

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.

Project O6

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

Real-time Safety Diagnosis System for Connected Vehicles with Parallel

Computing Architecture

5. Report Date

12/11/2023

6. Performing Organization Code

7. Author(s)

Shuang Tu, Ph.D., Jackson State University

Robert W. Whalin, Ph.D., Jackson State University

Di Wu, Ph.D. Candidate, Jackson State University

8. Performing Organization Report

No.

STRIDE Project O6

9. Performing Organization Name and Address

Jackson State University

Department of Computer Engineering

P. O. Box 17098

Jackson State University

1400 J. R. Lynch Street

Jackson, MS 39217

10. Work Unit No.

11. Contract or Grant No.

Funding Agreement Number

69A3551747104

12. Sponsoring Agency Name and Address

University of Florida Transportation Institute/ Southeastern Transportation

Research, Innovation, Development and Education Center (STRIDE) 365

Weil Hall, P.O. Box 116580 Gainesville, FL 32611

U.S Department of Transportation/Office of Research, Development & Tech

1200 New Jersey Avenue, SE, Washington, DC 20590

13. Type of Report and Period

Covered

05/01/2022 to 12/11/2023

14. Sponsoring Agency Code

15. Supplementary Notes N/A

16. Abstract - The primary aim of this project is to enhance our system from the previous STRIDE F4 project

to a parallel computing version. The original F4 system, designated as Automatic Safety Diagnosis in

Connected Vehicle (CV) Environment, established a computational pipeline for diagnosing near-crash events

exclusively using Basic Safety Messages (BSMs). It was implemented using a sequential computing

paradigm. The O6 project was conceived to expedite the system by transitioning it to a parallel version.

The F4 system comprised a driving anomaly detection model (DAD), a conflict identification model (CIM),

and the data-path connecting them. The DAD was primarily situated in the core cloud, while the CIM was

positioned within the CVs. Throughout the O6 process, notable advancements in in-vehicle computers

(IVCs) were uncovered. In order to align our system with real-world operations, we opted to fully migrate

the DAD component to the IVCs.Recognizing Domain-Specific Design (DSD) as the future of parallel

computing, we propose configuring DSD for IVCs based on three levels of abstractions: selecting the

appropriate chip architecture, programming language, and parallelism module. For the CIM of our system,

we recommend utilizing ARM architecture, the C programming language, and leveraging the built-in

parallelism of the ARM chip. As for the DAD, we advocate for a complete migration to IVC, utilizing ARM

architecture, the Python language on the CPU, and employing multiprocessing for parallel computing.

17. Key Words

parallel computing, connected vehicle, Python, C, ARM,

OpenMP, in-vehicle computer, domain-specific design

18. Distribution Statement

No restrictions

19. Security Classif. (of this report)

N/A

20. Security Classif. (of this

page)

N/A

21. No. of
Pages

46 pages

22. Price

N/A

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

ii

DISCLAIMER
The contents of this report reflect the views of the authors, who are responsible for the facts and

the accuracy of the information presented herein. This document is disseminated in the interest

of information exchange. The report is funded, partially or entirely, by a grant from the U.S.

Department of Transportation’s University Transportation Centers Program. However, the U.S.

Government assumes no liability for the contents or use thereof.

ACKNOWLEDGEMENT OF SPONSORSHIP AND STAKEHOLDERS
 This work was sponsored by a grant from the Southeastern Transportation Research,

Innovation, Development, and Education Center (STRIDE).

Funding Agreement Number - 69A3551747104

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

iii

LIST OF AUTHORS

Lead PI:

Shuang Z. Tu, Ph.D.

Jackson State University

shuang.z.tu@jsums.edu

https://orcid.org/0000-0002-4506-6447

Co-PI:

Robert W. Whalin, Ph.D.

Jackson State University

Robert.w.whalin@jsums.edu

https://orcid.org/0000-0002-8712-9434

Additional Researchers:

Di Wu, Ph.D. Candidate

Jackson State University

di.wu@students.jsums.edu

https://orcid.org/0000-0003-3169-3041

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

iv

TABLE OF CONTENTS

DISCLAIMER..ii

ACKNOWLEDGEMENT OF SPONSORSHIP AND STAKEHOLDERS ..ii

LIST OF AUTHORS .. iii

LIST OF FIGURES .. vi

LIST OF TABLES ... vii

ABSTRACT .. viii

EXECUTIVE SUMMARY .. ix

1.0 INTRODUCTION ... 10

1.1 Objective .. 10

1.2 Scope ... 10

1.3 The Practical Significance of This Study .. 11

1.4 The Expected Final Products ... 11

2.0 LITERATURE REVIEW ... 11

2.1 A Glance of Transportation Big Data Analytics ... 11

2.2 Parallel Computing .. 12

2.3 DSD and IVC .. 15

2.4 OD ... 16

3.0 TASK 1: ARCHITECTURAL DESIGN ... 17

3.1 The Architecture of the F4 System ... 17

3.2 The Architecture of the O6 System... 19

4.0 TASK 2: DATABASE CONSTRUCTION ... 20

4.1 MySQL Database ... 20

4.2 Database Schema .. 21

5.0 TASK 3: PARALLEL COMPUTING IMPLEMENTATION .. 23

5.1 Parallel Computing of CIM .. 23

5.1.1 Test Data .. 24

5.1.2 Scenario Configuration .. 26

5.1.3 Test Results .. 27

5.1.4 Performance Evaluation .. 29

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

v

5.2 Parallel Computing of DAD ... 32

5.2.1 Test Data .. 33

5.2.2 Scenario Configuration .. 33

5.2.3 Test Results .. 34

5.2.4 Performance Evaluation .. 36

6.0 CONCLUSIONS ... 37

7.0 RECOMMENDATIONS AND FURTURE WORK .. 38

8.0 REFERENCE LIST .. 40

9. APPENDICES .. 42

9.1 Appendix A – Acronyms, abbreviations, etc. .. 42

9.2 Appendix B – Associated websites, data, etc., produced ... 43

9.3 Appendix C – Sample Results .. 43

9.4 Appendix C – Summary of Accomplishments ... 44

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

vi

LIST OF FIGURES

Figure 1. THE CONCEPT OF THE ASDSCE ... 11

Figure 2.THE ARCHITECTURE OF THE F4 PROJECT. ... 18

Figure 3. The architecture of the O6 project. ... 20

Figure 4. ER diagram of the Database... 23

Figure 5. The Relationship of CIM Capacity (sequential) and Various CV Market Penetration

Rates.. 25

Figure 6. Execution Time of All Scenarios. .. 27

Figure 7. Average Execution Time of Scenario 3 to 6. .. 28

Figure 8.EXECUTION TIME OF SCENARIO 1 TO 6. ... 31

Figure 9. The Flowchart of DAD. ... 32

Figure 10. The Scatter Plot of Speed and ACCELERATION. (a) Longitudinal acceleration and

Speed. (b) Lateral acceleration and Speed ... 33

Figure 11. The output plots of od ml algorithms .. 36

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

vii

LIST OF TABLES

Table 1. ATTRIBUTE LIST OF THE BSM DATA of the F4 Project ... 22

Table 2. Description of Table ID_flag of O6 .. 22

Table 3. Description OF Table BSM of O6 ... 22

Table 4. Sample Input Data of Processed BSMs ... 24

Table 5. Scenario Setup of IVC Parallel Computing Tests ... 26

Table 6. Average Execution Time of Scenario 3 to 6. ... 28

Table 7. SCENARIO SETUP OF DAD PARALLEL COMPUTING TESTS 33

Table 8. Output of OD Algorithms and DAD Models .. 34

Table 9. The Execution Time of DADs ... 36

Table 10. The output of OD Algorithms .. 37

Table 11. Sample Results of CIM tests .. 43

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

viii

ABSTRACT

The primary aim of this project is to enhance our system from the previous STRIDE F4 project to

a parallel computing version. The original F4 system, designated as Automatic Safety Diagnosis

in Connected Vehicle (CV) Environment, established a computational pipeline for diagnosing

near-crash events exclusively using Basic Safety Messages (BSMs). It was implemented using a

sequential computing paradigm. The O6 project was conceived to expedite the system by

transitioning it to a parallel version.

The F4 system comprised a driving anomaly detection model (DAD), a conflict identification

model (CIM), and the data-path connecting them. The DAD was primarily situated in the core

cloud, while the CIM was positioned within the CVs. Throughout the O6 process, notable

advancements in in-vehicle computers (IVCs) were uncovered. In order to align our system with

real-world operations, we opted to fully migrate the DAD component to the IVCs.

Recognizing Domain-Specific Design (DSD) as the future of parallel computing, we propose

configuring DSD for IVCs based on three levels of abstractions: selecting the appropriate chip

architecture, programming language, and parallelism module. For the CIM of our system, we

recommend utilizing ARM architecture, the C programming language, and leveraging the built-

in parallelism of the ARM chip. As for the DAD, we advocate for a complete migration to IVC,

utilizing ARM architecture, the Python language on the CPU, and employing multiprocessing for

parallel computing.

Keywords:

parallel computing, connected vehicle, Python, C, ARM, OpenMP, in-vehicle computer, Domain-

Specific Design.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

ix

EXECUTIVE SUMMARY
The aim of this project is to enhance the system from the prior STRIDE F4 project to a parallel

computing version. The F4 system, titled as Automatic Safety Diagnosis in the Connected

Vehicle Environment, aimed to establish a computational pipeline for diagnosing near-crash

events by processing BSMs generated within the CV environment. The F4 system architecture

included two components: the DAD, primarily situated in the core cloud, and the CIM, located

within the CVs.

A near-crash event was defined as a situation meeting two conditions: (a) the presence of a

conflict and (b) at least one of the drivers exhibiting abnormal driving status. The original F4

project utilized a sequential computing paradigm. However, with the growing market

penetration of connected vehicles, the demand for faster data processing and transmission has

increased, necessitating the adoption of parallel computing.

To initiate the project, an extensive study explored literature and real-world applications of

parallel computing. This research unveiled significant advancements in IVCs in recent years and

emphasized DSD as the future of parallel computing.

To align our system with real-world operations, we adjusted the system architecture and fully

migrated the DAD to the IVC. This required significant effort to determine the appropriate

configuration for parallel computing on the IVC. We decided to configure DSD on three levels of

abstraction: chip architecture, programming language, and the parallelism module. Based on

system performance, we recommend utilizing ARM architecture, C programming language, and

leveraging the built-in parallelism of the ARM chip for CIM. For DAD, we suggest employing

ARM architecture, Python language on the CPU, and utilizing multiprocessing for parallel

computing.

During testing, the O6 system underwent evaluation using various programming languages,

including C, Python, and OpenMP, on both Windows and MacOS platforms, specifically with the

Apple M1 chip. The testing dataset included BSM data from connected vehicle pilot studies, and

system performance was also assessed using the SHARPII naturalistic driving study crash data.

Additionally, to gauge the applicability and effectiveness of our DAD, comparison tests were

conducted on selected major Machine Learning (ML) packages for Object Detection (OD) using

our working data. The results revealed that these packages were unable to meet our system's

requirements.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

10

1.0 INTRODUCTION
Traffic accidents contribute significantly to traffic congestion and travel delays. Issuing a

warning message to drivers as a hazardous situation approaching can prompt them to

take necessary maneuvers and prevent accidents. Our previous STRIDE project, F4—

Automatic Safety Diagnosis in Connected Vehicle Environment—established a cloud-

based system capable of delivering timely accident warnings within the CV environment.

As the automotive industry progresses in vehicle connectivity and automation, the

distribution of computing tasks among central hubs, roadside infrastructure, and mobile

units becomes a critical consideration. The Intelligent Transportation System (ITS) is

evolving with the widespread use of CVs, leading to the generation of massive data. The

safety diagnosis application must have the capacity to process this Big Data effectively.

The adoption of parallel computing technology to expedite data processing and analysis

is, therefore, an unavoidable necessity.

The O6 research was initiated to implement parallel computing in both the cloud and

the in-vehicle subsystem. This approach aims to enhance the system's capability to

handle the substantial data generated by CVs and ensure efficient safety diagnosis in

real-time scenarios.

1.1 Objective

The goal of this research is to transition our preceding STRIDE F4 study from a

sequential version to a parallel version through the incorporation of cutting-edge

parallel computing techniques.

1.2 Scope

The computational pipeline represents an automatic safety diagnosis system in the

Connected Vehicle CV environment. In Project F4, the system comprised the DAD in the

cloud, edge computing, all CVs under its surveillance, and the datapath connecting

them. Figure 1 illustrates the concept of the ASDSCE. The datapath involves

communication between the vehicle and the cloud, posing an open research problem

and presenting a significant challenge in CV research. However, it's important to note

that the datapath is beyond the study scope of this project.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

11

FIGURE 1. THE CONCEPT OF THE ASDSCE

1.3 The Practical Significance of This Study

In a traffic safety diagnosis system, parallel computing is essential to guarantee real-

time processing and analysis of data. This research has the potential to elevate the

technological capabilities of our system to align with the requirements of future modern

transportation systems.

1.4 The Expected Final Products

The final product is a parallelized version of the computational pipeline for the

automatic safety diagnosing system. This includes the incorporation of a MySQL

database for handling working data, parallel computing utilizing OpenCL in the cloud

subsystem, and parallel computing with OpenMP in the in-vehicle subsystem. The

outcomes encompass a software package, a user's guide, instructional videos and

webinars, publications, a final research report, and support for a PhD student.

2.0 LITERATURE REVIEW
2.1 A Glance of Transportation Big Data Analytics
Decades ago, the focus of transportation shifted from infrastructure expansion to

operational efficiency and sustainability. ITS brought forth cutting-edge technologies in

information systems, electronics, control, communications, sensing, robotics, and more,

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

12

evolving into a global phenomenon crucial for economic and social development (Lin, et

al., 2017).The widespread deployment of Global Positioning System (GPS), sensors, CVs

and other sources has resulted in the generation of Big Data in transportation, reaching

the scale of Petabytes and Terabytes, with projections for continued growth in volume,

speed, and complexity (Lin, et al., 2017).This massive influx of Big Data from ITS and CVs

necessitates a well-designed computing architecture to support Quality-of-Service

(QoS), given the diverse requirements of different types of applications (Wang, et al.,

2020).

In the realm of Big Data analytics, computation architectures vary based on the
selection of data storage, compression, and processing tools from a pool of options,
such as the Hadoop Distributed File System (HDFS), Relational Databases, Apache
Parquet, Spark, and more. For instance, a platform with multiple engines was proposed
to support various types of traffic data (Mian, et al., 2014). Godzilla introduced a
conceptual architecture for real-time traffic data processing, employing a multi-cluster
approach to handle substantial data under various workloads and user numbers (Shtern,
et al., 2014).. Kafka, a state-of-the-art Big Data tool, was utilized for building data
pipelines and stream processing to manage real-time traffic data (Amini, et al., 2017)..
Sipresk proposed a platform to process urban transportation data (Khazaei, et al., 2016).
A comprehensive review of computing architectures for Big Data of CVs can be found in
the paper by Wang (Wang, et al., 2020).

Despite these accomplishments, widely used parallelization algorithms for Big Data,

such as peer-to-peer networks, MapReduce, and Spark platforms, have been reported

to face significant issues related to speed-up, throughput, and scalability (An, et al.,

2011). To address dynamic resource allocation, Big Data workloads were designed to be

malleable and task oriented.

2.2 Parallel Computing
Parallel computing, a computational paradigm introduced in the late 20th century,

involves the simultaneous execution of numerous calculations or processes to enhance

processing speed and problem-solving capabilities (Gottlieb & Almsi, 1989). Positioned

as the pinnacle of computing, parallel computing has been extensively applied to

computationally intensive problems in science and engineering (Culler, et al., 1999).

The progression of computers from vacuum tubes in the 1950s to present-day nano-

scale microchips with Very Large-Scale Integration (VLSI) has been remarkable. These

microchips are now ubiquitous in personal computers, mobile devices, control systems,

the internet, clouds, clusters, and high-performance computers. Over time, computers

have become more user-friendly, evolving from a realm accessible to a few geniuses in

the 1950s to highly trained individuals in the 1960s and 1970s, and finally, to almost

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

13

anyone since the 1980s. Concurrently, there has been a substantial shift in computer

architecture from single processors to parallel processors (pheatt2008intel). This

evolution is the result of collaborative efforts across the industry, involving vendors,

programmers, and users working on hardware, architecture, algorithms, languages, and

applications. Presently, parallel programming has become crucial for further

advancements in computing (Stoller, et al., 2019) (Asanovic, et al., 2009).

The objective of computing improvement has been to achieve higher speedup while

balancing factors such as cost, heat dissipation, and energy consumption (Moore, 1998).

Higher clock speeds translate to faster CPUs, and increased transistor counts result in

greater computing power. From the 1950s to the 1970s, significant improvements were

made in chip technology, an ongoing trend (Saidu, 2015). Gordon Moore's 1965

prediction, known as Moore's Law, foresaw a doubling of the number of transistors on a

microchip every two years. While this law accurately anticipated the consistent growth

in transistor density, it is expected to face challenges. The size of a silicon atom being

approximately 0.2 nm, the density of transistors on a chip cannot indefinitely increase.

Additionally, with fundamental challenges related to heat dissipation and energy

consumption, clock rates above 4.0 GHz are considered unsafe (Null & Lobur, 2014),

rendering the method of frequency scaling less effective. As a result, further

improvements in physical computer builds are likely to slow down unless new materials

replace silicon or chip processing technology is updated with new approaches such as

quantum computing or molecular computers.

With Moore's Law approaching its limits, computer manufacturers are left with limited

options for performance improvements on chips or processors, except for distributing

the computation load among several processors using parallel computing (Schauer,

2008). Parallel computing involves using multiple compute resources simultaneously to

solve computational problems (Gottlieb & Almsi, 1989). Originating in the early 1950s,

parallel computing was initially considered high-end, defense-oriented, and particularly

featured for supercomputers. However, after the Cold War in the 1990s, when financial

funding for defense decreased, parallel computing faced potential relegation. At this

juncture, the high-performance computing community aimed to simplify the writing of

parallel applications, realizing that wider user adoption could stimulate industry growth

(Osuna, 1994). Fortunately, the crisis was overcome with the widespread adoption of

parallel architectures, making parallel and distributed computing fundamental for

computing professionals. Today, parallel computing is more prevalent than ever, with

expectations of innovative advancements, particularly in applications related to artificial

intelligence (AI) and ML, which demand intensive computation. In 2009, after

systematically studying the landscape of parallel computing, Krste Asanovic asserted

that "the parallel computing industry needs help from research to succeed in its recent

dramatic shift to parallel computing" (Asanovic, et al., 2009).

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

14

Parallel computers are categorized by build into symmetric multiprocessor parallel

computers, multicore parallel computers, distributed parallel computers, cluster parallel

computers, massively parallel computers, and grid computers. In terms of processor-

memory architecture, parallel computers are categorized into shared memory

architecture (SMA) and distributed memory architecture (DMA). SMA involves building

parallel computers from the combination of multiple microprocessors connected via

specialized high-speed buses. On the cutting-edge, the Apple M1 chip realizes the

system on a chip (SoC). DMA involves constructing parallel computers from multiple

computers connected via a network such as an Ethernet network.

In terms of forms, computing parallelism can exist at three levels: bit-level, instruction-

level, and data-level. Bit-level parallelism is based on the processor's size. Over time,

processor word sizes have increased from 4-bit microprocessors to 8-bit, then 16-bit,

32-bit, and, in 1996, the introduction of 64-bit architectures that remain mainstream

today. Larger processor word sizes reduce the number of instructions needed to

perform tasks on large-sized data, enhancing overall performance. Instruction-level

parallelism (ILP) involves optimizing microprocessor architecture. The CPU, the core of a

computer, consists of an arithmetic–logic unit, processor registers, and a control unit.

Initially, these operations were completed sequentially. By breaking instructions into

stages and allowing a thread to run on stages of multiple instructions in parallel within

the same clock cycle, the pipelining technique implemented ILP. A microprocessor with

an n-stages pipeline can deliver n-times performance over a non-pipelined architecture

(Saidu, 2015) (Saidu, 2015).. The number of pipeline stages, however, cannot be

increased endlessly due to control dependencies and data dependencies. The amount of

ILP in a program is highly application-specific (Hernandez, 2009). (Hernandez, 2009).

Data-level parallelism (DLP) involves parallelization across multiple processors to

achieve higher throughput. DLP encompasses data parallelism and task parallelism. Data

parallelism includes single program multiple data (SPMD), vector processing, and single

instruction multiple thread (SIMT) (e.g., with GPUs). Task parallelism decomposes a task

into subtasks and allocates each subtask to multiple processors for concurrent

execution. The amount of parallelism achievable is program-specific, requiring some

control over execution patterns and resource allocation to ensure efficient execution.

Reconciling these two conflicting requirements is the goal of parallel computing

systems.

A fundamental requirement for any parallel programming system is to support

abstraction, relieving users of the low-level complexities of parallel programming to

work with familiar concepts from their own domain (Darlington, 1996). However, the

achievable level of parallelism is highly program specific. Some control over execution

patterns and resource allocation is still necessary to ensure efficient execution.

