remain mainstream today. Larger processor word sizes reduce the number of instructions needed to perform tasks on large-sized data, enhancing overall performance. Instruction-le
	A fundamental requirement for any parallel programming system is to support abstraction, relieving users of the low-level complexities of parallel programming to work with familiar concepts from their own domain  (Darlington, 1996). However, the achievable level of parallelism is highly program specific. Some control over execution patterns and resource allocation is still necessary to ensure efficient execution. Reconciling these two conflicting requirements remains the goal of parallel computing systems. 
	2.3 DSD and IVC 
	DSD has been identified as a pivotal future direction for parallel computing. The 2019 National Science Foundation (NSF) Workshop on Future Directions for Parallel and Distributed Computing emphasized the centrality of parallel and distributed computing in computational innovation. It advocated for exploiting specialized hardware accelerators and adopting computational platforms through DSD to enhance performance. The overarching goal of DSD is to develop comprehensive algorithms-software-hardware solutions
	However, the challenge lies in building interfaces that embody appropriate abstractions for specific domains, posing difficulties at both the technological and industry levels. As the potential benefits of DSD are substantial, achieving a balance becomes more challenging due to potential disruptions caused by innovations. Any perturbation to the ecosystem—whether in applications, compilers, operating systems, or hardware—tends to have cascading effects, leading to an "inherent reluctance to change" througho
	IVCs, designed to withstand harsh vehicle environments, including shocks, vibrations, extreme temperatures, and electromagnetic interferences, have become a crucial component with the rise of vehicle telematics and camera-based surveillance systems. The global IVC market is estimated to reach 1.65 billion in 2029, offering hardware and software solutions for various automotive applications. Top players in this market include S&T AG, Lanner Electronics Inc. (Taiwan), Axiomtek (Taiwan), SINTRONES Technology C
	Transportation engineers and data scientists, as users of IVCs, face a dilemma due to inconsistencies in computing algorithms-software-hardware. Traditionally, computer programs were written sequentially, and when transitioning to parallel computing, the common practice was to rewrite the code in languages like C or C++ that have APIs developed for parallel computing, such as MPI, OpenMP, OpenCL, and CUDA. 
	Python, with its productivity and extensive library support, has become the preferred programming language for many transportation data scientists, especially in machine learning for data analysis. However, rewriting Python code to C involves breaking down 
	functionalities encapsulated in Python libraries. The C version of the same algorithm might be much longer than its Python counterpart. Complicating matters further, popular frameworks like TensorFlow, often used in artificial intelligence and machine learning applications for traffic and in-vehicle systems, recommend Python as the language of choice. Despite the availability of open-source parallel computing libraries for Python, such as Multiprocessing and Dask, Python's performance is compromised as it i
	Both C and Python, as general-purpose programming languages, have their pros and cons. C is simple, flexible, and machine-independent, while Python is easy to learn and features numerous libraries with built-in functions. C code is compiled directly to machine code, executed directly by the CPU, making it a low-level language close to machine. In contrast, Python code is first compiled to bytecode and then interpreted by a C program, making it a high-level language closer to humans. While focusing on the in
	Balancing the trade-off between productivity, portability, and performance poses a significant challenge. The direction parallel computation should take concerning data analysis on in-vehicle computers remains an open question. These issues are expected to be addressed in the context of DSD. 
	The literature suggests that, before the settlement of DSD, three levels of abstractions within the users' control significantly affect the performance of in-vehicle parallel computing: chip architecture, language, and parallelism module. 
	2.4 OD 
	In the field of data science, anomaly detection is also referred to as OD, denoting the identification of abnormal events in data, often termed outliers. Outliers represent data points that significantly deviate from the majority of the dataset. In ML programs, OD serves as an initial step in data cleaning. However, OD itself has evolved into a complex and challenging field with the development of ML algorithms. 
	ML algorithms are generally categorized into three fundamental types based on the availability of the dependent variable (or label) for the data under examination: Supervised Learning, Unsupervised Learning, and Reinforcement Learning. Supervised ML is applied to data that includes labels, unsupervised ML is designed for data lacking 
	labels, and reinforcement ML, essentially an unsupervised variant, can learn from the environment over time to create labels. 
	OD is typically considered unsupervised since outliers are usually rare, leading to a lack of labels for the data (Boukerche, 2020).  This inherent nature makes it challenging to define statistical and mathematical measures for deviation. Various packages of OD algorithms are available in different programming languages, each employing a unique method to measure deviation. Basic categories of unsupervised OD algorithms include Angle-Based OD (ABOD)  (Kriegel, et al., 2008),  Cluster-based Local Outlier Fact
	Selecting the most suitable OD ML algorithm is challenging, as datasets may vary in dimensions and features, and users may have different interests. Different OD algorithms employ distinct methods of measuring deviation, making the algorithm selection a critical aspect of OD processing. 
	3.0 TASK 1: ARCHITECTURAL DESIGN  
	Both F4 and O6 function as a real-time near-crash warning tool at the individual level, exclusively using BSMs. They define a near-crash as a traffic situation meeting two conditions: firstly, at least one of the vehicles in a driver-vehicle unit (DVU) pair exhibits abnormal driving conditions, and secondly, a conflict is present. The system architecture of O6 was derived from F4. 
	3.1 The Architecture of the F4 System 
	The F4 project was structured as a two-tier hierarchical system, comprising a cloud-based DAD and a CIM in each CV. The DAD served as a multi-dimensional anomaly detection model, with Modules 1, 2, 3, and 5 of the DAD processed in the cloud and Module 4 in the IVC alongside the CIM. Illustrated in 
	The F4 project was structured as a two-tier hierarchical system, comprising a cloud-based DAD and a CIM in each CV. The DAD served as a multi-dimensional anomaly detection model, with Modules 1, 2, 3, and 5 of the DAD processed in the cloud and Module 4 in the IVC alongside the CIM. Illustrated in 
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	,  the F4 system collected and stored BSM from the covered vehicles in the cloud. It determined thresholds for selected key performance indicators (KPIs) and broadcasted these thresholds through BSMs. Within the IVC, as real-time BSMs streamed in, the device compared the new values of each KPI with the received thresholds to identify outliers. The outliers were then analyzed to ascertain if their combination warranted an anomaly event, triggering the transmission of abnormal flags. Periodically, the system 
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	The primary considerations for the F4 architecture were the substantial volume of Big Data from BSMs and the computational capacity limitations of in-vehicle computers. Energy conservation was also a significant consideration, with offloading presenting a substantial reduction in energy usage, particularly beneficial for electric vehicles amid global warming concerns. The architecture's advantages lay in central control of all CVs while keeping the in-vehicle computers lightweight. However, a drawback was t
	In our O6 project, as we delved into the latest literature on computational platforms, we recognized that the progress in in-vehicle computers surpassed expectations. Consequently, we identified the need to update our system architecture to align with state-of-the-art parallel computing and CV technology. 
	3.2 The Architecture of the O6 System 
	The O6 system retains the two-tier architecture from the F4 project, comprising the top tier of the core cloud and the bottom tier of the ad-hoc vehicle cloud. In the core cloud, the flag list of abnormal CV IDs is stored and updated. DAD and CIM are processed in the IVCs. The IVCs broadcast and receive BSMs through On-board devices, forming the ad-hoc vehicle cloud, also known as vehicle-to-everything (V2X) BSMs. 
	The O6 system retains the two-tier architecture from the F4 project, comprising the top tier of the core cloud and the bottom tier of the ad-hoc vehicle cloud. In the core cloud, the flag list of abnormal CV IDs is stored and updated. DAD and CIM are processed in the IVCs. The IVCs broadcast and receive BSMs through On-board devices, forming the ad-hoc vehicle cloud, also known as vehicle-to-everything (V2X) BSMs. 
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	 illustrates the architecture of the O6 system, which has been updated based on the advancements in IVC technology to meet the system's requirements. 

