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ABSTRACT 
This project aims to examine the empirical estimation approach of the Macroscopic 

Fundamental Diagram (MFD) using loop detector data. The MFD give the network-wide 

relationship between average traffic variables and has become an invaluable tool for 

congestion management on large transportation networks. However, deriving the MFD using 

the empirical data is challenging since (i) the required loop detector data is not available in 

most of the cities, (ii) in the networks with available loop detector data, the loop detectors 

cover only a fraction of streets in the network, and (iii) the data coming from various loop 

detectors is prone to bias and inaccuracy, which makes the data cleaning and processing 

cumbersome. This project will rely on the recently published loop detector data from more 

than 40 cities over the globe and simulation experiments to investigate three main impacting 

factors on the network MFD: (i) the distribution of the loop detectors over the network, (ii) the 

distribution of loop detectors on the links, and (iii) the extent of the coverage area of the loop 

detectors and its relationship with the accuracy of the resulting MFD. As a result of this project, 

we aim to develop a robust method to accurately estimate the network MFDs considering the 

aforementioned impacting factors. 

Keywords (up to 5):  

Macroscopic fundamental diagram; Loop detector data; Traffic simulation  
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EXECUTIVE SUMMARY 
Ever since cars came into existence, we have grappled with traffic congestion, a challenge that 

has grown even more significant today. Traditional link-level traffic control methods, while 

effective in certain scenarios, often become inefficient when applied in real-time to large 

networks. The Macroscopic Fundamental Diagram (MFD), which relates network-wide average 

traffic variables, emerges as a promising solution to this predicament. The MFD allows for the 

estimation of performance across all links within a network or zone through a single entity. This 

method not only simplifies the process but also cuts computational requirements. 

However, fully realizing the MFD's potential is not without challenges. The accuracy and 

reliability of these estimations can be influenced by the measurement method, particularly the 

nature of loop detector. These detectors gather traffic data at specific installation points, 

potentially skewing the representation of the actual traffic state. Recognizing these challenges, 

this research project embarked on a mission to discover the impact of loop detector position on 

an empirical MFD estimation, as documented in the paper by Garyoung Lee, Zijian Ding, and 

Jorge Laval titled "Effects of loop detector position on the macroscopic fundamental diagram". 

The research explored the impact of loop detector positioning on MFD estimations through 

three approaches: 

Analytical Approach: The study utilized a symmetric triangular fundamental diagram on a 

corridor to visualize potential biases induced by loop detectors. Under ideal signalization, no 

bias was evident. However, the loop detector MFD might not accurately represent link MFD in 

most of the cases, necessitating a correction method. Both the network's topology and the 

distribution of positions play a crucial role in this. 

Empirical Analysis: Drawing from empirical loop detector data from 28 cities worldwide, 

termed UTD19, the analysis identified variations in installation parameters. Some scenarios 

exhibited no bias regardless of loop detector placements. Specific placements can potentially 

minimize MFD bias, i.e., more upstream with low variance . 

Simulation Results: A microscopic simulation using SUMO on a 10x10 grid network revealed 

that MFD bias is also influenced by network parameters. Specifically, networks with shorter 

blocks are more susceptible to bias than those with longer blocks. In contrast, the aggregation 

interval did not affect MFD bias. 

In summary, this research has significantly enriched our comprehension of the relationship 

between loop detector positioning and MFD estimation. The paper stands as a pivotal 

contribution from the research project, setting the stage for more accurate traffic control. 

Reference: 

Lee, G., Ding, Z., & Laval, J. (2023). Effects of loop detector position on the macroscopic 

fundamental diagram. Transportation Research Part C, 154. 
https://doi.org/10.1016/j.trc.2023.104239  

https://doi.org/10.1016/j.trc.2023.104239
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1.0 INTRODUCTION 
Loop detectors are usually installed for traffic control and congestion monitoring. They typically 

report the traffic variables flow (i.e., number of vehicles passing a detector), and occupancy 

(i.e., share of time a detector is occupied). Loop detectors are mainly used for counting 

vehicles, detecting congestion, and controlling traffic signals. In the past few years, the loop 

detector data (LDD) has been used widely to estimate the network MFDs empirically since the 

empirical verification of existence of the MFD by Geroliminis and Daganzo (2008). 

Different studies have shown that unpolished deployment of the LDD might negatively affect 

the MFD estimation due to (i) the detectors’ distribution in the network, (ii) the detectors’ 

location on the links, and (iii) the selected links for the set of equipped links. The first issue 

might result in more congested regime points, since the loop detectors are normally installed 

on the more congested links (Leclercq et al. 2014). The second issue might lead to the 

overestimation of the network average density when the detectors are installed closer to the 

downstream signals (Buisson and Ladier 2009, Ambühl et al. 2017), while the third issue might 

result in high-scattered MFDs (Keyvan-Ekbatani et al. 2013). 