Reconciling these two conflicting requirements remains the goal of parallel computing

systems.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

15

2.3 DSD and IVC

DSD has been identified as a pivotal future direction for parallel computing. The 2019
National Science Foundation (NSF) Workshop on Future Directions for Parallel and
Distributed Computing emphasized the centrality of parallel and distributed computing
in computational innovation. It advocated for exploiting specialized hardware
accelerators and adopting computational platforms through DSD to enhance
performance. The overarching goal of DSD is to develop comprehensive algorithms-

software-hardware solutions that optimally align with the objectives of a given domain.
For instance, in the case of convolutional neural networks (CNN), there was consensus
on proliferating tensor processing units (ISCA, 2017), GPU tensor cores, new CPU
instructions, new CNN chips for hardware, and incorporating frameworks built on
common libraries such as PyTorch, Tensorflow, Horovod, etc., for software.

However, the challenge lies in building interfaces that embody appropriate abstractions
for specific domains, posing difficulties at both the technological and industry levels. As
the potential benefits of DSD are substantial, achieving a balance becomes more
challenging due to potential disruptions caused by innovations. Any perturbation to the
ecosystem—whether in applications, compilers, operating systems, or hardware—tends
to have cascading effects, leading to an "inherent reluctance to change" throughout the
industry (Stoller, et al., 2019). In this context, a pilot study that involves developing a
DSD on a system in a formative stage could be instrumental, with In-Vehicle Computers
(IVCs) serving as a suitable testbed.

IVCs, designed to withstand harsh vehicle environments, including shocks, vibrations,
extreme temperatures, and electromagnetic interferences, have become a crucial
component with the rise of vehicle telematics and camera-based surveillance systems.
The global IVC market is estimated to reach 1.65 billion in 2029, offering hardware and
software solutions for various automotive applications. Top players in this market
include S&T AG, Lanner Electronics Inc. (Taiwan), Axiomtek (Taiwan), SINTRONES
Technology Corporation (Taiwan), NEXCOM International (Taiwan), IBASE Technology
Inc. (Taiwan), Acrosser (Taiwan), and Premio Inc (US) (MarketsandMarkets™ Ltd., 2020).
As the market penetration and level of automation increase, addressing how to
integrate parallel computing into applications becomes imperative for CAVs.

Transportation engineers and data scientists, as users of IVCs, face a dilemma due to
inconsistencies in computing algorithms-software-hardware. Traditionally, computer
programs were written sequentially, and when transitioning to parallel computing, the
common practice was to rewrite the code in languages like C or C++ that have APIs
developed for parallel computing, such as MPI, OpenMP, OpenCL, and CUDA.

Python, with its productivity and extensive library support, has become the preferred
programming language for many transportation data scientists, especially in machine
learning for data analysis. However, rewriting Python code to C involves breaking down

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

16

functionalities encapsulated in Python libraries. The C version of the same algorithm
might be much longer than its Python counterpart. Complicating matters further,
popular frameworks like TensorFlow, often used in artificial intelligence and machine
learning applications for traffic and in-vehicle systems, recommend Python as the
language of choice. Despite the availability of open-source parallel computing libraries
for Python, such as Multiprocessing and Dask, Python's performance is compromised as
it is an interpreted language. This uncertainty leads data scientists to question the
choice of parallel computing programming languages for transportation engineering
problems.

Both C and Python, as general-purpose programming languages, have their pros and
cons. C is simple, flexible, and machine-independent, while Python is easy to learn and
features numerous libraries with built-in functions. C code is compiled directly to
machine code, executed directly by the CPU, making it a low-level language close to
machine. In contrast, Python code is first compiled to bytecode and then interpreted by
a C program, making it a high-level language closer to humans. While focusing on the
intricate aspects of basic C coding, the advantages of abstractions might be lost.
Alternatively, assigning a C programmer to perform the rewriting could introduce
different coding habits and conventions. A middle ground could involve keeping the
sequential parts of Python and using C or C++ for heavy calculations, with libraries like
Ctypes and cPython developed for this purpose.

Balancing the trade-off between productivity, portability, and performance poses a
significant challenge. The direction parallel computation should take concerning data
analysis on in-vehicle computers remains an open question. These issues are expected
to be addressed in the context of DSD.

The literature suggests that, before the settlement of DSD, three levels of abstractions
within the users' control significantly affect the performance of in-vehicle parallel
computing: chip architecture, language, and parallelism module.

2.4 OD

In the field of data science, anomaly detection is also referred to as OD, denoting the
identification of abnormal events in data, often termed outliers. Outliers represent data
points that significantly deviate from the majority of the dataset. In ML programs, OD
serves as an initial step in data cleaning. However, OD itself has evolved into a complex
and challenging field with the development of ML algorithms.

ML algorithms are generally categorized into three fundamental types based on the
availability of the dependent variable (or label) for the data under examination:
Supervised Learning, Unsupervised Learning, and Reinforcement Learning. Supervised
ML is applied to data that includes labels, unsupervised ML is designed for data lacking

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

17

labels, and reinforcement ML, essentially an unsupervised variant, can learn from the
environment over time to create labels.

OD is typically considered unsupervised since outliers are usually rare, leading to a lack
of labels for the data (Boukerche, 2020). This inherent nature makes it challenging to
define statistical and mathematical measures for deviation. Various packages of OD
algorithms are available in different programming languages, each employing a unique
method to measure deviation. Basic categories of unsupervised OD algorithms include
Angle-Based OD (ABOD) (Kriegel, et al., 2008), Cluster-based Local Outlier Factor
(CBLOF) (Duan, et al., 2009), Histogram-based OD (HBOS) (Putrada & Abdurohman,
2021), Isolation Forest (Xu, et al., 2017),, and K Nearest Neighbors (KNN) (Larose &
Larose, 2014). For instance, in Python, the PyOD package summarizes various OD
algorithms, featuring over forty algorithms and finding application in numerous
academic and industrial settings, with over 10 million downloads (Zhao, et al., 2019).

Selecting the most suitable OD ML algorithm is challenging, as datasets may vary in
dimensions and features, and users may have different interests. Different OD
algorithms employ distinct methods of measuring deviation, making the algorithm
selection a critical aspect of OD processing.

3.0 TASK 1: ARCHITECTURAL DESIGN
Both F4 and O6 function as a real-time near-crash warning tool at the individual level,

exclusively using BSMs. They define a near-crash as a traffic situation meeting two conditions:

firstly, at least one of the vehicles in a driver-vehicle unit (DVU) pair exhibits abnormal driving

conditions, and secondly, a conflict is present. The system architecture of O6 was derived from

F4.

3.1 The Architecture of the F4 System
The F4 project was structured as a two-tier hierarchical system, comprising a cloud-

based DAD and a CIM in each CV. The DAD served as a multi-dimensional anomaly

detection model, with Modules 1, 2, 3, and 5 of the DAD processed in the cloud and

Module 4 in the IVC alongside the CIM. Illustrated in Figure

2, the F4 system collected and stored BSM from the covered vehicles in the cloud. It

determined thresholds for selected key performance indicators (KPIs) and broadcasted

these thresholds through BSMs. Within the IVC, as real-time BSMs streamed in, the

device compared the new values of each KPI with the received thresholds to identify

outliers. The outliers were then analyzed to ascertain if their combination warranted an

anomaly event, triggering the transmission of abnormal flags. Periodically, the system

assessed impact factors to update thresholds based on the significance of the outliers.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

18

 FIGURE 2.THE ARCHITECTURE OF THE F4 PROJECT.

The primary considerations for the F4 architecture were the substantial volume of Big

Data from BSMs and the computational capacity limitations of in-vehicle computers.

Energy conservation was also a significant consideration, with offloading presenting a

substantial reduction in energy usage, particularly beneficial for electric vehicles amid

global warming concerns. The architecture's advantages lay in central control of all CVs

while keeping the in-vehicle computers lightweight. However, a drawback was the

accumulation of massive historical BSMs in the cloud, leading to unnecessary data

traffic.

In our O6 project, as we delved into the latest literature on computational platforms, we

recognized that the progress in in-vehicle computers surpassed expectations.

Consequently, we identified the need to update our system architecture to align with

state-of-the-art parallel computing and CV technology.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

19

3.2 The Architecture of the O6 System
The O6 system retains the two-tier architecture from the F4 project, comprising the top

tier of the core cloud and the bottom tier of the ad-hoc vehicle cloud. In the core cloud,

the flag list of abnormal CV IDs is stored and updated. DAD and CIM are processed in the

IVCs. The IVCs broadcast and receive BSMs through On-board devices, forming the ad-

hoc vehicle cloud, also known as vehicle-to-everything (V2X) BSMs. Figure 3 illustrates

the architecture of the O6 system, which has been updated based on the advancements

in IVC technology to meet the system's requirements.

The O6 system architecture brings improvements in performance, including reduced

latency and substantial data traffic reduction. However, it is not without its drawbacks:

1. Data Loss in CV Malfunction:

In the event of a CV malfunction within the O6 architecture, there is a risk of

data loss, making it challenging to maintain the accuracy of the flag list. The

system may struggle to assess abnormal CV situations accurately if malfunctions

result in data loss, impacting the overall effectiveness of the safety diagnosis

system.

2. Limitation for Future Development:

As traffic safety requirements evolve to encompass factors such as roadway

geometry, real-time traffic signal control, traffic flow, and travel demand

analysis, the O6 architecture may encounter limitations. Integrating these

additional elements for comprehensive traffic analysis might prove challenging

within the confines of the O6 architecture.

Realizing the F4 system is a complex task that necessitates seamless collaboration

between auto manufacturers, BSM central control, and government support. This

cooperation is identified as a significant challenge for successful implementation.

Concurrently, the prevailing trend in the automotive market emphasizes the shift

towards flexible and lightweight CAVs. The O6 architecture, with its advantages in

latency performance and reduced data traffic, aligns well with the current trend

favoring lightweight solutions in the CAV market.

Given the intricacies of the transportation industry, addressing challenges related to

potential data loss during CV malfunctions and adapting to evolving demands for

comprehensive traffic analysis require thoughtful consideration and strategic planning.

However, it's essential to note that addressing these broader challenges extends beyond

the scope of the current project.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

20

FIGURE 3. THE ARCHITECTURE OF THE O6 PROJECT.

4.0 TASK 2: DATABASE CONSTRUCTION
While the database plays a crucial role in our system, it is not the primary emphasis of the O6

Project. Fundamental stages of constructing the database were undertaken, encompassing

tasks such as defining the database's purpose, segmenting the working data into tables,

transforming the working data into columns, designating primary keys, establishing table

relationships, and refining the database using normalization rules.

4.1 MySQL Database

A Database Management System (DBMS) serves as the repository for storing, accessing,

modifying, and overseeing data, contributing to enhanced data integration, consistency,

security, and efficiency. Numerous DBMS options exist in the market, including SQL,

Oracle, MariaDB, MySQL, and PostgreSQL, with MySQL being notably popular. MySQL

stands as a versatile relational DBMS owned by Oracle Corporation, operating as open-

source software under the GNU General Public License, while also being available for

proprietary licenses. Recognized for its widespread use, MySQL is established as a

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

21

preferred choice for various applications.

In our project, MySQL, as a relational database management system (RDBMS), was

employed for handling BSMs. The installation of MySQL proved to be straightforward, and

comprehensive documentation in the Oracle reference manual (Oracal, 2023) facilitated

the process. For script development, the MySQL/Python Connector was generated, and

database management was carried out using MySQL Workbench.

4.2 Database Schema

The database schema represents the logical configuration of a relational database, and

for the BSM database, it was devised based on the characteristics of the working data and

the requirements of the DAD. The working data for the O6 project consisted of the same

BSM data collected during the F4 project.

BSM, a fundamental application of CVprograms, serves as the "Here I Am" data message.

Originating from OBDs specifically designed for CVs, BSMs are broadcasted in the air at

the dedicated 5.9 GHz spectrum with a frequency of 10 Hz (Henclewood, 2014). Nearby

CVs and roadside units (RSUs) can receive these BSMs. The format of a BSM is defined by

the Society of Automotive Engineers J2735: The Dedicated Short-Range Communications

(DSRC) Message Set Dictionary. Typically, a BSM comprises two parts: the main part of

the message, containing vehicle ID, epoch time, GPS location, speed, acceleration, yaw

rate, and associated accuracy measurements; and the supplementary part providing

additional information. Initially, BSMs were regarded as disposable and not intended for

reuse.

The BSMs utilized in our project were part of the test data from the Safety Pilot Model

Deployment (SPMD) project conducted in Ann Arbor, Michigan, in October 2012. These

data were obtained from the ITS DataHub (its.dot.gov/data/). The BsmP1 file, formatted

as Comma Separated Values (CSV), had a size of 67GB and stored all BSMs generated by

the 1527 test vehicles during the test. The original downloaded data file contained 19

attributes and over 500 million records. During the data pre-processing phase of the F4

project, irrelevant attributes were filtered out, resulting in a data file with 11 attributes,

including DevID for vehicle ID, EpochT for timestamp, and attributes for latitude,

longitude, accelerations, heading, and yaw-rate. Descriptions of these attributes are

detailed in Table 1.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

22

TABLE 1. ATTRIBUTE LIST OF THE BSM DATA OF THE F4 PROJECT

Attributes Name Type Units Description

DevID Integer None Test vehicle ID assigned by the CV
program

EpochT Integer seconds Epoch time, the number of seconds since
the January 1 of 1970 Greenwich Mean
Time (GMT)

Latitude Float Degrees Current latitude of the test vehicle

Longitude Float Degrees Current longitude of the test vehicle

Elevation Float Meters Current elevation of test vehicle
according to GPS

Speed Real m/sec Test vehicle speed

Heading Real Degrees Test vehicle heading/direction

Ax Real m/sec^2 Longitudinal acceleration

Ay Real m/sec^2 Lateral acceleration

Az Real m/sec^2 Vertical acceleration

Yawrate Real Deg/sec Vehicle yaw rate

For the O6 project, a table named ID_flag was established to store vehicle IDs along with

corresponding driving status flags, utilizing ID as the primary key. Another table named

BSM was created to house historical BSM data, encompassing vehicle ID, time, latitude,

longitude, speed, and longitudinal and lateral accelerations. In the BSM table, DevID

serves as the primary key. The attributes of these tables are detailed in Table 2 and Table

3. The ID in ID_flag and DevID in the BSM table function as foreign keys interchangeably.

The entity-relationship (ER) diagram depicting these tables is presented in Figure 4.

To facilitate data insertion into the database, Oracle's standardized API, MySQL

Connector/Python, was employed. Additionally, MySQL Workbench, an all-encompassing

visual tool catering to data modeling, SQL development, and administration, was utilized

for generating the ER diagram and managing the data.

TABLE 2. DESCRIPTION OF TABLE ID_FLAG OF O6

Attributes Name Type key Units Description

ID Integer PRI None Test vehicle ID assigned by the CV
program

Flag Integer None Epoch time, the number of seconds since
the January 1 of 1970 Greenwich Mean
Time (GMT)

TABLE 3. DESCRIPTION OF TABLE BSM OF O6

Attributes Name Type key Units Description

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

23

DevID Integer PRI None Test vehicle ID assigned by the CV
program

EpochT Integer seconds Epoch time, the number of seconds since
the January 1 of 1970 Greenwich Mean
Time (GMT)

Latitude Float Degrees Current latitude of the test vehicle

Longitude Float Degrees Current longitude of the test vehicle

Speed Real m/sec Vehicle speed

AccX Real m/sec^2 Longitudinal acceleration

AccY Real m/sec^2 Lateral acceleration

FIGURE 4. ER DIAGRAM OF THE DATABASE.

5.0 TASK 3: PARALLEL COMPUTING IMPLEMENTATION
Similar to the F4 project, the O6 system triggers a near-crash warning when a conflict arises

between the ego CV and a neighboring CV, provided that any CV in the pair exhibits abnormal

driving behavior. In the updated O6 architecture, both the DAD and CIM are executed within

the IVC, leaving only the flag list of abnormal CVs stored in the core cloud. Consequently, the

implementation of parallel computing is bifurcated into two distinct components: the CIM

within the IVC, where the IVC serves as the primary hardware for parallel computing tasks of

both DAD and CIM. While DAD involves predominantly offline processing, CIM demands real-

time computations and places a higher emphasis on computing speed. Hence, the careful

selection of a parallel computing platform for the IVC emerges as a pivotal consideration for the

success of the O6 system.

5.1 Parallel Computing of CIM
In the O6 system, once a CV’s engine starts running, its Collision Impact Mitigation (CIM)

module becomes operational and examines the flag list containing identification

numbers of CVs identified with abnormal driving status. Upon receiving BSM of a new

CV_B, CV_A checks the ID of CV_B to determine if CV_B is listed in the flag list. If either

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

24

CV_A or CV_B is found on the list, the CIM proceeds to assess whether the CV pair

(CV_A and CV_B) warrants a conflict. This process occurs at the same frequency as BSM

generation and is applied to all CVs.

For the CIM to effectively operate, it must have the capacity to process the maximum

number of BSMs generated by nearby CVs. Given that BSMs are generated at a

frequency of 10 Hz, the CIM risks overload if the entire computing time for one BSM per

CV exceeds 0.1 seconds. Therefore, our research goal was to identify the optimal

computational setup for the CIM, balancing capacity and execution speed, while

considering factors such as market availability, energy consumption, and the global

trends in computing technology.

5.1.1 Test Data
As mentioned earlier, the test data utilized in this project were obtained from

the Naturalistic Driving Study (NDS) conducted for the second Strategic Highway

Research Program (SHRP 2). The NDS is a research initiative aimed at

understanding the influence of driver performance and behavior on traffic

safety. The Virginia Tech Transportation Institute (VTTI) serves as the technical

coordination and study design contractor for the NDS and manages the InSight

Data Access Website (Jafari, 2017). A sample dataset is presented in Table 4:

TABLE 4. SAMPLE INPUT DATA OF PROCESSED BSMS

vtti_timestamp vtti.file_id vtti.speed_network x_position y_position x_ego y_ego

199500 18539287 3 408 -1073 292 -1067

113400 44909777 0 0 0 73 -171

17000 44909777 0 0 0 73 -171

10567500 41894439 46 14779 27624 14665 27464

9783800 26026997 34 232345 39413 232490 39364

1027000 39534577 32 16996 -1145 16995 -1419

1871800 61805034 0 -9754 7404 -9771 7386

6000 44909777 0 0 0 73 -171

2324200 55152798 0 -32326 -9433 -32252 -9205

The maximum number of CVs were estimated using counting the CVs in the

roadway network in the effective range of BSMs. Considering in the most

congested condition, suppose the effective range of BSM is 1000 meters in radio,

the area it covers3,140,000m2. In the condition of high density of road network,

the road grids are of the size of 300 meters long, so every gird covers 300 *300 =

9,000m2 and 90000 m2 and can have road of 600 meters long. Therefore, the

maximum road length in the effective range is about to be 21,000 m, as in

Equation (1).

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

25

 3140000
90000⁄ ∗ = 21000 (𝑚) (1)

Each CV occupy a street length of 40 feet /12 meters (20 feet for vehicle length

and another 20 feet for safety spacing). Assuming all the roads are 4-lane road,

the maximum number vehicle around 7000 CVs, as calculated in Equation (2).

21,000/12 ∗ 4 = 7000 (CVs) (2)

Based on the assumptions, as shown in Figure 5, when the CV penetration rate

reaches 0.14, in the most congested scenario the CIM on a single thread will be

overloaded and experience malfunction.

FIGURE 5. THE RELATIONSHIP OF CIM CAPACITY (SEQUENTIAL) AND VARIOUS CV

MARKET PENETRATION RATES.

To assess the consistency of scenario performance, we generated 70 input files

simulating varying numbers of Connected Vehicles (CVs) within the effective

Basic Safety Message (BSM) range, ranging from 100 CVs to 7000. Assuming that

10% of them carried an abnormal flag, triggering the CIM, we randomly selected

10 to 700 BSMs from the available BSM data to form the 70 input files. Taking

into account a 25% capacity reserve, the runtime was set to be less than 0.075

seconds.

For testing purposes, a MacBook Pro and a NUC were chosen as hardware

platforms. The MacBook Pro was equipped with an Apple M1 Pro chip featuring

10 cores, 32GB memory, and macOS Ventura 13.1, used for testing on the

ARM_64 architecture. The NUC, equipped with an Intel chip boasting 7 cores,

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

26

8GB memory, and running Windows 11, was utilized for testing on a different

architecture. All codes were executed in the Visual Studio Code IDE version

1.74.2. The compiler used for Mac was Apple clang version 14.0.0 (Target:

arm64-apple-darwin22.2.0), and for the NUC, Ming64 was employed. Python

version 3.9 was used.

When the number of CVs exceeded 1000 (resulting in a CV penetration rate

exceeding 0.14, as shown in Appendix C – Sample Results), the capacity of the

NUC was no longer sufficient. On ARM_64, performance issues only occurred

with Pandas sequential when the number of CVs exceeded 2500 (CV penetration

rate exceeded 0.25, as shown in the figure), and with Pandas multiprocessing

when the number of CVs exceeded 3500 (CV penetration rate exceeded 0.5, as

shown in Figure 5).

5.1.2 Scenario Configuration
As mentioned earlier, the performance of IVC is influenced by factors such as

chip architecture, programming language, and the parallelism module, all within

the users' control range. Accordingly, testing scenarios were configured based on

different selections of these abstractions. For chip architecture, the primary

types for PCs and mobile devices currently include ARM_64 and X86_64.

Regarding programming languages, Python and C were chosen, with Python

being used for the sequential program of Collision Avoidance System (CIM) and C

being known for its speed and widespread use.

Given the need to handle tabular data, particularly in CIM's sequential program,

two widely-used Python libraries—Pandas (for data frames and series) and

Numpy (for numerical data stored in arrays)—were selected for performance

comparison. Numpy, known for its memory efficiency, enables C libraries to

operate on the same memory. To explore the performance of Pandas versus

Numpy, both were included in the scenarios.