	The O6 system architecture brings improvements in performance, including reduced latency and substantial data traffic reduction. However, it is not without its drawbacks: 
	1. Data Loss in CV Malfunction: 
	1. Data Loss in CV Malfunction: 
	1. Data Loss in CV Malfunction: 


	In the event of a CV malfunction within the O6 architecture, there is a risk of data loss, making it challenging to maintain the accuracy of the flag list. The system may struggle to assess abnormal CV situations accurately if malfunctions result in data loss, impacting the overall effectiveness of the safety diagnosis system. 
	2. Limitation for Future Development: 
	2. Limitation for Future Development: 
	2. Limitation for Future Development: 


	As traffic safety requirements evolve to encompass factors such as roadway geometry, real-time traffic signal control, traffic flow, and travel demand analysis, the O6 architecture may encounter limitations. Integrating these additional elements for comprehensive traffic analysis might prove challenging within the confines of the O6 architecture. 
	Realizing the F4 system is a complex task that necessitates seamless collaboration between auto manufacturers, BSM central control, and government support. This cooperation is identified as a significant challenge for successful implementation. Concurrently, the prevailing trend in the automotive market emphasizes the shift towards flexible and lightweight CAVs. The O6 architecture, with its advantages in latency performance and reduced data traffic, aligns well with the current trend favoring lightweight s
	Given the intricacies of the transportation industry, addressing challenges related to potential data loss during CV malfunctions and adapting to evolving demands for comprehensive traffic analysis require thoughtful consideration and strategic planning. However, it's essential to note that addressing these broader challenges extends beyond the scope of the current project. 
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	FIGURE 3. THE ARCHITECTURE OF THE O6 PROJECT. 
	4.0 TASK 2: DATABASE CONSTRUCTION 
	While the database plays a crucial role in our system, it is not the primary emphasis of the O6 Project. Fundamental stages of constructing the database were undertaken, encompassing tasks such as defining the database's purpose, segmenting the working data into tables, transforming the working data into columns, designating primary keys, establishing table relationships, and refining the database using normalization rules. 
	4.1 MySQL Database 
	A Database Management System (DBMS) serves as the repository for storing, accessing, modifying, and overseeing data, contributing to enhanced data integration, consistency, security, and efficiency. Numerous DBMS options exist in the market, including SQL, Oracle, MariaDB, MySQL, and PostgreSQL, with MySQL being notably popular. MySQL stands as a versatile relational DBMS owned by Oracle Corporation, operating as open-source software under the GNU General Public License, while also being available for propr
	preferred choice for various applications. 
	In our project, MySQL, as a relational database management system (RDBMS), was employed for handling BSMs. The installation of MySQL proved to be straightforward, and comprehensive documentation in the Oracle reference manual (Oracal, 2023) facilitated the process. For script development, the MySQL/Python Connector was generated, and database management was carried out using MySQL Workbench. 
	4.2 Database Schema 
	The database schema represents the logical configuration of a relational database, and for the BSM database, it was devised based on the characteristics of the working data and the requirements of the DAD. The working data for the O6 project consisted of the same BSM data collected during the F4 project. 
	BSM, a fundamental application of CVprograms, serves as the "Here I Am" data message. Originating from OBDs specifically designed for CVs, BSMs are broadcasted in the air at the dedicated 5.9 GHz spectrum with a frequency of 10 Hz (Henclewood, 2014). Nearby CVs and roadside units (RSUs) can receive these BSMs. The format of a BSM is defined by the Society of Automotive Engineers J2735: The Dedicated Short-Range Communications (DSRC) Message Set Dictionary. Typically, a BSM comprises two parts: the main part
	The BSMs utilized in our project were part of the test data from the Safety Pilot Model Deployment (SPMD) project conducted in Ann Arbor, Michigan, in October 2012. These data were obtained from the ITS DataHub (its.dot.gov/data/). The BsmP1 file, formatted as Comma Separated Values (CSV), had a size of 67GB and stored all BSMs generated by the 1527 test vehicles during the test. The original downloaded data file contained 19 attributes and over 500 million records. During the data pre-processing phase of t
	The BSMs utilized in our project were part of the test data from the Safety Pilot Model Deployment (SPMD) project conducted in Ann Arbor, Michigan, in October 2012. These data were obtained from the ITS DataHub (its.dot.gov/data/). The BsmP1 file, formatted as Comma Separated Values (CSV), had a size of 67GB and stored all BSMs generated by the 1527 test vehicles during the test. The original downloaded data file contained 19 attributes and over 500 million records. During the data pre-processing phase of t
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	TABLE 1. ATTRIBUTE LIST OF THE BSM DATA OF THE F4 PROJECT 
	Attributes Name 
	Attributes Name 
	Attributes Name 
	Attributes Name 
	Attributes Name 

	Type 
	Type 

	Units 
	Units 

	Description 
	Description 


	DevID 
	DevID 
	DevID 

	Integer 
	Integer 

	None 
	None 

	Test vehicle ID assigned by the CV program 
	Test vehicle ID assigned by the CV program 


	EpochT 
	EpochT 
	EpochT 

	Integer 
	Integer 

	seconds 
	seconds 

	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT) 
	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT) 


	Latitude 
	Latitude 
	Latitude 

	Float 
	Float 

	Degrees 
	Degrees 

	Current latitude of the test vehicle  
	Current latitude of the test vehicle  


	Longitude 
	Longitude 
	Longitude 

	Float 
	Float 

	Degrees 
	Degrees 

	Current longitude of the test vehicle 
	Current longitude of the test vehicle 


	Elevation 
	Elevation 
	Elevation 

	Float 
	Float 

	Meters 
	Meters 

	Current elevation of test vehicle according to GPS 
	Current elevation of test vehicle according to GPS 