1.1 OBJECTIVE 
The research objective of this project is to develop a robust method to estimate the MFD 

empirically using the available loop detector data, able to take into account the following 

impact factors:  

(i) Distribution of loop detectors: the number and density of loop detectors in the network 

based on the area and topology of city. How the loop detectors are distributed over the 

network and how well they are sampling the links in the network. 

(ii) Loop detector placement within the link: where the loop detectors are located on the 

link and how well they can capture the traffic conditions on the links, and  

(iii) Coverage area: how the size of the area including the loop detectors can impact the 

shape and accuracy of the resulting MFD. 

1.2 SCOPE 
The current project will contribute to the empirical estimation of the MFD of the urban 

networks or zones inside the network using the available loop detector data by developing a 

robust empirical MFD estimation method not only by simply averaging the data from the loop 

detectors, but also by taking into account impacting factors such as the distribution of the loop 

detectors across the network and over the links, and the network partitioning and size of the 

resulting zones, which have not fully been investigated previously. As a result of this proposed 

method, the network or zone MFDs can be accurately estimated and then employed in the 

network control models.  
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2.0 LITERATURE REVIEW 
The modeling of traffic flow dynamics in large urban networks has proven challenging over the 

years. An important branch of the efforts to control congestion is aggregated modeling. After 

Greenshields et al. (1935) observed for the first time the fundamental diagram of a single 

uninterrupted link, researchers took a profound interest in the aggregated relationship 

between average flow and density in entire urban signalized networks (Smeed, 1967; 

Mahmassani et al., 1984). The encapsulation of network traffic states into two variables is 

known as the Macroscopic Fundamental Diagram (MFD). Geroliminis and Daganzo (2008), and 

their empirical study in Yokohama, Japan demonstrated that the MFD is a convincing model to 

describe a network-level traffic performance. When aggregated at a network level, a high 

scatter of average flow and density from individual loop detectors nearly vanished and the 

points gather along the MFD curve.  

Analytical, empirical, and simulation studies have been conducted to observe the MFD. 

Contemporaneous with Geroliminis and Daganzo (2008), Daganzo and Geroliminis (2008) 

presented the method of cuts (MoC) using variational theory (Daganzo, 2005) in a 

homogeneous signalized corridor, which sets the upper bound for the MFD. Stemmed from the 

literature, Geroliminis and Boyacı (2012) applied variational theory to parallel corridors with 

weak heterogeneity. Considering a strong heterogeneity of the real world, Laval and Castrillón 

(2015) proposed the stochastic MoC (SMoC) to handle networks with different block lengths 

and signal timings. 

Numerous studies have verified that the MFD is applicable to other cities or arbitrary networks. 

In contrast to the findings from Geroliminis and Daganzo (2008) that the MFD is independent of 

demand, later researchers challenged that the finding is only apposite for homogeneous 

networks with low congestion levels which make a well-defined low-scatter MFD. Otherwise, 

the MFD reveals a trapezoidal shape and the hysteresis phenomenon with a high scatter 

(Geroliminis and Sun, 2011a,b). A host of posterior literature suggested that the MFD shape is 

dependent on demand (Mazloumian et al., 2010; Leclercq et al., 2015), network topology and 

heterogeneity (Zheng and Geroliminis, 2013; Geroliminis and Boyacı, 2012; Buisson and Ladier, 

2009), routing strategy (Yildirimoglu et al., 2015; Ding et al., 2017), and signal control schemes 

(Gayah et al., 2014; Huang et al., 2018); see Zhang et al. (2020) for a more detailed summary of 

influential factors for MFDs.  

While various exogenous influential factors of the MFD have been exhibited, the endogenous 

factor – the bias induced by the nature of empirical data – has not been discussed to a 

comparable extent. Loop detector data is arguably the most prevailing empirical source for 

exploring various facets of the MFD. Some studies use probe data, but even this is usually fused 

with loop detector data (Ji et al., 2014; Ambühl and Menendez, 2016; Du et al., 2016; An et al., 

2020; Saffari et al., 2022). Although the loop detector is compelling as it measures traffic flow at 

all times, many have faced limitations in solely exploiting it reliably for various problems (Kong 

et al., 2009b; Kim et al., 2020; Min et al., 2022). Consequently, researchers have been striving 
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to mitigate the inherently noisy property of loop detector data (Bramich et al., 2023) or to seek 

alternative sensing technologies, such as unmanned aerial vehicles (Barmpounakis and 

Geroliminis, 2020; Paipuri et al., 2021), as a means to estimate the MFD without relying on loop 

detector data. Among the issues encountered with loop detectors, its installation position along 

the link is found to be critical for the accurate representation of traffic flow. 

However, the engineering installation standards for urban areas seem not to prioritize the issue 

of traffic state representation accuracy (FHWA, 2022). Their primary purpose lies in the 

effective control of traffic signals: e.g., left-turn queue detection for the actuated control and 

the conventional adaptive signal control technologies such as SCOOT1 (Hunt et al., 1981), 

SCATS2 (Sims, 1979), and RHODES3 (Mirchandani and Head, 2001). For instance, Kay et al. 