For parallelism modules, Python's multiprocessing and C's OpenMP were

included in the scenarios to leverage parallel programming capabilities. The

testing scenarios are detailed in Table 5, with the aim of utilizing Python parallel

programming libraries and extending heavy computations to C.

TABLE 5. SCENARIO SETUP OF IVC PARALLEL COMPUTING TESTS

Scenario Chip Architecture Language Parallelism Module
1 ARM_64 Python: Pandas None
2 ARM_64 Python: Pandas Multiprocessing
3 ARM_64 Python: Numpy None
4 ARM_64 Python: Numpy Multiprocessing
5 ARM_64 C None
6 ARM_64 C OpenMP

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

27

7 X_86_64 Python: Pandas None
8 X_86_64 Python: Pandas Multiprocessing
9 X_86_64 Python: Numpy None

10 X_86_64 Python: Numpy Multiprocessing
11 X_86_64 C None
12 X_86_64 C OpenMP

5.1.3 Test Results
Excluding the scenarios deemed incapable (S1 and S2), as illustrated in 9.3

Appendix C – Sample Results, the candidate scenarios were refined to Scenario 3

through 6. Subsequent tests were conducted to ascertain the fastest scenario

among the capable options. The results of 15 runs for scenarios 3 to 6 were

averaged and presented in as Figure 7and Table 6. Notably, the outcomes reveal

that Scenario 5 exhibited the shortest running time, indicating that employing C

on ARM architecture represents the fastest hardware-software solution for the

CIM model.

FIGURE 6. EXECUTION TIME OF ALL SCENARIOS.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

28

FIGURE 7. AVERAGE EXECUTION TIME OF SCENARIO 3 TO 6.

TABLE 6. AVERAGE EXECUTION TIME OF SCENARIO 3 TO 6.

N_CV S3_Numpy_Sequencial S4_Numpy_Multithreading S5_C_Sequencial S6_C_OpenMP

100 0.00037618 0.00039701 0.00021555 0.00048691
200 0.0006278 0.00066274 0.00040401 0.00068768
300 0.00091147 0.00092614 0.00042075 0.00068067
400 0.00116693 0.00242577 0.00059257 0.00080706
500 0.00120098 0.00281097 0.00059716 0.00086295
600 0.00146801 0.00147554 0.00069116 0.00107881
700 0.00324532 0.00286123 0.00095795 0.00118876
800 0.00422285 0.0069939 0.00499573 0.00736597
900 0.00339616 0.00459367 0.00103703 0.00145898
1000 0.00375341 0.00239828 0.0012018 0.00193734
1100 0.00421241 0.0029459 0.00120867 0.00189303
1200 0.00412151 0.00370491 0.00151504 0.00201797
1300 0.00413102 0.00689872 0.00135786 0.00194823
1400 0.00709357 0.00636341 0.00229295 0.00293517
1500 0.00505778 0.00361713 0.00161853 0.00206482
1600 0.00659817 0.0060202 0.01086928 0.00784216
1700 0.00701656 0.0064436 0.00184089 0.00256166
1800 0.00386368 0.00505366 0.00177991 0.00270373
1900 0.00638371 0.00524933 0.00204767 0.00253048
2000 0.00642845 0.00453205 0.00185722 0.00300344
2100 0.00452328 0.00744322 0.00214489 0.00283408
2200 0.00877123 0.00895325 0.00207504 0.00334992
2300 0.00519767 0.0050756 0.00208824 0.00313733
2400 0.00523845 0.00619318 0.0022426 0.00350714
2500 0.00815277 0.00801045 0.00232366 0.00365728
2600 0.00814398 0.00828927 0.00231625 0.00373872
2700 0.00931892 0.00973814 0.00247366 0.0038118
2800 0.00910473 0.00882055 0.00259752 0.00375961
2900 0.00735723 0.00848298 0.00326271 0.00414349
3000 0.00811946 0.00851868 0.00399947 0.00490901

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

29

3100 0.00679641 0.01324968 0.0030122 0.00404466
3200 0.0099538 0.00861047 0.01322333 0.00875519
3300 0.01048598 0.0095562 0.00293357 0.00452545
3400 0.01119514 0.01259559 0.00383368 0.00522283
3500 0.01170475 0.01117643 0.00308412 0.0047664
3600 0.01174002 0.0087731 0.00424633 0.0051192
3700 0.01174207 0.00915731 0.00332821 0.00502855
3800 0.01365021 0.0106485 0.00338833 0.00508666
3900 0.01089614 0.01427571 0.00337915 0.00523122
4000 0.00950856 0.01040309 0.00349126 0.00533462
4100 0.01213601 0.01013807 0.00355094 0.00556459
4200 0.01278113 0.01237793 0.00362884 0.00548917
4300 0.01229172 0.0129449 0.00399906 0.00530767
4400 0.01071588 0.01375863 0.00396601 0.0052048
4500 0.01163241 0.01495471 0.00424627 0.00581616
4600 0.0167098 0.01179102 0.00395652 0.00624658
4700 0.01407057 0.01542074 0.00415324 0.00608387
4800 0.01624705 0.01727096 0.00902251 0.00764454
4900 0.01855477 0.01355395 0.00445479 0.00618682
5000 0.01434414 0.0172863 0.00462782 0.00623991
5100 0.01474716 0.01537808 0.00522788 0.00786392
5200 0.01601187 0.01572582 0.00482818 0.00688977
5300 0.04119802 0.03925424 0.02044813 0.02353403
5400 0.0152188 0.01872145 0.00488667 0.00679941
5500 0.01685316 0.01377551 0.00521146 0.00812666
5600 0.01523064 0.02000707 0.00492196 0.00700733
5700 0.02127318 0.01949736 0.00568476 0.00753218
5800 0.01958623 0.01707579 0.00491247 0.00717864
5900 0.02087779 0.01757984 0.00509493 0.00730913
6000 0.01695126 0.01942582 0.0051034 0.00719953
6100 0.02139595 0.01875671 0.00525125 0.00755448
6200 0.01806939 0.01703672 0.00519245 0.00782825
6300 0.01482445 0.01563784 0.00545565 0.00784276
6400 0.01789223 0.01613706 0.00528502 0.00824817
6500 0.0173605 0.02133476 0.00585688 0.00822589
6600 0.02113012 0.01844281 0.00543628 0.0077957
6700 0.01932419 0.01844972 0.00560497 0.00832198
6800 0.02394835 0.02482243 0.00617112 0.00920216
6900 0.0201206 0.01718718 0.00610511 0.00889285
7000 0.0197974 0.01916796 0.00573654 0.00858847

5.1.4 Performance Evaluation
The test results reveal distinctions in computation setups for the CIM.

Specifically:

• The execution times of ARM scenarios are faster than the corresponding

X86 scenarios.

• For the same ARM-based PC, Python Pandas scenarios are considerably

slower than C, and Python Numpy scenarios are slightly slower than C.

• On the same ARM-based PC, scenarios with parallel versions of Python

Pandas and NumPy are faster than their sequential counterparts, while C

with OpenMP is slower than without.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

30

It is logical that the execution times of ARM scenarios are faster than their

corresponding X86 scenarios, as depicted in Table 6, because the Mac M1 Pro is

well-equipped and currently stands as one of the fastest PCs on the market. Our

test indicates that this type of X86 is not sufficiently fast for the CIM.

As illustrated in Figure 8, for the same ARM-based PC, Python Pandas scenarios

are significantly slower than C, and Python Numpy scenarios are slightly slower

than C. Python is an interpreted programming language, implying that the source

code of a Python program is converted/interpreted into bytecode, which is then

executed one instruction after another. In contrast, compiled languages like C

and C++ require the entire program to be built and compiled ahead of time

before execution. Consequently, Python is slower in execution than C. Another

factor contributing to Python's slowness is its Global Interpreter Lock (GIL),

which reduces the chances of race conditions with multiple threads but also

prevents multiple threads from running in parallel. The Multiprocessing library

can circumvent the GIL, thereby accelerating speedup. Ultimately, while Python

is written in C and can be close to but not faster than C, Numpy, the fundamental

Python library, is more memory-efficient and much faster in indexing than

Pandas. However, Pandas is easier to use and has higher industry application.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

31

FIGURE 8.EXECUTION TIME OF SCENARIO 1 TO 6.

For both Pandas and NumPy, utilizing multiprocessing results in faster execution

compared to the sequential approach. On the other hand, the OpenMP

paradigm represents one of the most widely employed parallel programming

models on desktop machines, particularly with C or C++. OpenMP operates

under the single program multiple data (SPMD) parallelism model, assuming

shared memory between threads and introducing overhead to the execution.

The benefits of Data Level Parallelism (DLP) on speedup are contingent on the

specific program. Users must identify the parallelizable sections of the program

in advance. Amdahl’s law articulates that "the overall performance improvement

gained by optimizing a single part of a system is limited by the fraction of time

that the improved part is actually used” (Mian, et al., 2014),as expressed in

Equation 1, where 𝑓 is the fraction of operations in a computation that must be

performed sequentially, and 𝑝 is the speedup of the part of the task that benefits

from improved system resources.

𝐬𝐩𝐞𝐞𝐝𝐮𝐩_𝐨𝐯𝐞𝐫𝐚𝐥𝐥 ≤
𝟏

𝐟 +
𝟏 − 𝐟

𝐩

 (𝟑)

Moreover, an additional factor is the advancement of the Apple M1 chip, which

is a system-on-a-chip that already incorporates built-in optimized parallelism.

Enforcing OpenMP may lead to less optimized parallelism in this context.

ARM architecture is extensively utilized in smartphones, offering advantages

such as low energy consumption and minimal heat generation. Coupled with its

shorter running time, ARM can be an ideal choice for IVCs. Consequently, the

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

32

recommended computational setup for the CIM is determined to be ARM

architecture with the C programming language, leveraging the M1 chip's

inherent parallelism.

5.2 Parallel Computing of DAD
Exclusively utilizing the BSM data, the DAD determines whether a CV is in abnormal

driving status. The DAD consists of five modules: Module 1: Data Preprocessing and

Selecting KPIs; Module 2: Learning Normal Behavior; Module 3: Detecting Outliers;

Module 4: Determining Abnormal Driving Events; and Module 5: System Updating, as

illustrated in Figure 9. In the O6 project, all these modules will be executed on the IVC.

As discussed in in 5.1 Parallel Computing of CIM, ARM architecture is recommended as

the hardware for the CIM model. This section presents the parallel computing

implementation of the DAD running on ARM architecture. Similar to the CIM, a Mac Pro

with an M1 chip and macOS Ventura 13.3.1 was employed for these computations.

FIGURE 9. THE FLOWCHART OF DAD.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

33

Since the DAD can operate offline, and the O6 system has mitigated the extensive data

transfer observed in the F4, this section concentrates on the integration of GPU for

parallel computing and assesses the suitability of OD ML packages.

5.2.1 Test Data
The Test Data used the historical BSMs of a selected CV used in F4 project, the

attributes are as described in section 4.0 TASK 2: DATABASE CONSTRUCTION. As

in F4, the longitudinal acceleration and lateral acceleration were found have

some relationship with speed, as shown in the visualization of the raw data of

Figure 10.

(A) (B)

FIGURE 10. THE SCATTER PLOT OF SPEED AND ACCELERATION. (A) LONGITUDINAL

ACCELERATION AND SPEED. (B) LATERAL ACCELERATION AND SPEED

5.2.2 Scenario Configuration
Apple's M1 chip incorporates a built-in graphics GPU that facilitates parallel

computing, utilizing the Metal Performance Shaders (MPS) framework as the

Graphics and Compute API. PyTorch, an open-source ML framework based on

the Python programming language and the Torch library, employs MPS as a

backend for GPU acceleration on Mac systems with the M1 chip. PyTorch utilizes

tensors to represent model inputs, outputs, and parameters, with the ability to

run on GPUs and share memory with NumPy arrays, eliminating the need for

data copying. For this task, PyTorch was installed on a Mac Pro with an M1 chip

running macOS Ventura 13.3.1, and Jupyter Lab served as the integrated

development environment (IDE).

The test scenarios for this section were configured as follows: DAD on CPU, DAD

on GPU, and the application of OD ML algorithms, including Angle-based Outlier

Detector (ABOD), Cluster-based Local Outlier Factor (CBLOF), Histogram-based

Outlier Score (HBOS), Isolation Forest (IF), and K Nearest Neighbors (KNN).

TABLE 7. SCENARIO SETUP OF DAD PARALLEL COMPUTING TESTS

 Algorithm Name Algorithm Type

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

34

1 ABOD ML open source
2 CBLOF ML open source
3 HBOS ML open source
4 IF ML open source
5 KNN ML open source
6 DAD on CPU STRIDE F4
7 DAD on GPU STRIDE O6

5.2.3 Test Results
As the OD ML algorithms output the number of outliers, thresholds and plots to

show the outlier, as shown in Table 8 and Figure 11.

TABLE 8. OUTPUT OF OD ALGORITHMS AND DAD MODELS

 Algorith
m Name

Outliers Threshold

 Longitudinal Lateral Longitudinal Lateral

1 ABOD 0 0 nan nan
2 CBLOF 158345 158344 -

0.11175434977
913001

-
0.1091907175736
9557

3 HBOS 153140

135949 -
1.90786343337
17992

0.2580508062387
792

4 IF 158348 0
158335

-
2.08012101255
44493e-17

0.0

5 KNN 142490 142490 -
0.00015036090
22556196

-
0.0005055611805
69658

6 DAD on

CPU with
multipro
cessing

Output Alarm Once
Detected

Threshold Pannal

7 DAD on
GPU

Output Alarm Once
Detected

Threshold Pannal

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

35

(1)
ABO
D

(2)
CBLO
F

(3)
HBOS

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

36

(4)
IF

(5)
KNN

FIGURE 11. THE OUTPUT PLOTS OF OD ML ALGORITHMS

The average execution times for DAD were approximately 13 seconds on CPU and 23 seconds

on GPU when processing a dataset with 3 million instances. While calculations on the GPU

demonstrate faster performance, the data loading time was significantly slower. This disparity

raised from storing the data in CSV format, with loading CSV data to a tensor being notably

slower than loading it to a Pandas DataFrame with multiprocessing.

TABLE 9. THE EXECUTION TIME OF DADS

 Total Execution Time Data Loading
DAD on CPU with
multiprocessing 13 seconds

CSV to Pandas
DataFrame 2 seconds

DAD on GPU 23 seconds CSV to Tensor of Torch 20 seconds

5.2.4 Performance Evaluation
The OD ML algorithms yielded approximately 5 percent outliers of the total

instances, as indicated in Table 10. This percentage resulted from setting the

parameter "outliers_fraction" to 0.05. Similar to F4, the output thresholds

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

37

served as the threshold panel for real-time detection of abnormal driving.

However, the thresholds generated by the ODs are not applicable to our system,

lacking any association with transportation terms or phenomena.

TABLE 10. THE OUTPUT OF OD ALGORITHMS

Algorithm

Name

Total

Instance

Longitudinal
Longintudin

al Persentage
Lateral

lateral

Persentage
Longitudinal Lateral

1 ABOD 3166950 0 0 0 nan nan

2 CBLOF 3166950 158345 0.04999921 158344 0.04999889 -0.1117543 -0.1091907

3 HBOS 3166950 153140 0.04835567 135949 0.04292742 -1.9078634 0.25805081

4 IF 3166950 158348 0.05000016 158335 0.04999605 -2.08E-17 0

5 KNN 3166950 142490 0.04499282 142490 0.04499282 -0.0001504 -0.0005056

Outliers Threshold

6.0 CONCLUSIONS
The O6 project marks a substantial improvement over F4, driven by advancements in both

system architecture and computing paradigm. Our journey commenced with an extensive

literature review on parallel computing, revealing the prevailing trend in the automotive market

towards flexible and lightweight CAVs. Recognizing the significant advancements in IVCs, we

identified DSD as the future of parallel computing.

Both F4 and O6 feature a two-tier hierarchical structure with an upper-tier core cloud and a

lower tier consisting of CVs monitored by the core cloud. In F4, the core cloud manages the flag

list of abnormal CVs and major DAD modules, while the IVC handles a portion of DAD in

conjunction with the CIM. In contrast, O6 relocates the entire DAD to the IVC, assigning the

core cloud exclusive responsibility for the flag list.

F4's success relies on seamless cooperation between auto manufacturers, BSM central control,

and government support—an identified challenge for the near future. Meanwhile, O6, while

potentially susceptible to minor data loss and unsuitability for comprehensive traffic analysis,

presents significant benefits in reducing data traffic and improving latency performance.

Considering O6's advantages over its drawbacks and its alignment with the prevailing trend

towards flexible and lightweight solutions, we adapted the O6 architecture to fully migrate DAD

to the IVC.

Moving from F4's sequential computation paradigm, O6 underwent a crucial upgrade to a

parallel version, resulting in notable improvements in processing speed, efficiency, and

scalability. We designed the DSD process with considerations at three levels of abstraction: chip

architecture, programming language, and parallelism module. Testing configurations included

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

38

C, Python, and OpenMP on both Windows and MacOS platforms, specifically targeting the M1

chip for MacOS, using Visual Studio Code.

Our working datasets comprised BSM data from CV pilot studies, with performance evaluation

utilizing crash data from the SHRPII NDS. Both datasets were in CSV format. In evaluating our

DAD, we compared its performance in F4 and O6 with various established OD packages

designed for outlier detection. The findings indicated that existing OD models fell short of

meeting our system requirements. Focused on minimizing processing time and based on our

working data, we concluded to employ ARM architecture, C programming language, and

leverage the built-in parallelism of the ARM chip for CIM. For DAD, ARM architecture and

Python language on the CPU with multiprocessing were deemed suitable for parallel

computing.

7.0 RECOMMENDATIONS AND FURTURE WORK
This project's primary contribution lies in its innovative approach to configuring DSD for IVCs

across three levels of abstraction: chip architecture, programming language, and the parallelism

module. For the CIM of our system, we recommend utilizing ARM architecture, the C

programming language, and leveraging the built-in parallelism of the ARM chip. For the DAD,

we propose fully migrating DAD to IVC, employing ARM architecture, and using Python

language on the CPU with multiprocessing for parallel computing. It is important to note that

these recommendations are based on datasets in CSV format, and if binary format data is used,

which is the format of the BSM in real-world operation, additional testing is necessary.

Several significant challenges lie ahead for future work on DSD and IVC. These challenges

include understanding emerging trends in the IVC market, exploring the integration of

automated and connected vehicles, assessing the impact of connected and automated vehicles

on intelligent transportation systems, and examining how market players would adopt DSD.

Regarding technologies, thoughtful consideration is needed to address challenges related to

potential data loss in the event of CV malfunctions and evolving demands for comprehensive

traffic analysis in the future.

There is also considerable future work anticipated for DAD. Recognizing that driving behaviors

are complex processes involving actions controlled by both conscious and subconscious aspects

of the human brain, relying solely on the vehicle's footprint to determine behavior status may

be insufficient. When scoring outliers, the relative impacts of different key performance

indicators lack clarity, and auto-tuning was not possible due to a lack of data.

The scope of this project does not encompass the data path, which involves the vehicle cloud,

and remains an open research problem representing one of the most significant challenges for

CAV development. Further research and development in the data path are anticipated for the

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

39

realization of our system. While this project only scratches the surface, it serves as a case that

showcases the initial research conducted on DSD for IVC.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

40

8.0 REFERENCE LIST

ACM, 2017. ISCA '17: Proceedings of the 44th Annual International Symposium on Computer

Architecture. New York, NY, USA, Association for Computing Machinery.

Amini, S., Gerostathopoulos, I. & Prehofer, C., 2017. Big data analytics architecture for real-time

traffic control. s.l., s.n., p. 710–715.

An, S.-h., Lee, B.-H. & Shin, D.-R., 2011. A survey of intelligent transportation systems. s.l., s.n.,

p. 332–337.

Asanovic, K. et al., 2009. A view of the parallel computing landscape. Communications of the

ACM, Volume 52, p. 56–67.

Boukerche, A. a. Z. L. a. A. O., 2020. Outlier detection: Methods, models, and classification. ACM

Computing Surveys (CSUR), Volume 53, pp. 1--37.

Brown, E. N., 2010. Type oriented parallel programming. s.l.:Durham University.

Culler, D., Singh, J. P. & Gupta, A., 1999. Parallel computer architecture: a hardware/software

approach. s.l.:Gulf Professional Publishing.

Darlington, J., 1996. Structured parallel programming: parallel abstract data types.

Duan, L., Xu, L., Liu, Y. & Lee, J., 2009. Cluster-based outlier detection. Annals of Operations

Research, Volume 168, p. 151–168.

Gottlieb, A. & Almsi, G., 1989. Highly parallel computing.

Hernandez, O. a. N. R. C. a. C. B. a. B. V. a. K. R., 2009. Open source software support for the

openmp runtime api for profiling. s.l., IEEE.

ISCA, 2017. ISCA '17: Proceedings of the 44th Annual International Symposium on Computer

Architecture. New York, NY, USA, Association for Computing Machinery.

Khazaei, H., Zareian, S., Veleda, R. & Litoiu, M., 2016. Sipresk: A big data analytic platform for

smart transportation. In: Smart City 360°. s.l.:Springer, p. 419–430.

Kriegel, H.-P., Schubert, M. & Zimek, A., 2008. Angle-based outlier detection in high-dimensional

data. s.l., s.n., p. 444–452.