	Speed 
	Speed 
	Speed 

	Real 
	Real 

	m/sec 
	m/sec 

	Test vehicle speed 
	Test vehicle speed 


	Heading 
	Heading 
	Heading 

	Real 
	Real 

	Degrees 
	Degrees 

	Test vehicle heading/direction 
	Test vehicle heading/direction 


	Ax 
	Ax 
	Ax 

	Real 
	Real 

	m/sec^2 
	m/sec^2 

	Longitudinal acceleration 
	Longitudinal acceleration 


	Ay 
	Ay 
	Ay 

	Real 
	Real 

	m/sec^2 
	m/sec^2 

	Lateral acceleration 
	Lateral acceleration 


	Az 
	Az 
	Az 

	Real 
	Real 

	m/sec^2 
	m/sec^2 

	Vertical acceleration 
	Vertical acceleration 


	Yawrate 
	Yawrate 
	Yawrate 

	Real 
	Real 

	Deg/sec 
	Deg/sec 

	Vehicle yaw rate  
	Vehicle yaw rate  




	 
	For the O6 project, a table named ID_flag was established to store vehicle IDs along with corresponding driving status flags, utilizing ID as the primary key. Another table named BSM was created to house historical BSM data, encompassing vehicle ID, time, latitude, longitude, speed, and longitudinal and lateral accelerations. In the BSM table, DevID serves as the primary key. The attributes of these tables are detailed in 
	For the O6 project, a table named ID_flag was established to store vehicle IDs along with corresponding driving status flags, utilizing ID as the primary key. Another table named BSM was created to house historical BSM data, encompassing vehicle ID, time, latitude, longitude, speed, and longitudinal and lateral accelerations. In the BSM table, DevID serves as the primary key. The attributes of these tables are detailed in 
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	. The ID in ID_flag and DevID in the BSM table function as foreign keys interchangeably. The entity-relationship (ER) diagram depicting these tables is presented in 
	Figure 4
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	. 

	To facilitate data insertion into the database, Oracle's standardized API, MySQL Connector/Python, was employed. Additionally, MySQL Workbench, an all-encompassing visual tool catering to data modeling, SQL development, and administration, was utilized for generating the ER diagram and managing the data. 
	 
	TABLE 2. DESCRIPTION OF TABLE ID_FLAG OF O6 
	Attributes Name 
	Attributes Name 
	Attributes Name 
	Attributes Name 
	Attributes Name 

	Type 
	Type 

	key 
	key 

	Units 
	Units 

	Description 
	Description 


	ID 
	ID 
	ID 

	Integer 
	Integer 

	PRI 
	PRI 

	None 
	None 

	Test vehicle ID assigned by the CV program 
	Test vehicle ID assigned by the CV program 


	Flag 
	Flag 
	Flag 

	Integer 
	Integer 

	 
	 

	None 
	None 

	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT) 
	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT) 




	    
	TABLE 3. DESCRIPTION OF TABLE BSM OF O6 
	Attributes Name 
	Attributes Name 
	Attributes Name 
	Attributes Name 
	Attributes Name 

	Type 
	Type 

	key 
	key 

	Units 
	Units 

	Description 
	Description 




	DevID 
	DevID 
	DevID 
	DevID 
	DevID 

	Integer 
	Integer 

	PRI 
	PRI 

	None 
	None 

	Test vehicle ID assigned by the CV program 
	Test vehicle ID assigned by the CV program 


	EpochT 
	EpochT 
	EpochT 

	Integer 
	Integer 

	 
	 

	seconds 
	seconds 

	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT) 
	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT) 


	Latitude 
	Latitude 
	Latitude 

	Float 
	Float 

	 
	 

	Degrees 
	Degrees 

	Current latitude of the test vehicle  
	Current latitude of the test vehicle  


	Longitude 
	Longitude 
	Longitude 

	Float 
	Float 

	 
	 

	Degrees 
	Degrees 

	Current longitude of the test vehicle 
	Current longitude of the test vehicle 


	Speed 
	Speed 
	Speed 

	Real 
	Real 

	 
	 

	m/sec 
	m/sec 

	Vehicle speed 
	Vehicle speed 


	AccX 
	AccX 
	AccX 

	Real 
	Real 

	 
	 

	m/sec^2 
	m/sec^2 

	Longitudinal acceleration 
	Longitudinal acceleration 


	AccY 
	AccY 
	AccY 

	Real 
	Real 

	 
	 

	m/sec^2 
	m/sec^2 

	Lateral acceleration 
	Lateral acceleration 
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	FIGURE 4. ER DIAGRAM OF THE DATABASE. 
	5.0 TASK 3: PARALLEL COMPUTING IMPLEMENTATION 
	Similar to the F4 project, the O6 system triggers a near-crash warning when a conflict arises between the ego CV and a neighboring CV, provided that any CV in the pair exhibits abnormal driving behavior. In the updated O6 architecture, both the DAD and CIM are executed within the IVC, leaving only the flag list of abnormal CVs stored in the core cloud. Consequently, the implementation of parallel computing is bifurcated into two distinct components: the CIM within the IVC, where the IVC serves as the primar
	5.1 Parallel Computing of CIM  
	In the O6 system, once a CV’s engine starts running, its Collision Impact Mitigation (CIM) module becomes operational and examines the flag list containing identification numbers of CVs identified with abnormal driving status. Upon receiving BSM of a new CV_B, CV_A checks the ID of CV_B to determine if CV_B is listed in the flag list. If either 
	CV_A or CV_B is found on the list, the CIM proceeds to assess whether the CV pair (CV_A and CV_B) warrants a conflict. This process occurs at the same frequency as BSM generation and is applied to all CVs. 
	For the CIM to effectively operate, it must have the capacity to process the maximum number of BSMs generated by nearby CVs. Given that BSMs are generated at a frequency of 10 Hz, the CIM risks overload if the entire computing time for one BSM per CV exceeds 0.1 seconds. Therefore, our research goal was to identify the optimal computational setup for the CIM, balancing capacity and execution speed, while considering factors such as market availability, energy consumption, and the global trends in computing 
	5.1.1 Test Data 
	As mentioned earlier, the test data utilized in this project were obtained from the Naturalistic Driving Study (NDS) conducted for the second Strategic Highway Research Program (SHRP 2). The NDS is a research initiative aimed at understanding the influence of driver performance and behavior on traffic safety. The Virginia Tech Transportation Institute (VTTI) serves as the technical coordination and study design contractor for the NDS and manages the InSight Data Access Website (Jafari, 2017). A sample datas
	As mentioned earlier, the test data utilized in this project were obtained from the Naturalistic Driving Study (NDS) conducted for the second Strategic Highway Research Program (SHRP 2). The NDS is a research initiative aimed at understanding the influence of driver performance and behavior on traffic safety. The Virginia Tech Transportation Institute (VTTI) serves as the technical coordination and study design contractor for the NDS and manages the InSight Data Access Website (Jafari, 2017). A sample datas
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	TABLE 4. SAMPLE INPUT DATA OF PROCESSED BSMS 
	vtti_timestamp 
	vtti_timestamp 
	vtti_timestamp 
	vtti_timestamp 
	vtti_timestamp 