Larose, D. T. & Larose, C. D., 2014. k-nearest neighbor algorithm.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

41

Lin, Y., Wang, P. & Ma, M., 2017. Intelligent transportation system (ITS): Concept, challenge and

opportunity. s.l., s.n., p. 167–172.

MarketsandMarkets™ Ltd., 2020. In-Vehicle Computer System Market, s.l.: s.n.

Mian, R. et al., 2014. A data platform for the highway traffic data. s.l., s.n., p. 47–52.

Moore, G. E., 1998. Cramming more components onto integrated circuits. Proceedings of the

IEEE, Volume 86, p. 82–85.

Null, L. & Lobur, J., 2014. Essentials of Computer Organization and Architecture. s.l.:Jones \&

Bartlett Publishers.

Oracal, 2023. MySQL 8.0 Reference Manual. [Online]

Available at: https://dev.mysql.com/doc/refman/8.0/en/

[Accessed 2023].

Osuna, J. A., 1994. COMPUTING RESEARCH NEWS. COMPUTING.

Putrada, A. G. & Abdurohman, M., 2021. Anomaly detection on an iot-based vaccine storage

refrigerator temperature monitoring system. s.l., s.n., p. 75–80.

Saidu, C. I. a. O. A. a. O. P. O., 2015. Overview of Trends Leading to Parallel Computing and

Parallel Programming. 7(British Journal of Mathematics \& Computer Science), p. 40.

Schauer, B., 2008. Multicore processors–a necessity. ProQuest discovery guides, p. 1–14.

Shtern, M. et al., 2014. Towards a multi-cluster analytical engine for transportation data. s.l.,

s.n., p. 249–257.

Stoller, S. D. et al., 2019. Future directions for parallel and distributed computing: SPX 2019

workshop report. s.l., s.n.

Wang, H. et al., 2020. Architectural design alternatives based on cloud/edge/fog computing for

connected vehicles. IEEE Communications Surveys & Tutorials, Volume 22, p. 2349–2377.

Xu, D., Wang, Y., Meng, Y. & Zhang, Z., 2017. An improved data anomaly detection method

based on isolation forest. s.l., s.n., p. 287–291.

Zhao, Y., Nasrullah, Z. & Li, Z., 2019. Pyod: A python toolbox for scalable outlier detection. arXiv

preprint arXiv:1901.01588.

Zhu, L. et al., 2018. Big data analytics in intelligent transportation systems: A survey. IEEE

Transactions on Intelligent Transportation Systems, Volume 20, p. 383–398.

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

42

9. APPENDICES
9.1 Appendix A – Acronyms, abbreviations, etc.

AASHTO -- American Association of State Highway and Transportation Officials

ACC -- adaptive cruise control

ADAS -- advanced driver assistance systems

AV -- autonomous vehicle

BSM -- basic safety message

CIM -- conflict detection model

CPU – central processing unit

CSV -- comma-separated values

CV -- connected vehicle

DA -- driving anomaly

DVU -- driver-vehicle unit

ESA -- emergency steering assistance

FCW -- forward collision warning

FHWA -- Federal Highway Administration

GPS -- Global Positioning System

GPU -- graphic processing unit

ITS -- intelligent transportation system

ITS -- intelligent transportation system

IVC – in-vehicle computer

KPI -- key performance indicator

LDW -- lane departure warning

MTC -- margin to collision

ML – machine learning

NDS -- Naturalistic Driving Study

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

43

NHTSA -- National Highway Traffic Safety Administration

OBU -- on-board unit

OD – outlier detection

SHRP II -- the Strategic Highway Research Program

SPMD -- Safety Pilot Model Deployment (SPMD)

US DOT -- United States Department of Transportation

V2X -- vehicle-to-everything

9.2 Appendix B – Associated websites, data, etc., produced

https://insight.shrp2nds.us/login/auth

https://www.its.dot.gov/pilots/

9.3 Appendix C – Sample Results

TABLE 11. SAMPLE RESULTS OF CIM TESTS

https://insight.shrp2nds.us/login/auth
https://www.its.dot.gov/pilots/

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

44

9.4 Appendix C – Summary of Accomplishments

Senario 1 2 3 4 5 6 7 8 9 10 11

Chip ArchitectureARM_64 ARM_64 ARM_64 ARM_64 ARM_64 ARM_64 X_86_64 X_86_64 X_86_64 X_86_64 X_86_64

Language Python: PandasPython: PandasPython: NumpyPython: NumpyC C Python: PandasPython: PandasPython: NumpyPython: NumpyC C

Parallelism

Module None

Multi-

processing None

Multi-

processing None OpenMP None

Multi-

processing None

Multi-

processing None OpenMP

Number of

CVs

100 0.00429201 0.00332403 0.00040698 0.00067616 0.00040698 0.00033522 0.01000428 0.42237091 0.0049665 0.007448196 0.04725337 0.02999187

200 0.00748396 0.0053091 0.00056028 0.00081587 0.00056028 0.00047421 0.02094364 0.02293873 0.03153634 0.027921677 0.04986644 0.04240489

300 0.01085591 0.00771785 0.00082994 0.00211692 0.00082994 0.00041032 0.03191423 0.03291106 0.00997353 0.011114597 0.07082629 0.0603807

400 0.0144062 0.00942016 0.00096703 0.0013268 0.00096703 0.00052214 0.03195238 0.03937244 0.01132965 0.010575056 0.09146738 0.07830667

500 0.01669312 0.01131201 0.00116611 0.00198483 0.00116611 0.00051785 0.0379293 0.04665184 0.01492238 0.015585899 0.09450936 0.0882802

600 0.01969886 0.01348829 0.00134683 0.00166297 0.00134683 0.00074196 0.04585123 0.05714822 0.01486421 0.018205404 0.11897254 0.10922432

700 0.0219121 0.01606083 0.00185299 0.00181794 0.00185299 0.00141501 0.05291629 0.06013083 0.01892138 0.022853136 0.13623095 0.12899113

800 0.02668405 0.02652001 0.00253701 0.14537883 0.00253701 0.002424 0.05982566 0.07143044 0.02166271 0.023399353 0.1381712 0.13116503

900 0.02828598 0.02003813 0.00205708 0.00246119 0.00205708 0.00090909 0.06910825 0.08158398 0.02876735 0.025264263 0.18258572 0.15561771

1000 0.03151202 0.02217722 0.002069 0.00315118 0.002069 0.00094604 0.12100649 0.1173737 0.14495349 0.153775215 0.18631101 0.17424822

1100 0.03502989 0.02435803 0.00229812 0.00328922 0.00229812 0.00105023 0.11597252 0.13612103 0.15599346 0.163504839 0.26481223 0.2264719

1200 0.03716707 0.02656794 0.00609803 0.03028297 0.00609803 0.00109482 0.1209352 0.12613964 0.16299796 0.168321133 0.26494193 0.22693276

1300 0.04067302 0.02855802 0.00272107 0.03237104 0.00272107 0.00131679 0.13162899 0.12879753 0.18548393 0.184026003 0.25668073 0.25335836

1400 0.04358602 0.03031683 0.00308394 0.02391315 0.00308394 0.00235295 0.14062428 0.15455627 0.18382478 0.189732075 0.31196404 0.27647924

1500 0.0453701 0.03273988 0.0034492 0.00369716 0.0034492 0.00145817 0.14261174 0.1595521 0.20149493 0.214132547 0.27720904 0.25530648

1600 0.04923391 0.03453326 0.00548077 0.00366902 0.00548077 0.00181794 0.16057396 0.17607522 0.20114112 0.211987972 0.35357213 0.34597898

1700 0.05234599 0.03706384 0.00485778 0.00403214 0.00485778 0.00159693 0.17008185 0.18514919 0.23613167 0.245057344 0.39316535 0.36128139

1800 0.05502319 0.03887391 0.04587793 0.00403118 0.04587793 0.00157213 0.17810822 0.20143437 0.24134612 0.260811567 0.37075448 0.32193041

1900 0.05624127 0.04099798 0.003865 0.00404096 0.003865 0.0016439 0.19704866 0.19946647 0.25033164 0.286137342 0.41273069 0.37731099

2000 0.06018209 0.04334688 0.02271175 0.00474286 0.02271175 0.00202894 0.20320582 0.20744467 0.25274277 0.269272089 0.38930583 0.35352397

2100 0.06390095 0.04583287 0.00509501 0.00546098 0.00509501 0.00185394 0.20765328 0.2179873 0.28843451 0.299110174 0.41801858 0.40740204

2200 0.06696868 0.04690409 0.02555323 0.03523827 0.02555323 0.00209403 0.21573567 0.21374846 0.28095841 0.301294327 0.47151041 0.41031218

2300 0.06888318 0.04974008 0.00499296 0.00559282 0.00499296 0.00197506 0.2354722 0.23235106 0.31105065 0.326141357 0.47870421 0.44242859

2400 0.07221198 0.05184412 0.00591779 0.00553012 0.00591779 0.00213003 0.23475385 0.2315731 0.31867313 0.339980602 0.50282359 0.47680211

2500 0.07550097 0.05370903 0.00506902 0.00529909 0.00506902 0.00221801 0.23958158 0.23113537 0.08731699 0.091241121 0.49235654 0.44285512

2600 0.07803607 0.05612493 0.00566602 0.04267502 0.00566602 0.00234413 0.26354957 0.25238514 0.06856537 0.072802067 0.53151226 0.50442815

2700 0.0794251 0.05800605 0.00529623 0.00573301 0.00529623 0.00255013 0.26410007 0.25739884 0.07271957 0.078794241 0.55112195 0.51250148

2800 0.08438015 0.05989313 0.00580907 0.00655913 0.00580907 0.00261712 0.27882576 0.28970337 0.06973648 0.079763651 0.57380581 0.51705551

2900 0.08534122 0.06212306 0.0058639 0.00626516 0.0058639 0.00581717 0.28030658 0.29051495 0.07081032 0.077032328 0.56930375 0.52127504

3000 0.08858895 0.06606412 0.00646615 0.00709009 0.00646615 0.0060401 0.25731134 0.26477313 0.07552624 0.082663059 0.61696768 0.56082106

3100 0.09173393 0.06655526 0.00858307 0.00681686 0.00858307 0.00291395 0.22984457 0.24993563 0.08187342 0.083248854 0.63488913 0.58375812

3200 0.09356594 0.0682528 0.00805092 0.00680614 0.00805092 0.0027051 0.24381566 0.27155805 0.0897646 0.08727622 0.68250275 0.60802078

3300 0.09818721 0.07070637 0.00664878 0.00696206 0.00664878 0.00271606 0.24830914 0.28316426 0.0829246 0.093607187 0.70081687 0.63822627

3400 0.100703 0.072649 0.00769687 0.0073328 0.00769687 0.00361109 0.25926304 0.29145908 0.09075427 0.094763041 0.7255621 0.6684916

3500 0.10507798 0.07501388 0.02608299 0.00716496 0.02608299 0.00351906 0.26723337 0.28853798 0.08828092 0.096373558 0.70801377 0.67594814

3600 0.10738468 0.07719016 0.04316306 0.00761127 0.04316306 0.00336099 0.27160835 0.30055833 0.08967853 0.10043931 0.74398541 0.70848989

3700 0.10955191 0.07916379 0.00743914 0.00840497 0.00743914 0.00308108 0.27563572 0.30564761 0.09872246 0.097474813 0.7554512 0.70304918

3800 0.11369991 0.08129668 0.03263998 0.0426681 0.03263998 0.00350094 0.28411269 0.31417251 0.09733391 0.104615927 0.76152325 0.68849373

3900 0.11545897 0.083606 0.00978899 0.00844002 0.00978899 0.00343895 0.29102874 0.31859159 0.09759212 0.105899811 0.76780462 0.76397443

4000 0.11907315 0.0855701 0.00822473 0.00804925 0.00822473 0.00410819 0.29966378 0.33915305 0.10105801 0.111937523 0.86891389 0.85162234

4100 0.12264919 0.08797002 0.00916791 0.04037595 0.00916791 0.00425196 0.3029201 0.35322428 0.10399985 0.111816883 0.75805068 0.76595831

4200 0.12462425 0.08988309 0.00908804 0.00901413 0.00908804 0.0040791 0.29707432 0.36963272 0.10570931 0.110432625 0.7802484 0.78466702

4300 0.12759399 0.09251213 0.01055384 0.00898623 0.01055384 0.00407195 0.32875896 0.35204911 0.11034155 0.117016792 0.86627841 0.81511188

4400 0.13010311 0.09371114 0.00902677 0.03996921 0.00902677 0.00418901 0.32552004 0.35523558 0.10591626 0.113755703 0.79626894 0.78267741

4500 0.13257718 0.09589291 0.00952721 0.03696585 0.00952721 0.00394797 0.34182978 0.36232257 0.11538696 0.141619682 0.8925364 0.86353683

4600 0.13624001 0.09802318 0.00944614 0.00980711 0.00944614 0.00378489 0.34892058 0.39407372 0.11236882 0.125045538 0.923944 0.84899068

4700 0.14007616 0.10049701 0.0134201 0.00936484 0.0134201 0.00389886 0.3529129 0.40711021 0.1204412 0.132828236 0.87340689 0.88663673

4800 0.14149213 0.10162592 0.0394671 0.02774191 0.0394671 0.00488186 0.36257029 0.41577744 0.12171197 0.137428761 0.89674306 0.91496825

4900 0.14495802 0.10385919 0.03758597 0.01044297 0.03758597 0.0040462 0.37099195 0.41001868 0.12138677 0.136131763 0.9383595 0.88949871

5000 0.14679599 0.10741115 0.01227808 0.04067397 0.01227808 0.00449109 0.37085032 0.4239018 0.13227248 0.134638071 0.93896103 0.95801926

5100 0.1512742 0.11247373 0.01173186 0.0113678 0.01173186 0.00536299 0.38076854 0.43873739 0.12986469 0.135502338 0.96587181 0.98173356

5200 0.15387392 0.11148 0.03759933 0.01101494 0.03759933 0.00485611 0.37793159 0.45615578 0.13190722 0.144584179 0.95931697 0.93644738

5300 0.15280819 0.115062 0.03757811 0.01586986 0.03757811 0.06055498 0.38988042 0.44854212 0.13215137 0.143692732 0.97886515 0.96882653

5400 0.1587131 0.11388111 0.01094103 0.03784871 0.01094103 0.00559688 0.40532088 0.47618318 0.13596606 0.140133619 1.00755906 1.00774169

5500 0.16299295 0.11633992 0.04127789 0.01283407 0.04127789 0.00503397 0.4033289 0.46542835 0.13468075 0.153412342 0.98364139 1.04245353

5600 0.16415787 0.11785865 0.01223993 0.01204395 0.01223993 0.0047431 0.4210515 0.47314048 0.14017391 0.149520397 1.04245067 1.04961753

5700 0.16743612 0.12098384 0.01203108 0.01326585 0.01203108 0.00701404 0.42287135 0.47164035 0.1426754 0.166781425 1.04531908 1.05425119

5800 0.17176795 0.12434387 0.03269196 0.01301599 0.03269196 0.00511193 0.43713689 0.50895405 0.15139365 0.163255692 1.11455274 1.06656885

5900 0.17484426 0.12538004 0.04345083 0.03776574 0.04345083 0.01516008 0.441751 0.51438498 0.14966464 0.161153793 1.10618424 1.08864737

6000 0.17807102 0.12839222 0.01264 0.01274085 0.01264 0.00505972 0.44510603 0.51799464 0.15346432 0.168765545 1.10620809 1.15201902

6100 0.17917895 0.13066387 0.04608011 0.01269579 0.04608011 0.00503993 0.4521265 0.5374012 0.15260363 0.175770044 1.16146684 1.15271282

6200 0.18329501 0.13208795 0.0470252 0.0139792 0.0470252 0.00517106 0.45650554 0.52445793 0.1576221 0.172509909 1.10769057 1.11055589

6300 0.18703008 0.13431597 0.03139806 0.01318908 0.03139806 0.0054841 0.46672559 0.52861714 0.17852926 0.17461133 1.18343663 1.15809059

6400 0.19002318 0.13579321 0.01304889 0.01421428 0.01304889 0.00546813 0.47048235 0.54313517 0.17580032 0.175651312 1.21833158 1.17812037

6500 0.1917429 0.13875389 0.01356316 0.03743935 0.01356316 0.01007414 0.48494887 0.54627204 0.18731451 0.175204992 1.28438306 1.20401907

6600 0.19441915 0.13994384 0.0144999 0.01343727 0.0144999 0.00572705 0.51566339 0.56142211 0.18941545 0.178333759 1.28530121 1.24633169

6700 0.19832706 0.14231396 0.01450396 0.0138979 0.01450396 0.00567389 0.5103991 0.56246567 0.17708969 0.184883356 1.26786065 1.20823288

6800 0.20033693 0.14410186 0.01378894 0.03809595 0.01378894 0.00780392 0.51115751 0.59249139 0.17135286 0.191464663 1.42492151 1.27553916

6900 0.20346498 0.14701581 0.04324889 0.01472902 0.04324889 0.0061152 0.50815797 0.59149575 0.17668724 0.197807789 1.29974866 1.26460314

7000 0.20789409 0.14873075 0.03858423 0.01499701 0.03858423 0.00689411 0.52736259 0.59645963 0.19692445 0.189439058 1.3340497 1.29321718

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

45

Date Type of
Accomplishment
(select from drop
down list)

Detailed Description
Provide name of person, name of event, name of award, title of
presentation, location and any links to announcements if available
Please attach any abstracts, summaries, high quality photos, or
additional details as an appendix.

11/01/2022 Conference

Paper

We submitted the abstract of a paper titled “Parallel

Computing on the In-vehicle Subsystem for Safety Diagnosis

in the Connected Vehicle Environment ” to the International

Conference on Transportation and Development (ICTD)

2023.

06/25/2023 Journal Paper Submitted to Vehicles a paper titled “Adaptive Individual-

Level Cognitive Driving Anomaly Detection Model

Exclusively Using BSMs”. Accepted: 18 September

2023 /Published: 26 September 2023

Abstract of the paper submitted to the International Conference on Transportation and

Development (ICTD) 2023. https://www.asce-ictd.org/

https://www.asce-ictd.org/

Real-time Safety Diagnosis System for Connected Vehicles
with Parallel Computing Architecture

46

	Structure Bookmarks
	Document
	P
	Figure
	TECHNICAL REPORT DOCUMENTATION PAGE
	P
	1.Report No.
	1.Report No.
	1.Report No.
	1.Report No.
	1.Report No.
	Project O6

	2.Government Accession No.
	2.Government Accession No.

	3.Recipient’s Catalog No.
	3.Recipient’s Catalog No.

	4.Title and Subtitle
	4.Title and Subtitle
	4.Title and Subtitle
	Real-time Safety Diagnosis System for Connected Vehicles with ParallelComputing Architecture

	5.Report Date
	5.Report Date
	12/11/2023

	TR
	6.Performing Organization Code
	6.Performing Organization Code

	7.Author(s)
	7.Author(s)
	7.Author(s)
	Shuang Tu, Ph.D., Jackson State University
	Robert W. Whalin, Ph.D., Jackson State University
	Di Wu, Ph.D. Candidate, Jackson State University

	8.Performing Organization ReportNo.
	8.Performing Organization ReportNo.
	STRIDE Project O6

	9.Performing Organization Name and Address
	9.Performing Organization Name and Address
	9.Performing Organization Name and Address
	Jackson State University
	Department of Computer Engineering
	P. O. Box 17098
	Jackson State University
	1400 J. R. Lynch Street
	Jackson, MS 39217
	P

	10.Work Unit No.
	10.Work Unit No.
	P

	TR
	11.Contract or Grant No.
	11.Contract or Grant No.
	Funding Agreement Number69A3551747104

	12.Sponsoring Agency Name and Address
	12.Sponsoring Agency Name and Address
	12.Sponsoring Agency Name and Address
	University of Florida Transportation Institute/ Southeastern TransportationResearch, Innovation, Development and Education Center (STRIDE) 365Weil Hall, P.O. Box 116580 Gainesville, FL 32611
	U.S Department of Transportation/Office of Research, Development & Tech
	1200 New Jersey Avenue, SE, Washington, DC 20590

	13.Type of Report and PeriodCovered
	13.Type of Report and PeriodCovered
	05/01/2022 to 12/11/2023
	P

	TR
	14.Sponsoring Agency Code
	14.Sponsoring Agency Code
	P

	15.Supplementary Notes N/A
	15.Supplementary Notes N/A
	15.Supplementary Notes N/A

	16.Abstract - The primary aim of this project is to enhance our system from the previous STRIDE F4 projectto a parallel computing version. The original F4 system, designated as Automatic Safety Diagnosis inConnected Vehicle (CV) Environment, established a computational pipeline for diagnosing near-crash eventsexclusively using Basic Safety Messages (BSMs). It was implemented using a sequential computingparadigm. The O6 project was conceived to expedite the system by transitioning it to a parallel version.
	16.Abstract - The primary aim of this project is to enhance our system from the previous STRIDE F4 projectto a parallel computing version. The original F4 system, designated as Automatic Safety Diagnosis inConnected Vehicle (CV) Environment, established a computational pipeline for diagnosing near-crash eventsexclusively using Basic Safety Messages (BSMs). It was implemented using a sequential computingparadigm. The O6 project was conceived to expedite the system by transitioning it to a parallel version.
	16.Abstract - The primary aim of this project is to enhance our system from the previous STRIDE F4 projectto a parallel computing version. The original F4 system, designated as Automatic Safety Diagnosis inConnected Vehicle (CV) Environment, established a computational pipeline for diagnosing near-crash eventsexclusively using Basic Safety Messages (BSMs). It was implemented using a sequential computingparadigm. The O6 project was conceived to expedite the system by transitioning it to a parallel version.
	The F4 system comprised a driving anomaly detection model (DAD), a conflict identification model (CIM),and the data-path connecting them. The DAD was primarily situated in the core cloud, while the CIM waspositioned within the CVs. Throughout the O6 process, notable advancements in in-vehicle computers(IVCs) were uncovered. In order to align our system with real-world operations, we opted to fully migratethe DAD component to the IVCs.Recognizing Domain-Specific Design (DSD) as the future of parallelcomputin

	17.Key Words
	17.Key Words
	17.Key Words
	parallel computing, connected vehicle, Python, C, ARM,OpenMP, in-vehicle computer, domain-specific design

	18.Distribution Statement
	18.Distribution Statement
	No restrictions

	19.Security Classif. (of this report)
	19.Security Classif. (of this report)
	19.Security Classif. (of this report)
	N/A

	20.Security Classif. (of thispage)
	20.Security Classif. (of thispage)
	N/A

	TD
	P
	21. No. of Pages46 pages

	22.Price
	22.Price
	N/A

	Form DOT F 1700.7 (8-72)
	Form DOT F 1700.7 (8-72)
	Form DOT F 1700.7 (8-72)

	Reproduction of completed page authorized
	Reproduction of completed page authorized

	P
	P
	DISCLAIMER
	The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by a grant from the U.S. Department of Transportation’s University Transportation Centers Program. However, the U.S. Government assumes no liability for the contents or use thereof.
	P
	ACKNOWLEDGEMENT OF SPONSORSHIP AND STAKEHOLDERS
	 This work was sponsored by a grant from the Southeastern Transportation Research, Innovation, Development, and Education Center (STRIDE).
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	Funding Agreement Number - 69A3551747104
	LIST OF AUTHORS
	
	Lead PI:
	Shuang Z. Tu, Ph.D. Jackson State University shuang.z.tu@jsums.edu https://orcid.org/0000-0002-4506-6447
	
	Co-PI:
	Robert W. Whalin, Ph.D. Jackson State University Robert.w.whalin@jsums.edu https://orcid.org/0000-0002-8712-9434
	
	Additional Researchers:
	Di Wu, Ph.D. Candidate Jackson State University di.wu@students.jsums.edu https://orcid.org/0000-0003-3169-3041
	
	TABLE OF CONTENTS
	
	
	DISCLAIMER..ii
	DISCLAIMER..ii
	DISCLAIMER..ii

	

	ACKNOWLEDGEMENT OF SPONSORSHIP AND STAKEHOLDERS ..ii
	ACKNOWLEDGEMENT OF SPONSORSHIP AND STAKEHOLDERS ..ii
	ACKNOWLEDGEMENT OF SPONSORSHIP AND STAKEHOLDERS ..ii

	

	LIST OF AUTHORS .. iii
	LIST OF AUTHORS .. iii
	LIST OF AUTHORS .. iii

	

	LIST OF FIGURES .. vi
	LIST OF FIGURES .. vi
	LIST OF FIGURES .. vi

	

	LIST OF TABLES ... vii
	LIST OF TABLES ... vii
	LIST OF TABLES ... vii

	

	ABSTRACT .. viii
	ABSTRACT .. viii
	ABSTRACT .. viii

	

	EXECUTIVE SUMMARY .. ix
	EXECUTIVE SUMMARY .. ix
	EXECUTIVE SUMMARY .. ix

	

	1.0 INTRODUCTION ... 10
	1.0 INTRODUCTION ... 10
	1.0 INTRODUCTION ... 10

	

	1.1
	1.1
	1.1
	
	Objective .. 10

	

	1.2 Scope ... 10
	1.2 Scope ... 10
	1.2 Scope ... 10

	

	1.3 The Practical Significance of This Study .. 11
	1.3 The Practical Significance of This Study .. 11
	1.3 The Practical Significance of This Study .. 11

	

	1.4 The Expected Final Products ... 11
	1.4 The Expected Final Products ... 11
	1.4 The Expected Final Products ... 11

	

	2.0 LITERATURE REVIEW ... 11
	2.0 LITERATURE REVIEW ... 11
	2.0 LITERATURE REVIEW ... 11

	

	2.1 A Glance of Transportation Big Data Analytics ... 11
	2.1 A Glance of Transportation Big Data Analytics ... 11
	2.1 A Glance of Transportation Big Data Analytics ... 11

	

	2.2 Parallel Computing .. 12
	2.2 Parallel Computing .. 12
	2.2 Parallel Computing .. 12

	

	2.3 DSD and IVC .. 15
	2.3 DSD and IVC .. 15
	2.3 DSD and IVC .. 15

	

	2.4 OD ... 16
	2.4 OD ... 16
	2.4 OD ... 16

	

	3.0 TASK 1: ARCHITECTURAL DESIGN ... 17
	3.0 TASK 1: ARCHITECTURAL DESIGN ... 17
	3.0 TASK 1: ARCHITECTURAL DESIGN ... 17

	

	3.1 The Architecture of the F4 System ... 17
	3.1 The Architecture of the F4 System ... 17
	3.1 The Architecture of the F4 System ... 17

	

	3.2 The Architecture of the O6 System... 19
	3.2 The Architecture of the O6 System... 19
	3.2 The Architecture of the O6 System... 19

	

	4.0 TASK 2: DATABASE CONSTRUCTION ... 20
	4.0 TASK 2: DATABASE CONSTRUCTION ... 20
	4.0 TASK 2: DATABASE CONSTRUCTION ... 20

	

	4.1 MySQL Database ... 20
	4.1 MySQL Database ... 20
	4.1 MySQL Database ... 20

	

	4.2 Database Schema .. 21
	4.2 Database Schema .. 21
	4.2 Database Schema .. 21

	

	5.0 TASK 3: PARALLEL COMPUTING IMPLEMENTATION .. 23
	5.0 TASK 3: PARALLEL COMPUTING IMPLEMENTATION .. 23
	5.0 TASK 3: PARALLEL COMPUTING IMPLEMENTATION .. 23

	

	5.1 Parallel Computing of CIM .. 23
	5.1 Parallel Computing of CIM .. 23
	5.1 Parallel Computing of CIM .. 23

	

	5.1.1 Test Data .. 24
	5.1.1 Test Data .. 24
	5.1.1 Test Data .. 24

	

	5.1.2 Scenario Configuration .. 26
	5.1.2 Scenario Configuration .. 26
	5.1.2 Scenario Configuration .. 26

	

	5.1.3 Test Results .. 27
	5.1.3 Test Results .. 27
	5.1.3 Test Results .. 27

	

	5.1.4 Performance Evaluation .. 29
	5.1.4 Performance Evaluation .. 29
	5.1.4 Performance Evaluation .. 29

	

	5.2 Parallel Computing of DAD ... 32
	5.2 Parallel Computing of DAD ... 32
	5.2 Parallel Computing of DAD ... 32

	

	5.2.1 Test Data .. 33
	5.2.1 Test Data .. 33
	5.2.1 Test Data .. 33

	

	5.2.2 Scenario Configuration .. 33
	5.2.2 Scenario Configuration .. 33
	5.2.2 Scenario Configuration .. 33

	

	5.2.3 Test Results .. 34
	5.2.3 Test Results .. 34
	5.2.3 Test Results .. 34

	

	5.2.4 Performance Evaluation .. 36
	5.2.4 Performance Evaluation .. 36
	5.2.4 Performance Evaluation .. 36

	

	6.0 CONCLUSIONS ... 37
	6.0 CONCLUSIONS ... 37
	6.0 CONCLUSIONS ... 37

	

	7.0 RECOMMENDATIONS AND FURTURE WORK .. 38
	7.0 RECOMMENDATIONS AND FURTURE WORK .. 38
	7.0 RECOMMENDATIONS AND FURTURE WORK .. 38

	

	8.0 REFERENCE LIST .. 40
	8.0 REFERENCE LIST .. 40
	8.0 REFERENCE LIST .. 40

	

	9. APPENDICES .. 42
	9. APPENDICES .. 42
	9. APPENDICES .. 42

	

	9.1 Appendix A – Acronyms, abbreviations, etc. .. 42
	9.1 Appendix A – Acronyms, abbreviations, etc. .. 42
	9.1 Appendix A – Acronyms, abbreviations, etc. .. 42

	

	9.2 Appendix B – Associated websites, data, etc., produced ... 43
	9.2 Appendix B – Associated websites, data, etc., produced ... 43
	9.2 Appendix B – Associated websites, data, etc., produced ... 43

	

	9.3 Appendix C – Sample Results .. 43
	9.3 Appendix C – Sample Results .. 43
	9.3 Appendix C – Sample Results .. 43

	

	9.4 Appendix C – Summary of Accomplishments ... 44
	9.4 Appendix C – Summary of Accomplishments ... 44
	9.4 Appendix C – Summary of Accomplishments ... 44

	

	

	
	LIST OF FIGURES
	
	
	Figure 1. THE CONCEPT OF THE ASDSCE ... 11
	Figure 1. THE CONCEPT OF THE ASDSCE ... 11
	Figure 1. THE CONCEPT OF THE ASDSCE ... 11

	

	Figure 2.THE ARCHITECTURE OF THE F4 PROJECT. ... 18
	Figure 2.THE ARCHITECTURE OF THE F4 PROJECT. ... 18
	Figure 2.THE ARCHITECTURE OF THE F4 PROJECT. ... 18

	

	Figure 3. The architecture of the O6 project. ... 20
	Figure 3. The architecture of the O6 project. ... 20
	Figure 3. The architecture of the O6 project. ... 20

	

	Figure 4. ER diagram of the Database... 23
	Figure 4. ER diagram of the Database... 23
	Figure 4. ER diagram of the Database... 23

	

	Figure 5. The Relationship of CIM Capacity (sequential) and Various CV Market Penetration Rates.. 25
	Figure 5. The Relationship of CIM Capacity (sequential) and Various CV Market Penetration Rates.. 25
	Figure 5. The Relationship of CIM Capacity (sequential) and Various CV Market Penetration Rates.. 25

	

	Figure 6. Execution Time of All Scenarios. .. 27
	Figure 6. Execution Time of All Scenarios. .. 27
	Figure 6. Execution Time of All Scenarios. .. 27

	

	Figure 7. Average Execution Time of Scenario 3 to 6. .. 28
	Figure 7. Average Execution Time of Scenario 3 to 6. .. 28
	Figure 7. Average Execution Time of Scenario 3 to 6. .. 28

	

	Figure 8.EXECUTION TIME OF SCENARIO 1 TO 6. ... 31
	Figure 8.EXECUTION TIME OF SCENARIO 1 TO 6. ... 31
	Figure 8.EXECUTION TIME OF SCENARIO 1 TO 6. ... 31

	

	Figure 9. The Flowchart of DAD. ... 32
	Figure 9. The Flowchart of DAD. ... 32
	Figure 9. The Flowchart of DAD. ... 32

	

	Figure 10. The Scatter Plot of Speed and ACCELERATION. (a) Longitudinal acceleration and Speed. (b) Lateral acceleration and Speed ... 33
	Figure 10. The Scatter Plot of Speed and ACCELERATION. (a) Longitudinal acceleration and Speed. (b) Lateral acceleration and Speed ... 33
	Figure 10. The Scatter Plot of Speed and ACCELERATION. (a) Longitudinal acceleration and Speed. (b) Lateral acceleration and Speed ... 33

	

	Figure 11. The output plots of od ml algorithms .. 36
	Figure 11. The output plots of od ml algorithms .. 36
	Figure 11. The output plots of od ml algorithms .. 36

	

	

	
	
	LIST OF TABLES
	
	
	Table 1. ATTRIBUTE LIST OF THE BSM DATA of the F4 Project ... 22
	Table 1. ATTRIBUTE LIST OF THE BSM DATA of the F4 Project ... 22
	Table 1. ATTRIBUTE LIST OF THE BSM DATA of the F4 Project ... 22

	

	Table 2. Description of Table ID_flag of O6 .. 22
	Table 2. Description of Table ID_flag of O6 .. 22
	Table 2. Description of Table ID_flag of O6 .. 22

	

	Table 3. Description OF Table BSM of O6 ... 22
	Table 3. Description OF Table BSM of O6 ... 22
	Table 3. Description OF Table BSM of O6 ... 22

	

	Table 4. Sample Input Data of Processed BSMs ... 24
	Table 4. Sample Input Data of Processed BSMs ... 24
	Table 4. Sample Input Data of Processed BSMs ... 24

	

	Table 5. Scenario Setup of IVC Parallel Computing Tests ... 26
	Table 5. Scenario Setup of IVC Parallel Computing Tests ... 26
	Table 5. Scenario Setup of IVC Parallel Computing Tests ... 26

	

	Table 6. Average Execution Time of Scenario 3 to 6. ... 28
	Table 6. Average Execution Time of Scenario 3 to 6. ... 28
	Table 6. Average Execution Time of Scenario 3 to 6. ... 28

	

	Table 7. SCENARIO SETUP OF DAD PARALLEL COMPUTING TESTS 33
	Table 7. SCENARIO SETUP OF DAD PARALLEL COMPUTING TESTS 33
	Table 7. SCENARIO SETUP OF DAD PARALLEL COMPUTING TESTS 33

	

	Table 8. Output of OD Algorithms and DAD Models .. 34
	Table 8. Output of OD Algorithms and DAD Models .. 34
	Table 8. Output of OD Algorithms and DAD Models .. 34

	

	Table 9. The Execution Time of DADs ... 36
	Table 9. The Execution Time of DADs ... 36
	Table 9. The Execution Time of DADs ... 36

	

	Table 10. The output of OD Algorithms .. 37
	Table 10. The output of OD Algorithms .. 37
	Table 10. The output of OD Algorithms .. 37

	

	Table 11. Sample Results of CIM tests .. 43
	Table 11. Sample Results of CIM tests .. 43
	Table 11. Sample Results of CIM tests .. 43

	

	
	
	ABSTRACT
	
	The primary aim of this project is to enhance our system from the previous STRIDE F4 project to a parallel computing version. The original F4 system, designated as Automatic Safety Diagnosis in Connected Vehicle (CV) Environment, established a computational pipeline for diagnosing near-crash events exclusively using Basic Safety Messages (BSMs). It was implemented using a sequential computing paradigm. The O6 project was conceived to expedite the system by transitioning it to a parallel version.
	The F4 system comprised a driving anomaly detection model (DAD), a conflict identification model (CIM), and the data-path connecting them. The DAD was primarily situated in the core cloud, while the CIM was positioned within the CVs. Throughout the O6 process, notable advancements in in-vehicle computers (IVCs) were uncovered. In order to align our system with real-world operations, we opted to fully migrate the DAD component to the IVCs.
	Recognizing Domain-Specific Design (DSD) as the future of parallel computing, we propose configuring DSD for IVCs based on three levels of abstractions: selecting the appropriate chip architecture, programming language, and parallelism module. For the CIM of our system, we recommend utilizing ARM architecture, the C programming language, and leveraging the built-in parallelism of the ARM chip. As for the DAD, we advocate for a complete migration to IVC, utilizing ARM architecture, the Python language on the
	
	Keywords:
	parallel computing, connected vehicle, Python, C, ARM, OpenMP, in-vehicle computer, Domain-Specific Design.
	
	EXECUTIVE SUMMARY
	The aim of this project is to enhance the system from the prior STRIDE F4 project to a parallel computing version. The F4 system, titled as Automatic Safety Diagnosis in the Connected Vehicle Environment, aimed to establish a computational pipeline for diagnosing near-crash events by processing BSMs generated within the CV environment. The F4 system architecture included two components: the DAD, primarily situated in the core cloud, and the CIM, located within the CVs.
	A near-crash event was defined as a situation meeting two conditions: (a) the presence of a conflict and (b) at least one of the drivers exhibiting abnormal driving status. The original F4 project utilized a sequential computing paradigm. However, with the growing market penetration of connected vehicles, the demand for faster data processing and transmission has increased, necessitating the adoption of parallel computing.
	To initiate the project, an extensive study explored literature and real-world applications of parallel computing. This research unveiled significant advancements in IVCs in recent years and emphasized DSD as the future of parallel computing.
	To align our system with real-world operations, we adjusted the system architecture and fully migrated the DAD to the IVC. This required significant effort to determine the appropriate configuration for parallel computing on the IVC. We decided to configure DSD on three levels of abstraction: chip architecture, programming language, and the parallelism module. Based on system performance, we recommend utilizing ARM architecture, C programming language, and leveraging the built-in parallelism of the ARM chip
	During testing, the O6 system underwent evaluation using various programming languages, including C, Python, and OpenMP, on both Windows and MacOS platforms, specifically with the Apple M1 chip. The testing dataset included BSM data from connected vehicle pilot studies, and system performance was also assessed using the SHARPII naturalistic driving study crash data.
	Additionally, to gauge the applicability and effectiveness of our DAD, comparison tests were conducted on selected major Machine Learning (ML) packages for Object Detection (OD) using our working data. The results revealed that these packages were unable to meet our system's requirements.
	
	
	
	1.0 INTRODUCTION
	Traffic accidents contribute significantly to traffic congestion and travel delays. Issuing a warning message to drivers as a hazardous situation approaching can prompt them to take necessary maneuvers and prevent accidents. Our previous STRIDE project, F4—Automatic Safety Diagnosis in Connected Vehicle Environment—established a cloud-based system capable of delivering timely accident warnings within the CV environment.
	As the automotive industry progresses in vehicle connectivity and automation, the distribution of computing tasks among central hubs, roadside infrastructure, and mobile units becomes a critical consideration. The Intelligent Transportation System (ITS) is evolving with the widespread use of CVs, leading to the generation of massive data. The safety diagnosis application must have the capacity to process this Big Data effectively. The adoption of parallel computing technology to expedite data processing and
	The O6 research was initiated to implement parallel computing in both the cloud and the in-vehicle subsystem. This approach aims to enhance the system's capability to handle the substantial data generated by CVs and ensure efficient safety diagnosis in real-time scenarios.
	1.1 Objective
	The goal of this research is to transition our preceding STRIDE F4 study from a sequential version to a parallel version through the incorporation of cutting-edge parallel computing techniques.
	
	1.2 Scope
	 The computational pipeline represents an automatic safety diagnosis system in the Connected Vehicle CV environment. In Project F4, the system comprised the DAD in the cloud, edge computing, all CVs under its surveillance, and the datapath connecting them.
	 The computational pipeline represents an automatic safety diagnosis system in the Connected Vehicle CV environment. In Project F4, the system comprised the DAD in the cloud, edge computing, all CVs under its surveillance, and the datapath connecting them.
	Figure 1
	Figure 1

	 illustrates the concept of the ASDSCE. The datapath involves communication between the vehicle and the cloud, posing an open research problem and presenting a significant challenge in CV research. However, it's important to note that the datapath is beyond the study scope of this project.

	
	Figure
	FIGURE 1. THE CONCEPT OF THE ASDSCE
	
	1.3 The Practical Significance of This Study
	 In a traffic safety diagnosis system, parallel computing is essential to guarantee real-time processing and analysis of data. This research has the potential to elevate the technological capabilities of our system to align with the requirements of future modern transportation systems.
	1.4 The Expected Final Products
	 The final product is a parallelized version of the computational pipeline for the automatic safety diagnosing system. This includes the incorporation of a MySQL database for handling working data, parallel computing utilizing OpenCL in the cloud subsystem, and parallel computing with OpenMP in the in-vehicle subsystem. The outcomes encompass a software package, a user's guide, instructional videos and webinars, publications, a final research report, and support for a PhD student.
	2.0 LITERATURE REVIEW
	2.1 A Glance of Transportation Big Data Analytics
	Decades ago, the focus of transportation shifted from infrastructure expansion to operational efficiency and sustainability. ITS brought forth cutting-edge technologies in information systems, electronics, control, communications, sensing, robotics, and more,
	evolving into a global phenomenon crucial for economic and social development (Lin, et al., 2017).The widespread deployment of Global Positioning System (GPS), sensors, CVs and other sources has resulted in the generation of Big Data in transportation, reaching the scale of Petabytes and Terabytes, with projections for continued growth in volume, speed, and complexity (Lin, et al., 2017).This massive influx of Big Data from ITS and CVs necessitates a well-designed computing architecture to support Quality-o
	In the realm of Big Data analytics, computation architectures vary based on the selection of data storage, compression, and processing tools from a pool of options, such as the Hadoop Distributed File System (HDFS), Relational Databases, Apache Parquet, Spark, and more. For instance, a platform with multiple engines was proposed to support various types of traffic data (Mian, et al., 2014). Godzilla introduced a conceptual architecture for real-time traffic data processing, employing a multi-cluster approac
	Despite these accomplishments, widely used parallelization algorithms for Big Data, such as peer-to-peer networks, MapReduce, and Spark platforms, have been reported to face significant issues related to speed-up, throughput, and scalability (An, et al., 2011). To address dynamic resource allocation, Big Data workloads were designed to be malleable and task oriented.
	