	vtti.file_id 
	vtti.file_id 

	vtti.speed_network 
	vtti.speed_network 

	x_position 
	x_position 

	y_position 
	y_position 

	x_ego 
	x_ego 

	y_ego 
	y_ego 



	199500 
	199500 
	199500 
	199500 

	18539287 
	18539287 

	3 
	3 

	408 
	408 

	-1073 
	-1073 

	292 
	292 

	-1067 
	-1067 


	113400 
	113400 
	113400 

	44909777 
	44909777 

	0 
	0 

	0 
	0 

	0 
	0 

	73 
	73 

	-171 
	-171 


	17000 
	17000 
	17000 

	44909777 
	44909777 

	0 
	0 

	0 
	0 

	0 
	0 

	73 
	73 

	-171 
	-171 


	10567500 
	10567500 
	10567500 

	41894439 
	41894439 

	46 
	46 

	14779 
	14779 

	27624 
	27624 

	14665 
	14665 

	27464 
	27464 


	9783800 
	9783800 
	9783800 

	26026997 
	26026997 

	34 
	34 

	232345 
	232345 

	39413 
	39413 

	232490 
	232490 

	39364 
	39364 


	1027000 
	1027000 
	1027000 

	39534577 
	39534577 

	32 
	32 

	16996 
	16996 

	-1145 
	-1145 

	16995 
	16995 

	-1419 
	-1419 


	1871800 
	1871800 
	1871800 

	61805034 
	61805034 

	0 
	0 

	-9754 
	-9754 

	7404 
	7404 

	-9771 
	-9771 

	7386 
	7386 


	6000 
	6000 
	6000 

	44909777 
	44909777 

	0 
	0 

	0 
	0 

	0 
	0 

	73 
	73 

	-171 
	-171 


	2324200 
	2324200 
	2324200 

	55152798 
	55152798 

	0 
	0 

	-32326 
	-32326 

	-9433 
	-9433 

	-32252 
	-32252 

	-9205 
	-9205 




	 
	The maximum number of CVs were estimated using counting the CVs in the roadway network in the effective range of BSMs. Considering in the most congested condition, suppose the effective range of BSM is 1000 meters in radio, the area it covers3,140,000m2. In the condition of high density of road network, the road grids are of the size of 300 meters long, so every gird covers 300 *300 = 9,000m2 and 90000 m2 and can have road of 600 meters long. Therefore, the maximum road length in the effective range is abou
	 314000090000⁄∗ =21000 (𝑚)                                     (1) 
	Each CV occupy a street length of 40 feet /12 meters (20 feet for vehicle length and another 20 feet for safety spacing). Assuming all the roads are 4-lane road, the maximum number vehicle around 7000 CVs, as calculated in Equation (2). 21,000/12∗ 4 = 7000 (CVs)                                             (2) 
	Based on the assumptions, as shown in 
	Based on the assumptions, as shown in 
	Figure 5
	Figure 5

	, when the CV penetration rate reaches 0.14, in the most congested scenario the CIM on a single thread will be overloaded and experience malfunction. 

	 
	Figure
	FIGURE 5. THE RELATIONSHIP OF CIM CAPACITY (SEQUENTIAL) AND VARIOUS CV MARKET PENETRATION RATES. 
	To assess the consistency of scenario performance, we generated 70 input files simulating varying numbers of Connected Vehicles (CVs) within the effective Basic Safety Message (BSM) range, ranging from 100 CVs to 7000. Assuming that 10% of them carried an abnormal flag, triggering the CIM, we randomly selected 10 to 700 BSMs from the available BSM data to form the 70 input files. Taking into account a 25% capacity reserve, the runtime was set to be less than 0.075 seconds. 
	For testing purposes, a MacBook Pro and a NUC were chosen as hardware platforms. The MacBook Pro was equipped with an Apple M1 Pro chip featuring 10 cores, 32GB memory, and macOS Ventura 13.1, used for testing on the ARM_64 architecture. The NUC, equipped with an Intel chip boasting 7 cores, 
	8GB memory, and running Windows 11, was utilized for testing on a different architecture. All codes were executed in the Visual Studio Code IDE version 1.74.2. The compiler used for Mac was Apple clang version 14.0.0 (Target: arm64-apple-darwin22.2.0), and for the NUC, Ming64 was employed. Python version 3.9 was used. 
	When the number of CVs exceeded 1000 (resulting in a CV penetration rate exceeding 0.14, as shown in Appendix C – Sample Results), the capacity of the NUC was no longer sufficient. On ARM_64, performance issues only occurred with Pandas sequential when the number of CVs exceeded 2500 (CV penetration rate exceeded 0.25, as shown in the figure), and with Pandas multiprocessing when the number of CVs exceeded 3500 (CV penetration rate exceeded 0.5, as shown in 
	When the number of CVs exceeded 1000 (resulting in a CV penetration rate exceeding 0.14, as shown in Appendix C – Sample Results), the capacity of the NUC was no longer sufficient. On ARM_64, performance issues only occurred with Pandas sequential when the number of CVs exceeded 2500 (CV penetration rate exceeded 0.25, as shown in the figure), and with Pandas multiprocessing when the number of CVs exceeded 3500 (CV penetration rate exceeded 0.5, as shown in 
	Figure 5
	Figure 5

	). 

	5.1.2 Scenario Configuration 
	As mentioned earlier, the performance of IVC is influenced by factors such as chip architecture, programming language, and the parallelism module, all within the users' control range. Accordingly, testing scenarios were configured based on different selections of these abstractions. For chip architecture, the primary types for PCs and mobile devices currently include ARM_64 and X86_64. Regarding programming languages, Python and C were chosen, with Python being used for the sequential program of Collision A
	Given the need to handle tabular data, particularly in CIM's sequential program, two widely-used Python libraries—Pandas (for data frames and series) and Numpy (for numerical data stored in arrays)—were selected for performance comparison. Numpy, known for its memory efficiency, enables C libraries to operate on the same memory. To explore the performance of Pandas versus Numpy, both were included in the scenarios. 
	For parallelism modules, Python's multiprocessing and C's OpenMP were included in the scenarios to leverage parallel programming capabilities. The testing scenarios are detailed in 
	For parallelism modules, Python's multiprocessing and C's OpenMP were included in the scenarios to leverage parallel programming capabilities. The testing scenarios are detailed in 
	Table 5
	Table 5

	, with the aim of utilizing Python parallel programming libraries and extending heavy computations to C. 

	TABLE 5. SCENARIO SETUP OF IVC PARALLEL COMPUTING TESTS 
	Scenario 
	Scenario 
	Scenario 
	Scenario 
	Scenario 

	Chip Architecture 
	Chip Architecture 

	Language 
	Language 

	Parallelism Module 
	Parallelism Module 



	1 
	1 
	1 
	1 

	ARM_64 
	ARM_64 

	Python: Pandas 
	Python: Pandas 

	None 
	None 


	2 
	2 
	2 

	ARM_64 
	ARM_64 

	Python: Pandas 
	Python: Pandas 

	Multiprocessing 
	Multiprocessing 


	3 
	3 
	3 

	ARM_64 
	ARM_64 

	Python: Numpy 
	Python: Numpy 

	None 
	None 


	4 
	4 
	4 

	ARM_64 
	ARM_64 

	Python: Numpy 
	Python: Numpy 

	Multiprocessing 
	Multiprocessing 


	5 
	5 
	5 

	ARM_64 
	ARM_64 

	C 
	C 

	None 
	None 


	6 
	6 
	6 

	ARM_64 
	ARM_64 

	C 
	C 

	OpenMP 
	OpenMP 




	7 
	7 
	7 
	7 
	7 

	X_86_64 
	X_86_64 

	Python: Pandas 
	Python: Pandas 

	None 
	None 


	8 
	8 
	8 

	X_86_64 
	X_86_64 

	Python: Pandas 
	Python: Pandas 

	Multiprocessing 
	Multiprocessing 


	9 
	9 
	9 

	X_86_64 
	X_86_64 

	Python: Numpy 
	Python: Numpy 

	None 
	None 


	10 
	10 
	10 

	X_86_64 
	X_86_64 

	Python: Numpy 
	Python: Numpy 

	Multiprocessing 
	Multiprocessing 


	11 
	11 
	11 

	X_86_64 
	X_86_64 

	C 
	C 

	None 
	None 


	12 
	12 
	12 

	X_86_64 
	X_86_64 

	C 
	C 

	OpenMP 
	OpenMP 




	 
	5.1.3 Test Results 
	Excluding the scenarios deemed incapable (S1 and S2), as illustrated in 
	Excluding the scenarios deemed incapable (S1 and S2), as illustrated in 
	9.3 Appendix C – Sample Results
	9.3 Appendix C – Sample Results