	2.2 Parallel Computing
	Parallel computing, a computational paradigm introduced in the late 20th century, involves the simultaneous execution of numerous calculations or processes to enhance processing speed and problem-solving capabilities (Gottlieb & Almsi, 1989). Positioned as the pinnacle of computing, parallel computing has been extensively applied to computationally intensive problems in science and engineering (Culler, et al., 1999).
	The progression of computers from vacuum tubes in the 1950s to present-day nano-scale microchips with Very Large-Scale Integration (VLSI) has been remarkable. These microchips are now ubiquitous in personal computers, mobile devices, control systems, the internet, clouds, clusters, and high-performance computers. Over time, computers have become more user-friendly, evolving from a realm accessible to a few geniuses in the 1950s to highly trained individuals in the 1960s and 1970s, and finally, to almost
	anyone since the 1980s. Concurrently, there has been a substantial shift in computer architecture from single processors to parallel processors (pheatt2008intel). This evolution is the result of collaborative efforts across the industry, involving vendors, programmers, and users working on hardware, architecture, algorithms, languages, and applications. Presently, parallel programming has become crucial for further advancements in computing (Stoller, et al., 2019) (Asanovic, et al., 2009).
	The objective of computing improvement has been to achieve higher speedup while balancing factors such as cost, heat dissipation, and energy consumption (Moore, 1998). Higher clock speeds translate to faster CPUs, and increased transistor counts result in greater computing power. From the 1950s to the 1970s, significant improvements were made in chip technology, an ongoing trend (Saidu, 2015). Gordon Moore's 1965 prediction, known as Moore's Law, foresaw a doubling of the number of transistors on a microc
	With Moore's Law approaching its limits, computer manufacturers are left with limited options for performance improvements on chips or processors, except for distributing the computation load among several processors using parallel computing (Schauer, 2008). Parallel computing involves using multiple compute resources simultaneously to solve computational problems (Gottlieb & Almsi, 1989). Originating in the early 1950s, parallel computing was initially considered high-end, defense-oriented, and particula
	Parallel computers are categorized by build into symmetric multiprocessor parallel computers, multicore parallel computers, distributed parallel computers, cluster parallel computers, massively parallel computers, and grid computers. In terms of processor-memory architecture, parallel computers are categorized into shared memory architecture (SMA) and distributed memory architecture (DMA). SMA involves building parallel computers from the combination of multiple microprocessors connected via specialized hig
	In terms of forms, computing parallelism can exist at three levels: bit-level, instruction-level, and data-level. Bit-level parallelism is based on the processor's size. Over time, processor word sizes have increased from 4-bit microprocessors to 8-bit, then 16-bit, 32-bit, and, in 1996, the introduction of 64-bit architectures that remain mainstream today. Larger processor word sizes reduce the number of instructions needed to perform tasks on large-sized data, enhancing overall performance. Instruction-le
	A fundamental requirement for any parallel programming system is to support abstraction, relieving users of the low-level complexities of parallel programming to work with familiar concepts from their own domain (Darlington, 1996). However, the achievable level of parallelism is highly program specific. Some control over execution patterns and resource allocation is still necessary to ensure efficient execution. Reconciling these two conflicting requirements remains the goal of parallel computing systems.
	2.3 DSD and IVC
	DSD has been identified as a pivotal future direction for parallel computing. The 2019 National Science Foundation (NSF) Workshop on Future Directions for Parallel and Distributed Computing emphasized the centrality of parallel and distributed computing in computational innovation. It advocated for exploiting specialized hardware accelerators and adopting computational platforms through DSD to enhance performance. The overarching goal of DSD is to develop comprehensive algorithms-software-hardware solutions
	However, the challenge lies in building interfaces that embody appropriate abstractions for specific domains, posing difficulties at both the technological and industry levels. As the potential benefits of DSD are substantial, achieving a balance becomes more challenging due to potential disruptions caused by innovations. Any perturbation to the ecosystem—whether in applications, compilers, operating systems, or hardware—tends to have cascading effects, leading to an "inherent reluctance to change" througho
	IVCs, designed to withstand harsh vehicle environments, including shocks, vibrations, extreme temperatures, and electromagnetic interferences, have become a crucial component with the rise of vehicle telematics and camera-based surveillance systems. The global IVC market is estimated to reach 1.65 billion in 2029, offering hardware and software solutions for various automotive applications. Top players in this market include S&T AG, Lanner Electronics Inc. (Taiwan), Axiomtek (Taiwan), SINTRONES Technology C
	Transportation engineers and data scientists, as users of IVCs, face a dilemma due to inconsistencies in computing algorithms-software-hardware. Traditionally, computer programs were written sequentially, and when transitioning to parallel computing, the common practice was to rewrite the code in languages like C or C++ that have APIs developed for parallel computing, such as MPI, OpenMP, OpenCL, and CUDA.
	Python, with its productivity and extensive library support, has become the preferred programming language for many transportation data scientists, especially in machine learning for data analysis. However, rewriting Python code to C involves breaking down
	functionalities encapsulated in Python libraries. The C version of the same algorithm might be much longer than its Python counterpart. Complicating matters further, popular frameworks like TensorFlow, often used in artificial intelligence and machine learning applications for traffic and in-vehicle systems, recommend Python as the language of choice. Despite the availability of open-source parallel computing libraries for Python, such as Multiprocessing and Dask, Python's performance is compromised as it i
	Both C and Python, as general-purpose programming languages, have their pros and cons. C is simple, flexible, and machine-independent, while Python is easy to learn and features numerous libraries with built-in functions. C code is compiled directly to machine code, executed directly by the CPU, making it a low-level language close to machine. In contrast, Python code is first compiled to bytecode and then interpreted by a C program, making it a high-level language closer to humans. While focusing on the in
	Balancing the trade-off between productivity, portability, and performance poses a significant challenge. The direction parallel computation should take concerning data analysis on in-vehicle computers remains an open question. These issues are expected to be addressed in the context of DSD.
	The literature suggests that, before the settlement of DSD, three levels of abstractions within the users' control significantly affect the performance of in-vehicle parallel computing: chip architecture, language, and parallelism module.
	2.4 OD
	In the field of data science, anomaly detection is also referred to as OD, denoting the identification of abnormal events in data, often termed outliers. Outliers represent data points that significantly deviate from the majority of the dataset. In ML programs, OD serves as an initial step in data cleaning. However, OD itself has evolved into a complex and challenging field with the development of ML algorithms.
	ML algorithms are generally categorized into three fundamental types based on the availability of the dependent variable (or label) for the data under examination: Supervised Learning, Unsupervised Learning, and Reinforcement Learning. Supervised ML is applied to data that includes labels, unsupervised ML is designed for data lacking
	labels, and reinforcement ML, essentially an unsupervised variant, can learn from the environment over time to create labels.
	OD is typically considered unsupervised since outliers are usually rare, leading to a lack of labels for the data (Boukerche, 2020). This inherent nature makes it challenging to define statistical and mathematical measures for deviation. Various packages of OD algorithms are available in different programming languages, each employing a unique method to measure deviation. Basic categories of unsupervised OD algorithms include Angle-Based OD (ABOD) (Kriegel, et al., 2008), Cluster-based Local Outlier Fact
	Selecting the most suitable OD ML algorithm is challenging, as datasets may vary in dimensions and features, and users may have different interests. Different OD algorithms employ distinct methods of measuring deviation, making the algorithm selection a critical aspect of OD processing.
	3.0 TASK 1: ARCHITECTURAL DESIGN
	Both F4 and O6 function as a real-time near-crash warning tool at the individual level, exclusively using BSMs. They define a near-crash as a traffic situation meeting two conditions: firstly, at least one of the vehicles in a driver-vehicle unit (DVU) pair exhibits abnormal driving conditions, and secondly, a conflict is present. The system architecture of O6 was derived from F4.
	3.1 The Architecture of the F4 System
	The F4 project was structured as a two-tier hierarchical system, comprising a cloud-based DAD and a CIM in each CV. The DAD served as a multi-dimensional anomaly detection model, with Modules 1, 2, 3, and 5 of the DAD processed in the cloud and Module 4 in the IVC alongside the CIM. Illustrated in
	The F4 project was structured as a two-tier hierarchical system, comprising a cloud-based DAD and a CIM in each CV. The DAD served as a multi-dimensional anomaly detection model, with Modules 1, 2, 3, and 5 of the DAD processed in the cloud and Module 4 in the IVC alongside the CIM. Illustrated in
	 Figure 2
	 Figure 2

	, the F4 system collected and stored BSM from the covered vehicles in the cloud. It determined thresholds for selected key performance indicators (KPIs) and broadcasted these thresholds through BSMs. Within the IVC, as real-time BSMs streamed in, the device compared the new values of each KPI with the received thresholds to identify outliers. The outliers were then analyzed to ascertain if their combination warranted an anomaly event, triggering the transmission of abnormal flags. Periodically, the system

	
	Figure
	 FIGURE 2.THE ARCHITECTURE OF THE F4 PROJECT.
	The primary considerations for the F4 architecture were the substantial volume of Big Data from BSMs and the computational capacity limitations of in-vehicle computers. Energy conservation was also a significant consideration, with offloading presenting a substantial reduction in energy usage, particularly beneficial for electric vehicles amid global warming concerns. The architecture's advantages lay in central control of all CVs while keeping the in-vehicle computers lightweight. However, a drawback was t
	In our O6 project, as we delved into the latest literature on computational platforms, we recognized that the progress in in-vehicle computers surpassed expectations. Consequently, we identified the need to update our system architecture to align with state-of-the-art parallel computing and CV technology.
	3.2 The Architecture of the O6 System
	The O6 system retains the two-tier architecture from the F4 project, comprising the top tier of the core cloud and the bottom tier of the ad-hoc vehicle cloud. In the core cloud, the flag list of abnormal CV IDs is stored and updated. DAD and CIM are processed in the IVCs. The IVCs broadcast and receive BSMs through On-board devices, forming the ad-hoc vehicle cloud, also known as vehicle-to-everything (V2X) BSMs.
	The O6 system retains the two-tier architecture from the F4 project, comprising the top tier of the core cloud and the bottom tier of the ad-hoc vehicle cloud. In the core cloud, the flag list of abnormal CV IDs is stored and updated. DAD and CIM are processed in the IVCs. The IVCs broadcast and receive BSMs through On-board devices, forming the ad-hoc vehicle cloud, also known as vehicle-to-everything (V2X) BSMs.
	Figure 3
	Figure 3

	 illustrates the architecture of the O6 system, which has been updated based on the advancements in IVC technology to meet the system's requirements.

	The O6 system architecture brings improvements in performance, including reduced latency and substantial data traffic reduction. However, it is not without its drawbacks:
	1. Data Loss in CV Malfunction:
	1. Data Loss in CV Malfunction:
	1. Data Loss in CV Malfunction:

	In the event of a CV malfunction within the O6 architecture, there is a risk of data loss, making it challenging to maintain the accuracy of the flag list. The system may struggle to assess abnormal CV situations accurately if malfunctions result in data loss, impacting the overall effectiveness of the safety diagnosis system.
	2. Limitation for Future Development:
	2. Limitation for Future Development:
	2. Limitation for Future Development:

	As traffic safety requirements evolve to encompass factors such as roadway geometry, real-time traffic signal control, traffic flow, and travel demand analysis, the O6 architecture may encounter limitations. Integrating these additional elements for comprehensive traffic analysis might prove challenging within the confines of the O6 architecture.
	Realizing the F4 system is a complex task that necessitates seamless collaboration between auto manufacturers, BSM central control, and government support. This cooperation is identified as a significant challenge for successful implementation. Concurrently, the prevailing trend in the automotive market emphasizes the shift towards flexible and lightweight CAVs. The O6 architecture, with its advantages in latency performance and reduced data traffic, aligns well with the current trend favoring lightweight s
	Given the intricacies of the transportation industry, addressing challenges related to potential data loss during CV malfunctions and adapting to evolving demands for comprehensive traffic analysis require thoughtful consideration and strategic planning. However, it's essential to note that addressing these broader challenges extends beyond the scope of the current project.
	
	
	Figure
	FIGURE 3. THE ARCHITECTURE OF THE O6 PROJECT.
	4.0 TASK 2: DATABASE CONSTRUCTION
	While the database plays a crucial role in our system, it is not the primary emphasis of the O6 Project. Fundamental stages of constructing the database were undertaken, encompassing tasks such as defining the database's purpose, segmenting the working data into tables, transforming the working data into columns, designating primary keys, establishing table relationships, and refining the database using normalization rules.
	4.1 MySQL Database
	A Database Management System (DBMS) serves as the repository for storing, accessing, modifying, and overseeing data, contributing to enhanced data integration, consistency, security, and efficiency. Numerous DBMS options exist in the market, including SQL, Oracle, MariaDB, MySQL, and PostgreSQL, with MySQL being notably popular. MySQL stands as a versatile relational DBMS owned by Oracle Corporation, operating as open-source software under the GNU General Public License, while also being available for propr
	preferred choice for various applications.
	In our project, MySQL, as a relational database management system (RDBMS), was employed for handling BSMs. The installation of MySQL proved to be straightforward, and comprehensive documentation in the Oracle reference manual (Oracal, 2023) facilitated the process. For script development, the MySQL/Python Connector was generated, and database management was carried out using MySQL Workbench.
	4.2 Database Schema
	The database schema represents the logical configuration of a relational database, and for the BSM database, it was devised based on the characteristics of the working data and the requirements of the DAD. The working data for the O6 project consisted of the same BSM data collected during the F4 project.
	BSM, a fundamental application of CVprograms, serves as the "Here I Am" data message. Originating from OBDs specifically designed for CVs, BSMs are broadcasted in the air at the dedicated 5.9 GHz spectrum with a frequency of 10 Hz (Henclewood, 2014). Nearby CVs and roadside units (RSUs) can receive these BSMs. The format of a BSM is defined by the Society of Automotive Engineers J2735: The Dedicated Short-Range Communications (DSRC) Message Set Dictionary. Typically, a BSM comprises two parts: the main part
	The BSMs utilized in our project were part of the test data from the Safety Pilot Model Deployment (SPMD) project conducted in Ann Arbor, Michigan, in October 2012. These data were obtained from the ITS DataHub (its.dot.gov/data/). The BsmP1 file, formatted as Comma Separated Values (CSV), had a size of 67GB and stored all BSMs generated by the 1527 test vehicles during the test. The original downloaded data file contained 19 attributes and over 500 million records. During the data pre-processing phase of t
	The BSMs utilized in our project were part of the test data from the Safety Pilot Model Deployment (SPMD) project conducted in Ann Arbor, Michigan, in October 2012. These data were obtained from the ITS DataHub (its.dot.gov/data/). The BsmP1 file, formatted as Comma Separated Values (CSV), had a size of 67GB and stored all BSMs generated by the 1527 test vehicles during the test. The original downloaded data file contained 19 attributes and over 500 million records. During the data pre-processing phase of t
	Table 1
	Table 1

	.

	
	
	
	
	
	
	TABLE 1. ATTRIBUTE LIST OF THE BSM DATA OF THE F4 PROJECT
	Attributes Name
	Attributes Name
	Attributes Name
	Attributes Name
	Attributes Name

	Type
	Type

	Units
	Units

	Description
	Description

	DevID
	DevID
	DevID

	Integer
	Integer

	None
	None

	Test vehicle ID assigned by the CV program
	Test vehicle ID assigned by the CV program

	EpochT
	EpochT
	EpochT

	Integer
	Integer

	seconds
	seconds

	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT)
	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT)

	Latitude
	Latitude
	Latitude

	Float
	Float

	Degrees
	Degrees

	Current latitude of the test vehicle
	Current latitude of the test vehicle

	Longitude
	Longitude
	Longitude

	Float
	Float

	Degrees
	Degrees

	Current longitude of the test vehicle
	Current longitude of the test vehicle

	Elevation
	Elevation
	Elevation

	Float
	Float

	Meters
	Meters

	Current elevation of test vehicle according to GPS
	Current elevation of test vehicle according to GPS

	Speed
	Speed
	Speed

	Real
	Real

	m/sec
	m/sec

	Test vehicle speed
	Test vehicle speed

	Heading
	Heading
	Heading

	Real
	Real

	Degrees
	Degrees

	Test vehicle heading/direction
	Test vehicle heading/direction

	Ax
	Ax
	Ax

	Real
	Real

	m/sec^2
	m/sec^2

	Longitudinal acceleration
	Longitudinal acceleration

	Ay
	Ay
	Ay

	Real
	Real

	m/sec^2
	m/sec^2

	Lateral acceleration
	Lateral acceleration

	Az
	Az
	Az

	Real
	Real

	m/sec^2
	m/sec^2

	Vertical acceleration
	Vertical acceleration

	Yawrate
	Yawrate
	Yawrate

	Real
	Real

	Deg/sec
	Deg/sec

	Vehicle yaw rate
	Vehicle yaw rate

	
	For the O6 project, a table named ID_flag was established to store vehicle IDs along with corresponding driving status flags, utilizing ID as the primary key. Another table named BSM was created to house historical BSM data, encompassing vehicle ID, time, latitude, longitude, speed, and longitudinal and lateral accelerations. In the BSM table, DevID serves as the primary key. The attributes of these tables are detailed in
	For the O6 project, a table named ID_flag was established to store vehicle IDs along with corresponding driving status flags, utilizing ID as the primary key. Another table named BSM was created to house historical BSM data, encompassing vehicle ID, time, latitude, longitude, speed, and longitudinal and lateral accelerations. In the BSM table, DevID serves as the primary key. The attributes of these tables are detailed in
	Table 2
	Table 2

	 and
	Table 3
	Table 3

	. The ID in ID_flag and DevID in the BSM table function as foreign keys interchangeably. The entity-relationship (ER) diagram depicting these tables is presented in
	Figure 4
	Figure 4

	.

	To facilitate data insertion into the database, Oracle's standardized API, MySQL Connector/Python, was employed. Additionally, MySQL Workbench, an all-encompassing visual tool catering to data modeling, SQL development, and administration, was utilized for generating the ER diagram and managing the data.
	
	TABLE 2. DESCRIPTION OF TABLE ID_FLAG OF O6
	Attributes Name
	Attributes Name
	Attributes Name
	Attributes Name
	Attributes Name

	Type
	Type

	key
	key

	Units
	Units

	Description
	Description

	ID
	ID
	ID

	Integer
	Integer

	PRI
	PRI

	None
	None

	Test vehicle ID assigned by the CV program
	Test vehicle ID assigned by the CV program

	Flag
	Flag
	Flag

	Integer
	Integer

	
	

	None
	None

	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT)
	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT)

	
	TABLE 3. DESCRIPTION OF TABLE BSM OF O6
	Attributes Name
	Attributes Name
	Attributes Name
	Attributes Name
	Attributes Name

	Type
	Type

	key
	key

	Units
	Units

	Description
	Description

	DevID
	DevID
	DevID
	DevID
	DevID

	Integer
	Integer

	PRI
	PRI

	None
	None

	Test vehicle ID assigned by the CV program
	Test vehicle ID assigned by the CV program

	EpochT
	EpochT
	EpochT

	Integer
	Integer

	
	

	seconds
	seconds

	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT)
	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT)

	Latitude
	Latitude
	Latitude

	Float
	Float

	
	

	Degrees
	Degrees

	Current latitude of the test vehicle
	Current latitude of the test vehicle

	Longitude
	Longitude
	Longitude

	Float
	Float

	
	

	Degrees
	Degrees

	Current longitude of the test vehicle
	Current longitude of the test vehicle

	Speed
	Speed
	Speed

	Real
	Real

	
	

	m/sec
	m/sec

	Vehicle speed
	Vehicle speed

	AccX
	AccX
	AccX

	Real
	Real

	
	

	m/sec^2
	m/sec^2

	Longitudinal acceleration
	Longitudinal acceleration

	AccY
	AccY
	AccY

	Real
	Real

	
	

	m/sec^2
	m/sec^2

	Lateral acceleration
	Lateral acceleration

	
	Figure
	FIGURE 4. ER DIAGRAM OF THE DATABASE.
	5.0 TASK 3: PARALLEL COMPUTING IMPLEMENTATION
	Similar to the F4 project, the O6 system triggers a near-crash warning when a conflict arises between the ego CV and a neighboring CV, provided that any CV in the pair exhibits abnormal driving behavior. In the updated O6 architecture, both the DAD and CIM are executed within the IVC, leaving only the flag list of abnormal CVs stored in the core cloud. Consequently, the implementation of parallel computing is bifurcated into two distinct components: the CIM within the IVC, where the IVC serves as the primar
	5.1 Parallel Computing of CIM
	In the O6 system, once a CV’s engine starts running, its Collision Impact Mitigation (CIM) module becomes operational and examines the flag list containing identification numbers of CVs identified with abnormal driving status. Upon receiving BSM of a new CV_B, CV_A checks the ID of CV_B to determine if CV_B is listed in the flag list. If either
	CV_A or CV_B is found on the list, the CIM proceeds to assess whether the CV pair (CV_A and CV_B) warrants a conflict. This process occurs at the same frequency as BSM generation and is applied to all CVs.
	For the CIM to effectively operate, it must have the capacity to process the maximum number of BSMs generated by nearby CVs. Given that BSMs are generated at a frequency of 10 Hz, the CIM risks overload if the entire computing time for one BSM per CV exceeds 0.1 seconds. Therefore, our research goal was to identify the optimal computational setup for the CIM, balancing capacity and execution speed, while considering factors such as market availability, energy consumption, and the global trends in computing
	5.1.1 Test Data
	As mentioned earlier, the test data utilized in this project were obtained from the Naturalistic Driving Study (NDS) conducted for the second Strategic Highway Research Program (SHRP 2). The NDS is a research initiative aimed at understanding the influence of driver performance and behavior on traffic safety. The Virginia Tech Transportation Institute (VTTI) serves as the technical coordination and study design contractor for the NDS and manages the InSight Data Access Website (Jafari, 2017). A sample datas
	As mentioned earlier, the test data utilized in this project were obtained from the Naturalistic Driving Study (NDS) conducted for the second Strategic Highway Research Program (SHRP 2). The NDS is a research initiative aimed at understanding the influence of driver performance and behavior on traffic safety. The Virginia Tech Transportation Institute (VTTI) serves as the technical coordination and study design contractor for the NDS and manages the InSight Data Access Website (Jafari, 2017). A sample datas
	Table 4
	Table 4

	:

	TABLE 4. SAMPLE INPUT DATA OF PROCESSED BSMS
	vtti_timestamp
	vtti_timestamp
	vtti_timestamp
	vtti_timestamp
	vtti_timestamp

	vtti.file_id
	vtti.file_id

	vtti.speed_network
	vtti.speed_network

	x_position
	x_position

	y_position
	y_position

	x_ego
	x_ego

	y_ego
	y_ego

	199500
	199500
	199500
	199500

	18539287
	18539287

	3
	3

	408
	408

	-1073
	-1073

	292
	292

	-1067
	-1067

	113400
	113400
	113400

	44909777
	44909777

	0
	0

	0
	0

	0
	0

	73
	73

	-171
	-171

	17000
	17000
	17000

	44909777
	44909777

	0
	0

	0
	0

	0
	0

	73
	73

	-171
	-171

	10567500
	10567500
	10567500

	41894439
	41894439

	46
	46

	14779
	14779

	27624
	27624

	14665
	14665

	27464
	27464

	9783800
	9783800
	9783800

	26026997
	26026997

	34
	34

	232345
	232345

	39413
	39413

	232490
	232490

	39364
	39364

	1027000
	1027000
	1027000

	39534577
	39534577

	32
	32

	16996
	16996

	-1145
	-1145

	16995
	16995

	-1419
	-1419

	1871800
	1871800
	1871800

	61805034
	61805034

	0
	0

	-9754
	-9754

	7404
	7404

	-9771
	-9771

	7386
	7386

	6000
	6000
	6000

	44909777
	44909777

	0
	0

	0
	0

	0
	0

	73
	73

	-171
	-171

	2324200
	2324200
	2324200

	55152798
	55152798

	0
	0

	-32326
	-32326

	-9433
	-9433

	-32252
	-32252

	-9205
	-9205

	
	The maximum number of CVs were estimated using counting the CVs in the roadway network in the effective range of BSMs. Considering in the most congested condition, suppose the effective range of BSM is 1000 meters in radio, the area it covers3,140,000m2. In the condition of high density of road network, the road grids are of the size of 300 meters long, so every gird covers 300 *300 = 9,000m2 and 90000 m2 and can have road of 600 meters long. Therefore, the maximum road length in the effective range is abou
	 314000090000⁄∗ =21000 (𝑚) (1)
	Each CV occupy a street length of 40 feet /12 meters (20 feet for vehicle length and another 20 feet for safety spacing). Assuming all the roads are 4-lane road, the maximum number vehicle around 7000 CVs, as calculated in Equation (2). 21,000/12∗ 4 = 7000 (CVs) (2)
	Based on the assumptions, as shown in
	Based on the assumptions, as shown in
	Figure 5
	Figure 5

	, when the CV penetration rate reaches 0.14, in the most congested scenario the CIM on a single thread will be overloaded and experience malfunction.