	, the candidate scenarios were refined to Scenario 3 through 6. Subsequent tests were conducted to ascertain the fastest scenario among the capable options. The results of 15 runs for scenarios 3 to 6 were averaged and presented in as 
	Figure 7
	Figure 7

	and 
	Table 6
	Table 6

	. Notably, the outcomes reveal that Scenario 5 exhibited the shortest running time, indicating that employing C on ARM architecture represents the fastest hardware-software solution for the CIM model. 

	 
	 
	Figure
	FIGURE 6. EXECUTION TIME OF ALL SCENARIOS. 
	 
	Figure
	FIGURE 7. AVERAGE EXECUTION TIME OF SCENARIO 3 TO 6. 
	 
	TABLE 6. AVERAGE EXECUTION TIME OF SCENARIO 3 TO 6. 
	N_CV 
	N_CV 
	N_CV 
	N_CV 
	N_CV 

	S3_Numpy_Sequencial 
	S3_Numpy_Sequencial 

	S4_Numpy_Multithreading 
	S4_Numpy_Multithreading 

	S5_C_Sequencial 
	S5_C_Sequencial 

	S6_C_OpenMP 
	S6_C_OpenMP 



	100 
	100 
	100 
	100 

	0.00037618 
	0.00037618 

	0.00039701 
	0.00039701 

	0.00021555 
	0.00021555 

	0.00048691 
	0.00048691 


	200 
	200 
	200 

	0.0006278 
	0.0006278 

	0.00066274 
	0.00066274 

	0.00040401 
	0.00040401 

	0.00068768 
	0.00068768 


	300 
	300 
	300 

	0.00091147 
	0.00091147 

	0.00092614 
	0.00092614 

	0.00042075 
	0.00042075 

	0.00068067 
	0.00068067 


	400 
	400 
	400 

	0.00116693 
	0.00116693 

	0.00242577 
	0.00242577 

	0.00059257 
	0.00059257 

	0.00080706 
	0.00080706 


	500 
	500 
	500 

	0.00120098 
	0.00120098 

	0.00281097 
	0.00281097 

	0.00059716 
	0.00059716 

	0.00086295 
	0.00086295 


	600 
	600 
	600 

	0.00146801 
	0.00146801 

	0.00147554 
	0.00147554 

	0.00069116 
	0.00069116 

	0.00107881 
	0.00107881 


	700 
	700 
	700 

	0.00324532 
	0.00324532 

	0.00286123 
	0.00286123 

	0.00095795 
	0.00095795 

	0.00118876 
	0.00118876 


	800 
	800 
	800 

	0.00422285 
	0.00422285 

	0.0069939 
	0.0069939 

	0.00499573 
	0.00499573 

	0.00736597 
	0.00736597 


	900 
	900 
	900 

	0.00339616 
	0.00339616 

	0.00459367 
	0.00459367 

	0.00103703 
	0.00103703 

	0.00145898 
	0.00145898 


	1000 
	1000 
	1000 

	0.00375341 
	0.00375341 

	0.00239828 
	0.00239828 

	0.0012018 
	0.0012018 

	0.00193734 
	0.00193734 


	1100 
	1100 
	1100 

	0.00421241 
	0.00421241 

	0.0029459 
	0.0029459 

	0.00120867 
	0.00120867 

	0.00189303 
	0.00189303 


	1200 
	1200 
	1200 

	0.00412151 
	0.00412151 

	0.00370491 
	0.00370491 

	0.00151504 
	0.00151504 

	0.00201797 
	0.00201797 


	1300 
	1300 
	1300 

	0.00413102 
	0.00413102 

	0.00689872 
	0.00689872 

	0.00135786 
	0.00135786 

	0.00194823 
	0.00194823 


	1400 
	1400 
	1400 

	0.00709357 
	0.00709357 

	0.00636341 
	0.00636341 

	0.00229295 
	0.00229295 

	0.00293517 
	0.00293517 


	1500 
	1500 
	1500 

	0.00505778 
	0.00505778 

	0.00361713 
	0.00361713 

	0.00161853 
	0.00161853 

	0.00206482 
	0.00206482 


	1600 
	1600 
	1600 

	0.00659817 
	0.00659817 

	0.0060202 
	0.0060202 

	0.01086928 
	0.01086928 

	0.00784216 
	0.00784216 


	1700 
	1700 
	1700 

	0.00701656 
	0.00701656 

	0.0064436 
	0.0064436 

	0.00184089 
	0.00184089 

	0.00256166 
	0.00256166 


	1800 
	1800 
	1800 

	0.00386368 
	0.00386368 

	0.00505366 
	0.00505366 

	0.00177991 
	0.00177991 

	0.00270373 
	0.00270373 


	1900 
	1900 
	1900 

	0.00638371 
	0.00638371 

	0.00524933 
	0.00524933 

	0.00204767 
	0.00204767 

	0.00253048 
	0.00253048 


	2000 
	2000 
	2000 

	0.00642845 
	0.00642845 

	0.00453205 
	0.00453205 

	0.00185722 
	0.00185722 

	0.00300344 
	0.00300344 


	2100 
	2100 
	2100 

	0.00452328 
	0.00452328 

	0.00744322 
	0.00744322 

	0.00214489 
	0.00214489 

	0.00283408 
	0.00283408 


	2200 
	2200 
	2200 

	0.00877123 
	0.00877123 

	0.00895325 
	0.00895325 

	0.00207504 
	0.00207504 

	0.00334992 
	0.00334992 


	2300 
	2300 
	2300 

	0.00519767 
	0.00519767 

	0.0050756 
	0.0050756 

	0.00208824 
	0.00208824 

	0.00313733 
	0.00313733 


	2400 
	2400 
	2400 

	0.00523845 
	0.00523845 

	0.00619318 
	0.00619318 

	0.0022426 
	0.0022426 

	0.00350714 
	0.00350714 


	2500 
	2500 
	2500 

	0.00815277 
	0.00815277 

	0.00801045 
	0.00801045 

	0.00232366 
	0.00232366 

	0.00365728 
	0.00365728 


	2600 
	2600 
	2600 

	0.00814398 
	0.00814398 

	0.00828927 
	0.00828927 

	0.00231625 
	0.00231625 

	0.00373872 
	0.00373872 


	2700 
	2700 
	2700 

	0.00931892 
	0.00931892 

	0.00973814 
	0.00973814 

	0.00247366 
	0.00247366 

	0.0038118 
	0.0038118 


	2800 
	2800 
	2800 

	0.00910473 
	0.00910473 

	0.00882055 
	0.00882055 

	0.00259752 
	0.00259752 

	0.00375961 
	0.00375961 


	2900 
	2900 
	2900 

	0.00735723 
	0.00735723 

	0.00848298 
	0.00848298 

	0.00326271 
	0.00326271 

	0.00414349 
	0.00414349 


	3000 
	3000 
	3000 

	0.00811946 
	0.00811946 

	0.00851868 
	0.00851868 

	0.00399947 
	0.00399947 

	0.00490901 
	0.00490901 




	3100 
	3100 
	3100 
	3100 
	3100 

	0.00679641 