	
	Figure
	FIGURE 5. THE RELATIONSHIP OF CIM CAPACITY (SEQUENTIAL) AND VARIOUS CV MARKET PENETRATION RATES.
	To assess the consistency of scenario performance, we generated 70 input files simulating varying numbers of Connected Vehicles (CVs) within the effective Basic Safety Message (BSM) range, ranging from 100 CVs to 7000. Assuming that 10% of them carried an abnormal flag, triggering the CIM, we randomly selected 10 to 700 BSMs from the available BSM data to form the 70 input files. Taking into account a 25% capacity reserve, the runtime was set to be less than 0.075 seconds.
	For testing purposes, a MacBook Pro and a NUC were chosen as hardware platforms. The MacBook Pro was equipped with an Apple M1 Pro chip featuring 10 cores, 32GB memory, and macOS Ventura 13.1, used for testing on the ARM_64 architecture. The NUC, equipped with an Intel chip boasting 7 cores,
	8GB memory, and running Windows 11, was utilized for testing on a different architecture. All codes were executed in the Visual Studio Code IDE version 1.74.2. The compiler used for Mac was Apple clang version 14.0.0 (Target: arm64-apple-darwin22.2.0), and for the NUC, Ming64 was employed. Python version 3.9 was used.
	When the number of CVs exceeded 1000 (resulting in a CV penetration rate exceeding 0.14, as shown in Appendix C – Sample Results), the capacity of the NUC was no longer sufficient. On ARM_64, performance issues only occurred with Pandas sequential when the number of CVs exceeded 2500 (CV penetration rate exceeded 0.25, as shown in the figure), and with Pandas multiprocessing when the number of CVs exceeded 3500 (CV penetration rate exceeded 0.5, as shown in
	When the number of CVs exceeded 1000 (resulting in a CV penetration rate exceeding 0.14, as shown in Appendix C – Sample Results), the capacity of the NUC was no longer sufficient. On ARM_64, performance issues only occurred with Pandas sequential when the number of CVs exceeded 2500 (CV penetration rate exceeded 0.25, as shown in the figure), and with Pandas multiprocessing when the number of CVs exceeded 3500 (CV penetration rate exceeded 0.5, as shown in
	Figure 5
	Figure 5

).

	5.1.2 Scenario Configuration
	As mentioned earlier, the performance of IVC is influenced by factors such as chip architecture, programming language, and the parallelism module, all within the users' control range. Accordingly, testing scenarios were configured based on different selections of these abstractions. For chip architecture, the primary types for PCs and mobile devices currently include ARM_64 and X86_64. Regarding programming languages, Python and C were chosen, with Python being used for the sequential program of Collision A
	Given the need to handle tabular data, particularly in CIM's sequential program, two widely-used Python libraries—Pandas (for data frames and series) and Numpy (for numerical data stored in arrays)—were selected for performance comparison. Numpy, known for its memory efficiency, enables C libraries to operate on the same memory. To explore the performance of Pandas versus Numpy, both were included in the scenarios.
	For parallelism modules, Python's multiprocessing and C's OpenMP were included in the scenarios to leverage parallel programming capabilities. The testing scenarios are detailed in
	For parallelism modules, Python's multiprocessing and C's OpenMP were included in the scenarios to leverage parallel programming capabilities. The testing scenarios are detailed in
	Table 5
	Table 5

	, with the aim of utilizing Python parallel programming libraries and extending heavy computations to C.

	TABLE 5. SCENARIO SETUP OF IVC PARALLEL COMPUTING TESTS
	Scenario
	Scenario
	Scenario
	Scenario
	Scenario

	Chip Architecture
	Chip Architecture

	Language
	Language

	Parallelism Module
	Parallelism Module

	1
	1
	1
	1

	ARM_64
	ARM_64

	Python: Pandas
	Python: Pandas

	None
	None

	2
	2
	2

	ARM_64
	ARM_64

	Python: Pandas
	Python: Pandas

	Multiprocessing
	Multiprocessing

	3
	3
	3

	ARM_64
	ARM_64

	Python: Numpy
	Python: Numpy

	None
	None

	4
	4
	4

	ARM_64
	ARM_64

	Python: Numpy
	Python: Numpy

	Multiprocessing
	Multiprocessing

	5
	5
	5

	ARM_64
	ARM_64

	C
	C

	None
	None

	6
	6
	6

	ARM_64
	ARM_64

	C
	C

	OpenMP
	OpenMP

	7
	7
	7
	7
	7

	X_86_64
	X_86_64

	Python: Pandas
	Python: Pandas

	None
	None

	8
	8
	8

	X_86_64
	X_86_64

	Python: Pandas
	Python: Pandas

	Multiprocessing
	Multiprocessing

	9
	9
	9

	X_86_64
	X_86_64

	Python: Numpy
	Python: Numpy

	None
	None

	10
	10
	10

	X_86_64
	X_86_64

	Python: Numpy
	Python: Numpy

	Multiprocessing
	Multiprocessing

	11
	11
	11

	X_86_64
	X_86_64

	C
	C

	None
	None

	12
	12
	12

	X_86_64
	X_86_64

	C
	C

	OpenMP
	OpenMP

	
	5.1.3 Test Results
	Excluding the scenarios deemed incapable (S1 and S2), as illustrated in
	Excluding the scenarios deemed incapable (S1 and S2), as illustrated in
	9.3 Appendix C – Sample Results
	9.3 Appendix C – Sample Results

	, the candidate scenarios were refined to Scenario 3 through 6. Subsequent tests were conducted to ascertain the fastest scenario among the capable options. The results of 15 runs for scenarios 3 to 6 were averaged and presented in as
	Figure 7
	Figure 7

	and
	Table 6
	Table 6

	. Notably, the outcomes reveal that Scenario 5 exhibited the shortest running time, indicating that employing C on ARM architecture represents the fastest hardware-software solution for the CIM model.

	
	
	Figure
	FIGURE 6. EXECUTION TIME OF ALL SCENARIOS.
	
	Figure
	FIGURE 7. AVERAGE EXECUTION TIME OF SCENARIO 3 TO 6.
	
	TABLE 6. AVERAGE EXECUTION TIME OF SCENARIO 3 TO 6.
	N_CV
	N_CV
	N_CV
	N_CV
	N_CV

	S3_Numpy_Sequencial
	S3_Numpy_Sequencial

	S4_Numpy_Multithreading
	S4_Numpy_Multithreading

	S5_C_Sequencial
	S5_C_Sequencial

	S6_C_OpenMP
	S6_C_OpenMP

	100
	100
	100
	100

	0.00037618
	0.00037618

	0.00039701
	0.00039701

	0.00021555
	0.00021555

	0.00048691
	0.00048691

	200
	200
	200

	0.0006278
	0.0006278

	0.00066274
	0.00066274

	0.00040401
	0.00040401

	0.00068768
	0.00068768

	300
	300
	300

	0.00091147
	0.00091147

	0.00092614
	0.00092614

	0.00042075
	0.00042075

	0.00068067
	0.00068067

	400
	400
	400

	0.00116693
	0.00116693

	0.00242577
	0.00242577

	0.00059257
	0.00059257

	0.00080706
	0.00080706

	500
	500
	500

	0.00120098
	0.00120098

	0.00281097
	0.00281097

	0.00059716
	0.00059716

	0.00086295
	0.00086295

	600
	600
	600

	0.00146801
	0.00146801

	0.00147554
	0.00147554

	0.00069116
	0.00069116

	0.00107881
	0.00107881

	700
	700
	700

	0.00324532
	0.00324532

	0.00286123
	0.00286123

	0.00095795
	0.00095795

	0.00118876
	0.00118876

	800
	800
	800

	0.00422285
	0.00422285

	0.0069939
	0.0069939

	0.00499573
	0.00499573

	0.00736597
	0.00736597

	900
	900
	900

	0.00339616
	0.00339616

	0.00459367
	0.00459367

	0.00103703
	0.00103703

	0.00145898
	0.00145898

	1000
	1000
	1000

	0.00375341
	0.00375341

	0.00239828
	0.00239828

	0.0012018
	0.0012018

	0.00193734
	0.00193734

	1100
	1100
	1100

	0.00421241
	0.00421241

	0.0029459
	0.0029459

	0.00120867
	0.00120867

	0.00189303
	0.00189303

	1200
	1200
	1200

	0.00412151
	0.00412151

	0.00370491
	0.00370491

	0.00151504
	0.00151504

	0.00201797
	0.00201797

	1300
	1300
	1300

	0.00413102
	0.00413102

	0.00689872
	0.00689872

	0.00135786
	0.00135786

	0.00194823
	0.00194823

	1400
	1400
	1400

	0.00709357
	0.00709357

	0.00636341
	0.00636341

	0.00229295
	0.00229295

	0.00293517
	0.00293517

	1500
	1500
	1500

	0.00505778
	0.00505778

	0.00361713
	0.00361713

	0.00161853
	0.00161853

	0.00206482
	0.00206482

	1600
	1600
	1600

	0.00659817
	0.00659817

	0.0060202
	0.0060202

	0.01086928
	0.01086928

	0.00784216
	0.00784216

	1700
	1700
	1700

	0.00701656
	0.00701656

	0.0064436
	0.0064436

	0.00184089
	0.00184089

	0.00256166
	0.00256166

	1800
	1800
	1800

	0.00386368
	0.00386368

	0.00505366
	0.00505366

	0.00177991
	0.00177991

	0.00270373
	0.00270373

	1900
	1900
	1900

	0.00638371
	0.00638371

	0.00524933
	0.00524933

	0.00204767
	0.00204767

	0.00253048
	0.00253048

	2000
	2000
	2000

	0.00642845
	0.00642845

	0.00453205
	0.00453205

	0.00185722
	0.00185722

	0.00300344
	0.00300344

	2100
	2100
	2100

	0.00452328
	0.00452328

	0.00744322
	0.00744322

	0.00214489
	0.00214489

	0.00283408
	0.00283408

	2200
	2200
	2200

	0.00877123
	0.00877123

	0.00895325
	0.00895325

	0.00207504
	0.00207504

	0.00334992
	0.00334992

	2300
	2300
	2300

	0.00519767
	0.00519767

	0.0050756
	0.0050756

	0.00208824
	0.00208824

	0.00313733
	0.00313733

	2400
	2400
	2400

	0.00523845
	0.00523845

	0.00619318
	0.00619318

	0.0022426
	0.0022426

	0.00350714
	0.00350714

	2500
	2500
	2500

	0.00815277
	0.00815277

	0.00801045
	0.00801045

	0.00232366
	0.00232366

	0.00365728
	0.00365728

	2600
	2600
	2600

	0.00814398
	0.00814398

	0.00828927
	0.00828927

	0.00231625
	0.00231625

	0.00373872
	0.00373872

	2700
	2700
	2700

	0.00931892
	0.00931892

	0.00973814
	0.00973814

	0.00247366
	0.00247366

	0.0038118
	0.0038118

	2800
	2800
	2800

	0.00910473
	0.00910473

	0.00882055
	0.00882055

	0.00259752
	0.00259752

	0.00375961
	0.00375961

	2900
	2900
	2900

	0.00735723
	0.00735723

	0.00848298
	0.00848298

	0.00326271
	0.00326271

	0.00414349
	0.00414349

	3000
	3000
	3000

	0.00811946
	0.00811946

	0.00851868
	0.00851868

	0.00399947
	0.00399947

	0.00490901
	0.00490901

	3100
	3100
	3100
	3100
	3100

	0.00679641
	0.00679641

	0.01324968
	0.01324968

	0.0030122
	0.0030122

	0.00404466
	0.00404466

	3200
	3200
	3200

	0.0099538
	0.0099538

	0.00861047
	0.00861047

	0.01322333
	0.01322333

	0.00875519
	0.00875519

	3300
	3300
	3300

	0.01048598
	0.01048598

	0.0095562
	0.0095562

	0.00293357
	0.00293357

	0.00452545
	0.00452545

	3400
	3400
	3400

	0.01119514
	0.01119514

	0.01259559
	0.01259559

	0.00383368
	0.00383368

	0.00522283
	0.00522283

	3500
	3500
	3500

	0.01170475
	0.01170475

	0.01117643
	0.01117643

	0.00308412
	0.00308412

	0.0047664
	0.0047664

	3600
	3600
	3600

	0.01174002
	0.01174002

	0.0087731
	0.0087731

	0.00424633
	0.00424633

	0.0051192
	0.0051192

	3700
	3700
	3700

	0.01174207
	0.01174207

	0.00915731
	0.00915731

	0.00332821
	0.00332821

	0.00502855
	0.00502855

	3800
	3800
	3800

	0.01365021
	0.01365021

	0.0106485
	0.0106485

	0.00338833
	0.00338833

	0.00508666
	0.00508666

	3900
	3900
	3900

	0.01089614
	0.01089614

	0.01427571
	0.01427571

	0.00337915
	0.00337915

	0.00523122
	0.00523122

	4000
	4000
	4000

	0.00950856
	0.00950856

	0.01040309
	0.01040309

	0.00349126
	0.00349126

	0.00533462
	0.00533462

	4100
	4100
	4100

	0.01213601
	0.01213601

	0.01013807
	0.01013807

	0.00355094
	0.00355094

	0.00556459
	0.00556459

	4200
	4200
	4200

	0.01278113
	0.01278113

	0.01237793
	0.01237793

	0.00362884
	0.00362884

	0.00548917
	0.00548917

	4300
	4300
	4300

	0.01229172
	0.01229172

	0.0129449
	0.0129449

	0.00399906
	0.00399906

	0.00530767
	0.00530767

	4400
	4400
	4400

	0.01071588
	0.01071588

	0.01375863
	0.01375863

	0.00396601
	0.00396601

	0.0052048
	0.0052048

	4500
	4500
	4500

	0.01163241
	0.01163241

	0.01495471
	0.01495471

	0.00424627
	0.00424627

	0.00581616
	0.00581616

	4600
	4600
	4600

	0.0167098
	0.0167098

	0.01179102
	0.01179102

	0.00395652
	0.00395652

	0.00624658
	0.00624658

	4700
	4700
	4700

	0.01407057
	0.01407057

	0.01542074
	0.01542074

	0.00415324
	0.00415324

	0.00608387
	0.00608387

	4800
	4800
	4800

	0.01624705
	0.01624705

	0.01727096
	0.01727096

	0.00902251
	0.00902251

	0.00764454
	0.00764454

	4900
	4900
	4900

	0.01855477
	0.01855477

	0.01355395
	0.01355395

	0.00445479
	0.00445479

	0.00618682
	0.00618682

	5000
	5000
	5000

	0.01434414
	0.01434414

	0.0172863
	0.0172863

	0.00462782
	0.00462782

	0.00623991
	0.00623991

	5100
	5100
	5100

	0.01474716
	0.01474716

	0.01537808
	0.01537808

	0.00522788
	0.00522788

	0.00786392
	0.00786392

	5200
	5200
	5200

	0.01601187
	0.01601187

	0.01572582
	0.01572582

	0.00482818
	0.00482818

	0.00688977
	0.00688977

	5300
	5300
	5300

	0.04119802
	0.04119802

	0.03925424
	0.03925424

	0.02044813
	0.02044813

	0.02353403
	0.02353403

	5400
	5400
	5400

	0.0152188
	0.0152188

	0.01872145
	0.01872145

	0.00488667
	0.00488667

	0.00679941
	0.00679941

	5500
	5500
	5500

	0.01685316
	0.01685316

	0.01377551
	0.01377551

	0.00521146
	0.00521146

	0.00812666
	0.00812666

	5600
	5600
	5600

	0.01523064
	0.01523064

	0.02000707
	0.02000707

	0.00492196
	0.00492196

	0.00700733
	0.00700733

	5700
	5700
	5700

	0.02127318
	0.02127318

	0.01949736
	0.01949736

	0.00568476
	0.00568476

	0.00753218
	0.00753218

	5800
	5800
	5800

	0.01958623
	0.01958623

	0.01707579
	0.01707579

	0.00491247
	0.00491247

	0.00717864
	0.00717864

	5900
	5900
	5900

	0.02087779
	0.02087779

	0.01757984
	0.01757984

	0.00509493
	0.00509493

	0.00730913
	0.00730913

	6000
	6000
	6000

	0.01695126
	0.01695126

	0.01942582
	0.01942582

	0.0051034
	0.0051034

	0.00719953
	0.00719953

	6100
	6100
	6100

	0.02139595
	0.02139595

	0.01875671
	0.01875671

	0.00525125
	0.00525125

	0.00755448
	0.00755448

	6200
	6200
	6200

	0.01806939
	0.01806939

	0.01703672
	0.01703672

	0.00519245
	0.00519245

	0.00782825
	0.00782825

	6300
	6300
	6300

	0.01482445
	0.01482445

	0.01563784
	0.01563784

	0.00545565
	0.00545565

	0.00784276
	0.00784276

	6400
	6400
	6400

	0.01789223
	0.01789223

	0.01613706
	0.01613706

	0.00528502
	0.00528502

	0.00824817
	0.00824817

	6500
	6500
	6500

	0.0173605
	0.0173605

	0.02133476
	0.02133476

	0.00585688
	0.00585688

	0.00822589
	0.00822589

	6600
	6600
	6600

	0.02113012
	0.02113012

	0.01844281
	0.01844281

	0.00543628
	0.00543628

	0.0077957
	0.0077957

	6700
	6700
	6700

	0.01932419
	0.01932419

	0.01844972
	0.01844972

	0.00560497
	0.00560497

	0.00832198
	0.00832198

	6800
	6800
	6800

	0.02394835
	0.02394835

	0.02482243
	0.02482243

	0.00617112
	0.00617112

	0.00920216
	0.00920216

	6900
	6900
	6900

	0.0201206
	0.0201206

	0.01718718
	0.01718718

	0.00610511
	0.00610511

	0.00889285
	0.00889285

	7000
	7000
	7000

	0.0197974
	0.0197974

	0.01916796
	0.01916796

	0.00573654
	0.00573654

	0.00858847
	0.00858847

	
	5.1.4 Performance Evaluation
	The test results reveal distinctions in computation setups for the CIM. Specifically:
	• The execution times of ARM scenarios are faster than the corresponding X86 scenarios.
	• The execution times of ARM scenarios are faster than the corresponding X86 scenarios.
	• The execution times of ARM scenarios are faster than the corresponding X86 scenarios.

	• For the same ARM-based PC, Python Pandas scenarios are considerably slower than C, and Python Numpy scenarios are slightly slower than C.
	• For the same ARM-based PC, Python Pandas scenarios are considerably slower than C, and Python Numpy scenarios are slightly slower than C.

	• On the same ARM-based PC, scenarios with parallel versions of Python Pandas and NumPy are faster than their sequential counterparts, while C with OpenMP is slower than without.
	• On the same ARM-based PC, scenarios with parallel versions of Python Pandas and NumPy are faster than their sequential counterparts, while C with OpenMP is slower than without.

	It is logical that the execution times of ARM scenarios are faster than their corresponding X86 scenarios, as depicted in Table 6, because the Mac M1 Pro is well-equipped and currently stands as one of the fastest PCs on the market. Our test indicates that this type of X86 is not sufficiently fast for the CIM.
	As illustrated in
	As illustrated in
	Figure 8
	Figure 8

	, for the same ARM-based PC, Python Pandas scenarios are significantly slower than C, and Python Numpy scenarios are slightly slower than C. Python is an interpreted programming language, implying that the source code of a Python program is converted/interpreted into bytecode, which is then executed one instruction after another. In contrast, compiled languages like C and C++ require the entire program to be built and compiled ahead of time before execution. Consequently, Python is slower in execution than

	
	
	
	
	
	
	
	Figure
	FIGURE 8.EXECUTION TIME OF SCENARIO 1 TO 6.
	For both Pandas and NumPy, utilizing multiprocessing results in faster execution compared to the sequential approach. On the other hand, the OpenMP paradigm represents one of the most widely employed parallel programming models on desktop machines, particularly with C or C++. OpenMP operates under the single program multiple data (SPMD) parallelism model, assuming shared memory between threads and introducing overhead to the execution. The benefits of Data Level Parallelism (DLP) on speedup are contingent o
	
	Moreover, an additional factor is the advancement of the Apple M1 chip, which is a system-on-a-chip that already incorporates built-in optimized parallelism. Enforcing OpenMP may lead to less optimized parallelism in this context.
	ARM architecture is extensively utilized in smartphones, offering advantages such as low energy consumption and minimal heat generation. Coupled with its shorter running time, ARM can be an ideal choice for IVCs. Consequently, the
	recommended computational setup for the CIM is determined to be ARM architecture with the C programming language, leveraging the M1 chip's inherent parallelism.
	
	5.2 Parallel Computing of DAD
	Exclusively utilizing the BSM data, the DAD determines whether a CV is in abnormal driving status. The DAD consists of five modules: Module 1: Data Preprocessing and Selecting KPIs; Module 2: Learning Normal Behavior; Module 3: Detecting Outliers; Module 4: Determining Abnormal Driving Events; and Module 5: System Updating, as illustrated in Figure 9. In the O6 project, all these modules will be executed on the IVC. As discussed in in
	Exclusively utilizing the BSM data, the DAD determines whether a CV is in abnormal driving status. The DAD consists of five modules: Module 1: Data Preprocessing and Selecting KPIs; Module 2: Learning Normal Behavior; Module 3: Detecting Outliers; Module 4: Determining Abnormal Driving Events; and Module 5: System Updating, as illustrated in Figure 9. In the O6 project, all these modules will be executed on the IVC. As discussed in in
	5.1 Parallel Computing of CIM
	5.1 Parallel Computing of CIM

	, ARM architecture is recommended as the hardware for the CIM model. This section presents the parallel computing implementation of the DAD running on ARM architecture. Similar to the CIM, a Mac Pro with an M1 chip and macOS Ventura 13.3.1 was employed for these computations.

	
	
	Figure
	FIGURE 9. THE FLOWCHART OF DAD.
	
	Since the DAD can operate offline, and the O6 system has mitigated the extensive data transfer observed in the F4, this section concentrates on the integration of GPU for parallel computing and assesses the suitability of OD ML packages.
	5.2.1 Test Data
	The Test Data used the historical BSMs of a selected CV used in F4 project, the attributes are as described in section
	The Test Data used the historical BSMs of a selected CV used in F4 project, the attributes are as described in section
	4.0 TASK 2: DATABASE CONSTRUCTION
	4.0 TASK 2: DATABASE CONSTRUCTION

	. As in F4, the longitudinal acceleration and lateral acceleration were found have some relationship with speed, as shown in the visualization of the raw data of
	Figure 10
	Figure 10

	.

	
	
	
	
	
	Figure

	
	
	Figure

	(A)
	(A)
	(A)
	(A)

	(B)
	(B)

	FIGURE 10. THE SCATTER PLOT OF SPEED AND ACCELERATION. (A) LONGITUDINAL ACCELERATION AND SPEED. (B) LATERAL ACCELERATION AND SPEED
	5.2.2 Scenario Configuration
	Apple's M1 chip incorporates a built-in graphics GPU that facilitates parallel computing, utilizing the Metal Performance Shaders (MPS) framework as the Graphics and Compute API. PyTorch, an open-source ML framework based on the Python programming language and the Torch library, employs MPS as a backend for GPU acceleration on Mac systems with the M1 chip. PyTorch utilizes tensors to represent model inputs, outputs, and parameters, with the ability to run on GPUs and share memory with NumPy arrays, eliminat
	The test scenarios for this section were configured as follows: DAD on CPU, DAD on GPU, and the application of OD ML algorithms, including Angle-based Outlier Detector (ABOD), Cluster-based Local Outlier Factor (CBLOF), Histogram-based Outlier Score (HBOS), Isolation Forest (IF), and K Nearest Neighbors (KNN).
	TABLE 7. SCENARIO SETUP OF DAD PARALLEL COMPUTING TESTS
	
	
	
	
	

	Algorithm Name
	Algorithm Name

	Algorithm Type
	Algorithm Type

	1
	1
	1
	1
	1

	ABOD
	ABOD

	ML open source
	ML open source

	2
	2
	2

	CBLOF
	CBLOF

	ML open source
	ML open source

	3
	3
	3

	HBOS
	HBOS

	ML open source
	ML open source

	4
	4
	4

	IF
	IF

	ML open source
	ML open source

	5
	5
	5

	KNN
	KNN

	ML open source
	ML open source

	6
	6
	6

	DAD on CPU
	DAD on CPU

	STRIDE F4
	STRIDE F4

	7
	7
	7

	DAD on GPU
	DAD on GPU

	STRIDE O6
	STRIDE O6

	
	5.2.3 Test Results
	As the OD ML algorithms output the number of outliers, thresholds and plots to show the outlier, as shown in
	As the OD ML algorithms output the number of outliers, thresholds and plots to show the outlier, as shown in
	Table 8
	Table 8

	 and
	Figure 11
	Figure 11

	.

	TABLE 8. OUTPUT OF OD ALGORITHMS AND DAD MODELS
	
	
	
	
	

	Algorithm Name
	Algorithm Name

	Outliers
	Outliers

	Threshold
	Threshold

	
	
	
	

	
	

	Longitudinal
	Longitudinal

	Lateral
	Lateral

	Longitudinal
	Longitudinal

	Lateral
	Lateral

	1
	1
	1

	ABOD
	ABOD

	0
	0

	0
	0

	nan
	nan

	nan
	nan

	2
	2
	2

	CBLOF
	CBLOF

	158345
	158345

	158344
	158344

	-0.11175434977913001
	-0.11175434977913001

	-0.10919071757369557
	-0.10919071757369557

	3
	3
	3

	HBOS
	HBOS

	153140
	153140
	

	135949
	135949

	-1.9078634333717992
	-1.9078634333717992

	0.2580508062387792
	0.2580508062387792

	4
	4
	4

	IF
	IF

	158348
	158348

	0
	0
	158335

	-2.0801210125544493e-17
	-2.0801210125544493e-17

	0.0
	0.0

	5
	5
	5

	KNN
	KNN

	142490
	142490

	142490
	142490

	-0.0001503609022556196
	-0.0001503609022556196

	-0.000505561180569658
	-0.000505561180569658

	6
	6
	6

	DAD on CPU with multiprocessing
	DAD on CPU with multiprocessing

	Output Alarm Once Detected
	Output Alarm Once Detected

	Threshold Pannal
	Threshold Pannal

	7
	7
	7

	DAD on GPU
	DAD on GPU

	Output Alarm Once Detected
	Output Alarm Once Detected

	Threshold Pannal
	Threshold Pannal

	
	
	(1)
	(1)
	(1)
	(1)
	(1)
	ABOD
	

	
	
	Figure
	

	
	
	Figure

	(2)
	(2)
	(2)
	(2)
	CBLOF

	
	
	Figure

	
	
	Figure

	(3) HBOS
	(3) HBOS
	(3) HBOS

	
	
	Figure

	
	
	Figure

	(4)
	(4)
	(4)
	(4)
	(4)
	IF

	
	
	Figure

	
	
	Figure

	(5) KNN
	(5) KNN
	(5) KNN

	
	
	Figure

	
	
	Figure

	FIGURE 11. THE OUTPUT PLOTS OF OD ML ALGORITHMS
	The average execution times for DAD were approximately 13 seconds on CPU and 23 seconds on GPU when processing a dataset with 3 million instances. While calculations on the GPU demonstrate faster performance, the data loading time was significantly slower. This disparity raised from storing the data in CSV format, with loading CSV data to a tensor being notably slower than loading it to a Pandas DataFrame with multiprocessing.
	TABLE 9. THE EXECUTION TIME OF DADS
	
	
	
	
	

	Total Execution Time
	Total Execution Time

	Data Loading
	Data Loading

	DAD on CPU with multiprocessing
	DAD on CPU with multiprocessing
	DAD on CPU with multiprocessing
	DAD on CPU with multiprocessing

	13 seconds
	13 seconds

	CSV to Pandas DataFrame
	CSV to Pandas DataFrame

	2 seconds
	2 seconds

	DAD on GPU
	DAD on GPU
	DAD on GPU

	23 seconds
	23 seconds

	CSV to Tensor of Torch
	CSV to Tensor of Torch

	20 seconds
	20 seconds

	
	5.2.4 Performance Evaluation
	The OD ML algorithms yielded approximately 5 percent outliers of the total instances, as indicated in
	The OD ML algorithms yielded approximately 5 percent outliers of the total instances, as indicated in
	Table 10
	Table 10

	. This percentage resulted from setting the parameter "outliers_fraction" to 0.05. Similar to F4, the output thresholds

	served as the threshold panel for real-time detection of abnormal driving. However, the thresholds generated by the ODs are not applicable to our system, lacking any association with transportation terms or phenomena.
	TABLE 10. THE OUTPUT OF OD ALGORITHMS
	
	
	InlineShape

	
	6.0 CONCLUSIONS
	The O6 project marks a substantial improvement over F4, driven by advancements in both system architecture and computing paradigm. Our journey commenced with an extensive literature review on parallel computing, revealing the prevailing trend in the automotive market towards flexible and lightweight CAVs. Recognizing the significant advancements in IVCs, we identified DSD as the future of parallel computing.
	Both F4 and O6 feature a two-tier hierarchical structure with an upper-tier core cloud and a lower tier consisting of CVs monitored by the core cloud. In F4, the core cloud manages the flag list of abnormal CVs and major DAD modules, while the IVC handles a portion of DAD in conjunction with the CIM. In contrast, O6 relocates the entire DAD to the IVC, assigning the core cloud exclusive responsibility for the flag list.
	F4's success relies on seamless cooperation between auto manufacturers, BSM central control, and government support—an identified challenge for the near future. Meanwhile, O6, while potentially susceptible to minor data loss and unsuitability for comprehensive traffic analysis, presents significant benefits in reducing data traffic and improving latency performance. Considering O6's advantages over its drawbacks and its alignment with the prevailing trend towards flexible and lightweight solutions, we adapt
	Moving from F4's sequential computation paradigm, O6 underwent a crucial upgrade to a parallel version, resulting in notable improvements in processing speed, efficiency, and scalability. We designed the DSD process with considerations at three levels of abstraction: chip architecture, programming language, and parallelism module. Testing configurations included
	C, Python, and OpenMP on both Windows and MacOS platforms, specifically targeting the M1 chip for MacOS, using Visual Studio Code.
	Our working datasets comprised BSM data from CV pilot studies, with performance evaluation utilizing crash data from the SHRPII NDS. Both datasets were in CSV format. In evaluating our DAD, we compared its performance in F4 and O6 with various established OD packages designed for outlier detection. The findings indicated that existing OD models fell short of meeting our system requirements. Focused on minimizing processing time and based on our working data, we concluded to employ ARM architecture, C progra
	
	7.0 RECOMMENDATIONS AND FURTURE WORK
	This project's primary contribution lies in its innovative approach to configuring DSD for IVCs across three levels of abstraction: chip architecture, programming language, and the parallelism module. For the CIM of our system, we recommend utilizing ARM architecture, the C programming language, and leveraging the built-in parallelism of the ARM chip. For the DAD, we propose fully migrating DAD to IVC, employing ARM architecture, and using Python language on the CPU with multiprocessing for parallel computi
	Several significant challenges lie ahead for future work on DSD and IVC. These challenges include understanding emerging trends in the IVC market, exploring the integration of automated and connected vehicles, assessing the impact of connected and automated vehicles on intelligent transportation systems, and examining how market players would adopt DSD. Regarding technologies, thoughtful consideration is needed to address challenges related to potential data loss in the event of CV malfunctions and evolving
	There is also considerable future work anticipated for DAD. Recognizing that driving behaviors are complex processes involving actions controlled by both conscious and subconscious aspects of the human brain, relying solely on the vehicle's footprint to determine behavior status may be insufficient. When scoring outliers, the relative impacts of different key performance indicators lack clarity, and auto-tuning was not possible due to a lack of data.
	The scope of this project does not encompass the data path, which involves the vehicle cloud, and remains an open research problem representing one of the most significant challenges for CAV development. Further research and development in the data path are anticipated for the
	realization of our system. While this project only scratches the surface, it serves as a case that showcases the initial research conducted on DSD for IVC.
	
	
	8.0 REFERENCE LIST
	
	ACM, 2017. ISCA '17: Proceedings of the 44th Annual International Symposium on Computer Architecture. New York, NY, USA, Association for Computing Machinery.
	Amini, S., Gerostathopoulos, I. & Prehofer, C., 2017. Big data analytics architecture for real-time traffic control. s.l., s.n., p. 710–715.
	An, S.-h., Lee, B.-H. & Shin, D.-R., 2011. A survey of intelligent transportation systems. s.l., s.n., p. 332–337.
	Asanovic, K. et al., 2009. A view of the parallel computing landscape. Communications of the ACM, Volume 52, p. 56–67.
	Boukerche, A. a. Z. L. a. A. O., 2020. Outlier detection: Methods, models, and classification. ACM Computing Surveys (CSUR), Volume 53, pp. 1--37.
	Brown, E. N., 2010. Type oriented parallel programming. s.l.:Durham University.
	Culler, D., Singh, J. P. & Gupta, A., 1999. Parallel computer architecture: a hardware/software approach. s.l.:Gulf Professional Publishing.
	Darlington, J., 1996. Structured parallel programming: parallel abstract data types.
	Duan, L., Xu, L., Liu, Y. & Lee, J., 2009. Cluster-based outlier detection. Annals of Operations Research, Volume 168, p. 151–168.
	Gottlieb, A. & Almsi, G., 1989. Highly parallel computing.
	Hernandez, O. a. N. R. C. a. C. B. a. B. V. a. K. R., 2009. Open source software support for the openmp runtime api for profiling. s.l., IEEE.
	ISCA, 2017. ISCA '17: Proceedings of the 44th Annual International Symposium on Computer Architecture. New York, NY, USA, Association for Computing Machinery.
	Khazaei, H., Zareian, S., Veleda, R. & Litoiu, M., 2016. Sipresk: A big data analytic platform for smart transportation. In: Smart City 360°. s.l.:Springer, p. 419–430.
	Kriegel, H.-P., Schubert, M. & Zimek, A., 2008. Angle-based outlier detection in high-dimensional data. s.l., s.n., p. 444–452.
	Larose, D. T. & Larose, C. D., 2014. k-nearest neighbor algorithm.
	Lin, Y., Wang, P. & Ma, M., 2017. Intelligent transportation system (ITS): Concept, challenge and opportunity. s.l., s.n., p. 167–172.
	MarketsandMarkets™ Ltd., 2020. In-Vehicle Computer System Market, s.l.: s.n.
	Mian, R. et al., 2014. A data platform for the highway traffic data. s.l., s.n., p. 47–52.
	Moore, G. E., 1998. Cramming more components onto integrated circuits. Proceedings of the IEEE, Volume 86, p. 82–85.
	Null, L. & Lobur, J., 2014. Essentials of Computer Organization and Architecture. s.l.:Jones \& Bartlett Publishers.
	Oracal, 2023. MySQL 8.0 Reference Manual. [Online] Available at: https://dev.mysql.com/doc/refman/8.0/en/ [Accessed 2023].
	Osuna, J. A., 1994. COMPUTING RESEARCH NEWS. COMPUTING.
	Putrada, A. G. & Abdurohman, M., 2021. Anomaly detection on an iot-based vaccine storage refrigerator temperature monitoring system. s.l., s.n., p. 75–80.
	Saidu, C. I. a. O. A. a. O. P. O., 2015. Overview of Trends Leading to Parallel Computing and Parallel Programming. 7(British Journal of Mathematics \& Computer Science), p. 40.
	Schauer, B., 2008. Multicore processors–a necessity. ProQuest discovery guides, p. 1–14.
	Shtern, M. et al., 2014. Towards a multi-cluster analytical engine for transportation data. s.l., s.n., p. 249–257.
	Stoller, S. D. et al., 2019. Future directions for parallel and distributed computing: SPX 2019 workshop report. s.l., s.n.
	Wang, H. et al., 2020. Architectural design alternatives based on cloud/edge/fog computing for connected vehicles. IEEE Communications Surveys & Tutorials, Volume 22, p. 2349–2377.
	Xu, D., Wang, Y., Meng, Y. & Zhang, Z., 2017. An improved data anomaly detection method based on isolation forest. s.l., s.n., p. 287–291.
	Zhao, Y., Nasrullah, Z. & Li, Z., 2019. Pyod: A python toolbox for scalable outlier detection. arXiv preprint arXiv:1901.01588.
	Zhu, L. et al., 2018. Big data analytics in intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, Volume 20, p. 383–398.
	
	9. APPENDICES
	9.1 Appendix A – Acronyms, abbreviations, etc.
	
	AASHTO -- American Association of State Highway and Transportation Officials
	ACC -- adaptive cruise control
	ADAS -- advanced driver assistance systems
	AV -- autonomous vehicle
	BSM -- basic safety message
	CIM -- conflict detection model
	CPU – central processing unit
	CSV -- comma-separated values
	CV -- connected vehicle
	DA -- driving anomaly
	DVU -- driver-vehicle unit
	ESA -- emergency steering assistance
	FCW -- forward collision warning
	FHWA -- Federal Highway Administration
	GPS -- Global Positioning System
	GPU -- graphic processing unit
	ITS -- intelligent transportation system
	ITS -- intelligent transportation system
	IVC – in-vehicle computer
	KPI -- key performance indicator
	LDW -- lane departure warning
	MTC -- margin to collision
	ML – machine learning
	NDS -- Naturalistic Driving Study
	NHTSA -- National Highway Traffic Safety Administration
	OBU -- on-board unit
	OD – outlier detection
	SHRP II -- the Strategic Highway Research Program
	SPMD -- Safety Pilot Model Deployment (SPMD)
	US DOT -- United States Department of Transportation
	V2X -- vehicle-to-everything
	
	9.2 Appendix B – Associated websites, data, etc., produced
	
	https://insight.shrp2nds.us/login/auth
	https://insight.shrp2nds.us/login/auth
	https://insight.shrp2nds.us/login/auth

	

	https://www.its.dot.gov/pilots/
	https://www.its.dot.gov/pilots/
	https://www.its.dot.gov/pilots/

	

	
	9.3 Appendix C – Sample Results
	
	TABLE 11. SAMPLE RESULTS OF CIM TESTS
	
	
	Figure
	9.4 Appendix C – Summary of Accomplishments
	
	Date
	Date
	Date
	Date
	Date

	Type of Accomplishment
	Type of Accomplishment
	(select from drop down list)
	

	Detailed Description
	Detailed Description
	Provide name of person, name of event, name of award, title of presentation, location and any links to announcements if available
	Please attach any abstracts, summaries, high quality photos, or additional details as an appendix.

	11/01/2022
	11/01/2022
	11/01/2022
	11/01/2022

	Conference Paper
	Conference Paper

	We submitted the abstract of a paper titled “Parallel Computing on the In-vehicle Subsystem for Safety Diagnosis in the Connected Vehicle Environment ” to the International Conference on Transportation and Development (ICTD) 2023.
	We submitted the abstract of a paper titled “Parallel Computing on the In-vehicle Subsystem for Safety Diagnosis in the Connected Vehicle Environment ” to the International Conference on Transportation and Development (ICTD) 2023.

	06/25/2023
	06/25/2023
	06/25/2023

	Journal Paper
	Journal Paper

	Submitted to Vehicles a paper titled “Adaptive Individual-Level Cognitive Driving Anomaly Detection Model Exclusively Using BSMs”. Accepted: 18 September 2023 /Published: 26 September 2023
	Submitted to Vehicles a paper titled “Adaptive Individual-Level Cognitive Driving Anomaly Detection Model Exclusively Using BSMs”. Accepted: 18 September 2023 /Published: 26 September 2023

	Abstract of the paper submitted to the International Conference on Transportation and Development (ICTD) 2023.
	Abstract of the paper submitted to the International Conference on Transportation and Development (ICTD) 2023.
	https://www.asce-ictd.org/
	https://www.asce-ictd.org/

	

	
	Figure
	
	P
	Figure
	P