	0.00679641 

	0.01324968 
	0.01324968 

	0.0030122 
	0.0030122 

	0.00404466 
	0.00404466 


	3200 
	3200 
	3200 

	0.0099538 
	0.0099538 

	0.00861047 
	0.00861047 

	0.01322333 
	0.01322333 

	0.00875519 
	0.00875519 


	3300 
	3300 
	3300 

	0.01048598 
	0.01048598 

	0.0095562 
	0.0095562 

	0.00293357 
	0.00293357 

	0.00452545 
	0.00452545 


	3400 
	3400 
	3400 

	0.01119514 
	0.01119514 

	0.01259559 
	0.01259559 

	0.00383368 
	0.00383368 

	0.00522283 
	0.00522283 


	3500 
	3500 
	3500 

	0.01170475 
	0.01170475 

	0.01117643 
	0.01117643 

	0.00308412 
	0.00308412 

	0.0047664 
	0.0047664 


	3600 
	3600 
	3600 

	0.01174002 
	0.01174002 

	0.0087731 
	0.0087731 

	0.00424633 
	0.00424633 

	0.0051192 
	0.0051192 


	3700 
	3700 
	3700 

	0.01174207 
	0.01174207 

	0.00915731 
	0.00915731 

	0.00332821 
	0.00332821 

	0.00502855 
	0.00502855 


	3800 
	3800 
	3800 

	0.01365021 
	0.01365021 

	0.0106485 
	0.0106485 

	0.00338833 
	0.00338833 

	0.00508666 
	0.00508666 


	3900 
	3900 
	3900 

	0.01089614 
	0.01089614 

	0.01427571 
	0.01427571 

	0.00337915 
	0.00337915 

	0.00523122 
	0.00523122 


	4000 
	4000 
	4000 

	0.00950856 
	0.00950856 

	0.01040309 
	0.01040309 

	0.00349126 
	0.00349126 

	0.00533462 
	0.00533462 


	4100 
	4100 
	4100 

	0.01213601 
	0.01213601 

	0.01013807 
	0.01013807 

	0.00355094 
	0.00355094 

	0.00556459 
	0.00556459 


	4200 
	4200 
	4200 

	0.01278113 
	0.01278113 

	0.01237793 
	0.01237793 

	0.00362884 
	0.00362884 

	0.00548917 
	0.00548917 


	4300 
	4300 
	4300 

	0.01229172 
	0.01229172 

	0.0129449 
	0.0129449 

	0.00399906 
	0.00399906 

	0.00530767 
	0.00530767 


	4400 
	4400 
	4400 

	0.01071588 
	0.01071588 

	0.01375863 
	0.01375863 

	0.00396601 
	0.00396601 

	0.0052048 
	0.0052048 


	4500 
	4500 
	4500 

	0.01163241 
	0.01163241 

	0.01495471 
	0.01495471 

	0.00424627 
	0.00424627 

	0.00581616 
	0.00581616 


	4600 
	4600 
	4600 

	0.0167098 
	0.0167098 

	0.01179102 
	0.01179102 

	0.00395652 
	0.00395652 

	0.00624658 
	0.00624658 


	4700 
	4700 
	4700 

	0.01407057 
	0.01407057 

	0.01542074 
	0.01542074 

	0.00415324 
	0.00415324 

	0.00608387 
	0.00608387 


	4800 
	4800 
	4800 

	0.01624705 
	0.01624705 

	0.01727096 
	0.01727096 

	0.00902251 
	0.00902251 

	0.00764454 
	0.00764454 


	4900 
	4900 
	4900 

	0.01855477 
	0.01855477 

	0.01355395 
	0.01355395 

	0.00445479 
	0.00445479 

	0.00618682 
	0.00618682 


	5000 
	5000 
	5000 

	0.01434414 
	0.01434414 

	0.0172863 
	0.0172863 

	0.00462782 
	0.00462782 

	0.00623991 
	0.00623991 


	5100 
	5100 
	5100 

	0.01474716 
	0.01474716 

	0.01537808 
	0.01537808 

	0.00522788 
	0.00522788 

	0.00786392 
	0.00786392 


	5200 
	5200 
	5200 

	0.01601187 
	0.01601187 

	0.01572582 
	0.01572582 

	0.00482818 
	0.00482818 

	0.00688977 
	0.00688977 


	5300 
	5300 
	5300 

	0.04119802 
	0.04119802 

	0.03925424 
	0.03925424 

	0.02044813 
	0.02044813 

	0.02353403 
	0.02353403 


	5400 
	5400 
	5400 

	0.0152188 
	0.0152188 

	0.01872145 
	0.01872145 

	0.00488667 
	0.00488667 

	0.00679941 
	0.00679941 


	5500 
	5500 
	5500 

	0.01685316 
	0.01685316 

	0.01377551 
	0.01377551 

	0.00521146 
	0.00521146 

	0.00812666 
	0.00812666 


	5600 
	5600 
	5600 

	0.01523064 
	0.01523064 

	0.02000707 
	0.02000707 

	0.00492196 
	0.00492196 

	0.00700733 
	0.00700733 


	5700 
	5700 
	5700 

	0.02127318 
	0.02127318 

	0.01949736 
	0.01949736 

	0.00568476 
	0.00568476 

	0.00753218 
	0.00753218 


	5800 
	5800 
	5800 

	0.01958623 
	0.01958623 

	0.01707579 
	0.01707579 

	0.00491247 
	0.00491247 

	0.00717864 
	0.00717864 


	5900 
	5900 
	5900 

	0.02087779 
	0.02087779 

	0.01757984 
	0.01757984 

	0.00509493 
	0.00509493 

	0.00730913 
	0.00730913 


	6000 
	6000 
	6000 

	0.01695126 
	0.01695126 

	0.01942582 
	0.01942582 

	0.0051034 
	0.0051034 

	0.00719953 
	0.00719953 


	6100 
	6100 
	6100 

	0.02139595 
	0.02139595 

	0.01875671 
	0.01875671 

	0.00525125 
	0.00525125 

	0.00755448 
	0.00755448 


	6200 
	6200 
	6200 

	0.01806939 
	0.01806939 

	0.01703672 
	0.01703672 

	0.00519245 
	0.00519245 

	0.00782825 
	0.00782825 


	6300 
	6300 
	6300 

	0.01482445 
	0.01482445 

	0.01563784 
	0.01563784 

	0.00545565 
	0.00545565 

	0.00784276 
	0.00784276 


	6400 
	6400 
	6400 

	0.01789223 
	0.01789223 

	0.01613706 
	0.01613706 

	0.00528502 
	0.00528502 

	0.00824817 
	0.00824817 


	6500 
	6500 
	6500 

	0.0173605 
	0.0173605 

	0.02133476 
	0.02133476 

	0.00585688 
	0.00585688 

	0.00822589 
	0.00822589 


	6600 
	6600 
	6600 

	0.02113012 
	0.02113012 

	0.01844281 
	0.01844281 

	0.00543628 
	0.00543628 

	0.0077957 
	0.0077957 


	6700 
	6700 
	6700 

	0.01932419 
	0.01932419 

	0.01844972 
	0.01844972 

	0.00560497 
	0.00560497 

	0.00832198 
	0.00832198 


	6800 
	6800 
	6800 

	0.02394835 
	0.02394835 

	0.02482243 
	0.02482243 

	0.00617112 
	0.00617112 

	0.00920216 
	0.00920216 


	6900 
	6900 
	6900 

	0.0201206 
	0.0201206 

	0.01718718 
	0.01718718 

	0.00610511 
	0.00610511 

	0.00889285 
	0.00889285 


	7000 
	7000 
	7000 

	0.0197974 
	0.0197974 

	0.01916796 
	0.01916796 

	0.00573654 
	0.00573654 

	0.00858847 
	0.00858847 




	 
	5.1.4 Performance Evaluation  
	The test results reveal distinctions in computation setups for the CIM. Specifically: 
	• The execution times of ARM scenarios are faster than the corresponding X86 scenarios. 
	• The execution times of ARM scenarios are faster than the corresponding X86 scenarios. 
	• The execution times of ARM scenarios are faster than the corresponding X86 scenarios. 

	• For the same ARM-based PC, Python Pandas scenarios are considerably slower than C, and Python Numpy scenarios are slightly slower than C. 
	• For the same ARM-based PC, Python Pandas scenarios are considerably slower than C, and Python Numpy scenarios are slightly slower than C. 

	• On the same ARM-based PC, scenarios with parallel versions of Python Pandas and NumPy are faster than their sequential counterparts, while C with OpenMP is slower than without. 
	• On the same ARM-based PC, scenarios with parallel versions of Python Pandas and NumPy are faster than their sequential counterparts, while C with OpenMP is slower than without. 


	It is logical that the execution times of ARM scenarios are faster than their corresponding X86 scenarios, as depicted in Table 6, because the Mac M1 Pro is well-equipped and currently stands as one of the fastest PCs on the market. Our test indicates that this type of X86 is not sufficiently fast for the CIM. 
	As illustrated in 
	As illustrated in 
	Figure 8
	Figure 8

	, for the same ARM-based PC, Python Pandas scenarios are significantly slower than C, and Python Numpy scenarios are slightly slower than C. Python is an interpreted programming language, implying that the source code of a Python program is converted/interpreted into bytecode, which is then executed one instruction after another. In contrast, compiled languages like C and C++ require the entire program to be built and compiled ahead of time before execution. Consequently, Python is slower in execution than 

	 
	 
	 
	 
	 
	 
	 
	Figure
	FIGURE 8.EXECUTION TIME OF SCENARIO 1 TO 6. 
	For both Pandas and NumPy, utilizing multiprocessing results in faster execution compared to the sequential approach. On the other hand, the OpenMP paradigm represents one of the most widely employed parallel programming models on desktop machines, particularly with C or C++. OpenMP operates under the single program multiple data (SPMD) parallelism model, assuming shared memory between threads and introducing overhead to the execution. The benefits of Data Level Parallelism (DLP) on speedup are contingent o
	 
	Moreover, an additional factor is the advancement of the Apple M1 chip, which is a system-on-a-chip that already incorporates built-in optimized parallelism. Enforcing OpenMP may lead to less optimized parallelism in this context. 
	ARM architecture is extensively utilized in smartphones, offering advantages such as low energy consumption and minimal heat generation. Coupled with its shorter running time, ARM can be an ideal choice for IVCs. Consequently, the 
	recommended computational setup for the CIM is determined to be ARM architecture with the C programming language, leveraging the M1 chip's inherent parallelism. 
	 
	5.2 Parallel Computing of DAD  
	Exclusively utilizing the BSM data, the DAD determines whether a CV is in abnormal driving status. The DAD consists of five modules: Module 1: Data Preprocessing and Selecting KPIs; Module 2: Learning Normal Behavior; Module 3: Detecting Outliers; Module 4: Determining Abnormal Driving Events; and Module 5: System Updating, as illustrated in Figure 9. In the O6 project, all these modules will be executed on the IVC. As discussed in in 
	Exclusively utilizing the BSM data, the DAD determines whether a CV is in abnormal driving status. The DAD consists of five modules: Module 1: Data Preprocessing and Selecting KPIs; Module 2: Learning Normal Behavior; Module 3: Detecting Outliers; Module 4: Determining Abnormal Driving Events; and Module 5: System Updating, as illustrated in Figure 9. In the O6 project, all these modules will be executed on the IVC. As discussed in in 
	5.1 Parallel Computing of CIM
	5.1 Parallel Computing of CIM

	, ARM architecture is recommended as the hardware for the CIM model. This section presents the parallel computing implementation of the DAD running on ARM architecture. Similar to the CIM, a Mac Pro with an M1 chip and macOS Ventura 13.3.1 was employed for these computations. 

	 
	 
	Figure
	FIGURE 9. THE FLOWCHART OF DAD. 
	 
	Since the DAD can operate offline, and the O6 system has mitigated the extensive data transfer observed in the F4, this section concentrates on the integration of GPU for parallel computing and assesses the suitability of OD ML packages. 
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	. As in F4, the longitudinal acceleration and lateral acceleration were found have some relationship with speed, as shown in the visualization of the raw data of 
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	FIGURE 10. THE SCATTER PLOT OF SPEED AND ACCELERATION. (A) LONGITUDINAL ACCELERATION AND SPEED. (B) LATERAL ACCELERATION AND SPEED 
	5.2.2 Scenario Configuration 
	Apple's M1 chip incorporates a built-in graphics GPU that facilitates parallel computing, utilizing the Metal Performance Shaders (MPS) framework as the Graphics and Compute API. PyTorch, an open-source ML framework based on the Python programming language and the Torch library, employs MPS as a backend for GPU acceleration on Mac systems with the M1 chip. PyTorch utilizes tensors to represent model inputs, outputs, and parameters, with the ability to run on GPUs and share memory with NumPy arrays, eliminat
	The test scenarios for this section were configured as follows: DAD on CPU, DAD on GPU, and the application of OD ML algorithms, including Angle-based Outlier Detector (ABOD), Cluster-based Local Outlier Factor (CBLOF), Histogram-based Outlier Score (HBOS), Isolation Forest (IF), and K Nearest Neighbors (KNN). 
	TABLE 7. SCENARIO SETUP OF DAD PARALLEL COMPUTING TESTS 
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	5.2.3 Test Results 
	As the OD ML algorithms output the number of outliers, thresholds and plots to show the outlier, as shown in 
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	TABLE 8. OUTPUT OF OD ALGORITHMS AND DAD MODELS 
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	FIGURE 11. THE OUTPUT PLOTS OF OD ML ALGORITHMS 
	The average execution times for DAD were approximately 13 seconds on CPU and 23 seconds on GPU when processing a dataset with 3 million instances. While calculations on the GPU demonstrate faster performance, the data loading time was significantly slower. This disparity raised from storing the data in CSV format, with loading CSV data to a tensor being notably slower than loading it to a Pandas DataFrame with multiprocessing. 
	TABLE 9. THE EXECUTION TIME OF DADS 
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	5.2.4 Performance Evaluation  
	The OD ML algorithms yielded approximately 5 percent outliers of the total instances, as indicated in 
	The OD ML algorithms yielded approximately 5 percent outliers of the total instances, as indicated in 
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	. This percentage resulted from setting the parameter "outliers_fraction" to 0.05. Similar to F4, the output thresholds 

	served as the threshold panel for real-time detection of abnormal driving. However, the thresholds generated by the ODs are not applicable to our system, lacking any association with transportation terms or phenomena. 
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	6.0 CONCLUSIONS 
	The O6 project marks a substantial improvement over F4, driven by advancements in both system architecture and computing paradigm. Our journey commenced with an extensive literature review on parallel computing, revealing the prevailing trend in the automotive market towards flexible and lightweight CAVs. Recognizing the significant advancements in IVCs, we identified DSD as the future of parallel computing. 
	Both F4 and O6 feature a two-tier hierarchical structure with an upper-tier core cloud and a lower tier consisting of CVs monitored by the core cloud. In F4, the core cloud manages the flag list of abnormal CVs and major DAD modules, while the IVC handles a portion of DAD in conjunction with the CIM. In contrast, O6 relocates the entire DAD to the IVC, assigning the core cloud exclusive responsibility for the flag list. 
	F4's success relies on seamless cooperation between auto manufacturers, BSM central control, and government support—an identified challenge for the near future. Meanwhile, O6, while potentially susceptible to minor data loss and unsuitability for comprehensive traffic analysis, presents significant benefits in reducing data traffic and improving latency performance. Considering O6's advantages over its drawbacks and its alignment with the prevailing trend towards flexible and lightweight solutions, we adapt
	Moving from F4's sequential computation paradigm, O6 underwent a crucial upgrade to a parallel version, resulting in notable improvements in processing speed, efficiency, and scalability. We designed the DSD process with considerations at three levels of abstraction: chip architecture, programming language, and parallelism module. Testing configurations included 
	C, Python, and OpenMP on both Windows and MacOS platforms, specifically targeting the M1 chip for MacOS, using Visual Studio Code. 
	Our working datasets comprised BSM data from CV pilot studies, with performance evaluation utilizing crash data from the SHRPII NDS. Both datasets were in CSV format. In evaluating our DAD, we compared its performance in F4 and O6 with various established OD packages designed for outlier detection. The findings indicated that existing OD models fell short of meeting our system requirements. Focused on minimizing processing time and based on our working data, we concluded to employ ARM architecture, C progra
	 
	7.0 RECOMMENDATIONS AND FURTURE WORK 
	This project's primary contribution lies in its innovative approach to configuring DSD for IVCs across three levels of abstraction: chip architecture, programming language, and the parallelism module. For the CIM of our system, we recommend utilizing ARM architecture, the C programming language, and leveraging the built-in parallelism of the ARM chip. For the DAD, we propose fully migrating DAD to IVC, employing ARM architecture, and using Python language on the CPU with multiprocessing for parallel computi
	Several significant challenges lie ahead for future work on DSD and IVC. These challenges include understanding emerging trends in the IVC market, exploring the integration of automated and connected vehicles, assessing the impact of connected and automated vehicles on intelligent transportation systems, and examining how market players would adopt DSD. Regarding technologies, thoughtful consideration is needed to address challenges related to potential data loss in the event of CV malfunctions and evolving
	There is also considerable future work anticipated for DAD. Recognizing that driving behaviors are complex processes involving actions controlled by both conscious and subconscious aspects of the human brain, relying solely on the vehicle's footprint to determine behavior status may be insufficient. When scoring outliers, the relative impacts of different key performance indicators lack clarity, and auto-tuning was not possible due to a lack of data. 
	The scope of this project does not encompass the data path, which involves the vehicle cloud, and remains an open research problem representing one of the most significant challenges for CAV development. Further research and development in the data path are anticipated for the 
	realization of our system. While this project only scratches the surface, it serves as a case that showcases the initial research conducted on DSD for IVC. 
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	9. APPENDICES   
	9.1 Appendix A – Acronyms, abbreviations, etc. 
	 
	AASHTO -- American Association of State Highway and Transportation Officials  
	ACC -- adaptive cruise control 
	ADAS -- advanced driver assistance systems  
	AV -- autonomous vehicle  
	BSM -- basic safety message 
	CIM -- conflict detection model  
	CPU – central processing unit 
	CSV -- comma-separated values  
	CV -- connected vehicle 
	DA -- driving anomaly  
	DVU -- driver-vehicle unit 
	ESA -- emergency steering assistance 
	FCW -- forward collision warning  
	FHWA -- Federal Highway Administration  
	GPS -- Global Positioning System  
	GPU -- graphic processing unit 
	ITS -- intelligent transportation system  
	ITS -- intelligent transportation system  
	IVC – in-vehicle computer 
	KPI -- key performance indicator 
	LDW -- lane departure warning  
	MTC -- margin to collision 
	ML – machine learning 
	NDS -- Naturalistic Driving Study  
	NHTSA -- National Highway Traffic Safety Administration  
	OBU -- on-board unit  
	OD – outlier detection 
	SHRP II -- the Strategic Highway Research Program 
	SPMD -- Safety Pilot Model Deployment (SPMD) 
	US DOT -- United States Department of Transportation  
	V2X -- vehicle-to-everything 
	 
	9.2 Appendix B – Associated websites, data, etc., produced 
	 
	https://insight.shrp2nds.us/login/auth
	https://insight.shrp2nds.us/login/auth
	https://insight.shrp2nds.us/login/auth

	 

	https://www.its.dot.gov/pilots/
	https://www.its.dot.gov/pilots/
	https://www.its.dot.gov/pilots/

	 

	 
	9.3 Appendix C – Sample Results 
	 
	TABLE 11. SAMPLE RESULTS OF CIM TESTS 
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	9.4 Appendix C – Summary of Accomplishments 
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	Detailed Description  
	Detailed Description  
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	We submitted the abstract of a paper titled “Parallel Computing on the In-vehicle Subsystem for Safety Diagnosis in the Connected Vehicle Environment ” to the International Conference on Transportation and Development (ICTD) 2023. 
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