(1975) recommends the minimum distances for longitudinal placement range from 61 to 76.2 

meters from the upstream intersection stop line with the comprehensive consideration of cycle 

length, split, and offset. The detector placements under SCOOT, SCATS, and RHODES policy 

tend to be constant across the network, either all placed at the same distance from the 

downstream or at the stop bar (Moore II et al., 1999; Kong et al., 2009a; FDOT, 2016). While 

effective for signal control, the literature casts doubt on the detectors’ ability to the network-

level representativeness of traffic flow and density by their position distributions. 

Buisson and Ladier (2009) first realized that the position of the loop detectors within the links 

plays a substantial role in defining the MFD shape. They split the measurements from the 

detectors in Toulouse, France into three subsets according to the physical distance to the 

downstream traffic signal. Closer to the signal, the free-flow branch of MFD showed a lower 

slope. The overestimation of the queue stood as the rationale. Using simulation, Courbon and 

Leclercq (2011) compared three positionings-constant, uniformly distributed, and normally 

distributed – of virtual detectors on a corridor with an identical block length. Although the 

constant distance setting displayed the largest bias, the detectors farther from the downstream 

signal reproduced the free-flow conditions well and the closer ones reproduced the queues well 

at the cost of the lower slope of the free-flow branch. Uniform distribution of the detectors 

showed the most accurate fit to the MoC. Leclercq et al. (2014) proved that the uniform 

distribution of detectors is also the best strategy for the homogeneous network to reproduce 

accurate traffic state. Ambühl et al. (2017) leveraged this finding to explain not only the 

discrepancy in the MFD drawn by the loop detector and floating car data from Zurich, 

Switzerland, but also the decreased average occupancy when the detectors closer to the 

downstream signal were excluded. They pointed out that the loop detector bias owes to the 

non-uniform placement and the link selection: the detectors are mostly placed at the beginning 

or the end of the link, and they are installed in certain links to control traffic signals and 

congestion. 

Although previous literature showed how the loop detector positions influence the shape of 

MFD and why the bias happens, still there are important gaps to be filled. First, two different 

biases induced by the nature of detectors are distinguished here: (i) the bias between the link 
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MFD and the loop detector (LD)-MFD (henceforth, LD bias) and (ii) the bias between position-

based subsets of LD-MFD (henceforth, subset bias). Note that the link MFD can be thought of as 

the ‘‘ground-truth’’ as it gives Edie’s generalized traffic state definitions (Edie et al., 1963). The 

subset bias refers to MFDs using detectors that belong to a particular location subset: 

upstream, midstream or downstream within the link. Notice that Courbon and Leclercq (2011) 

and Buisson and Ladier (2009) concluded that the detector position affects the MFD without 

distinguishing these two biases although what they measured turned out to be LD bias and 

subset bias, respectively. Second, identifying network characteristics that contribute to each 

bias is required since the literature used only a single network when explaining the existence of 

bias. Third, even though the uniform distribution of the positions is proved to be the best 

strategy (Courbon and Leclercq, 2011; Leclercq et al., 2014), we need a further investigation on 

how an arbitrary distribution of detector positions affects the MFD. Lastly, as mentioned in 

Ambühl et al. (2017), the variability of block lengths and the spatial density across the network 

should be taken into consideration. 

3.0 METHODOLOGY or TASK(s) 
To accomplish the research objectives of this proposal we will carry out the following tasks. 

Task 1: Literature Review 

Our existing background research will be extended in more detail and expanded to incorporate 

the latest research in the fields of network MFD and associated estimation methods. 

Task 2: Data assembly and preparation 

At the heart of this proposal is the compilation of additional empirical MFD data. Two main 

sources of data will be used in this research project: (i) the empirical loop-detector data 

provided by UTD-19 (Loder et al. 2019) and (ii) other open source dataset from published 

research articles. The UTD19 dataset is collected by a research group from ETH Zurich in the 

period of 2017-2019 and is “a large-scale traffic dataset from over 23541 stationary detectors 

on urban roads in 40 cities worldwide making it the largest multi-city traffic dataset publicly 

available” 

After careful analysis of the data quality, a subset of cities will be selected for further data 

collection. For these cities, additional data will be collected, such as the underlying 

transportation network (from Google earth and Open Street maps), average signal timing 

settings, and bus operation characteristics (from the appropriate traffic management 

authorities).  

Task 3: Analytical and simulation models 

In parallel to Task 2, analytical models will be developed to predict the impacts in the MFD of 

the 3 factors above (number, placement, and coverage area of detectors). These models will be 
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based on simplifying assumptions for tractability, and should reveal important qualitative 

insights about the problem.  

In addition, a microscopic network simulation environment in SUMO will be set up using the 

loop detector information and GIS information of the transportation network. The microscopic 

network simulation will be used to reproduce the empirical MFDs and verify and generalize our 

analytical results. 

Task 4: Improved MFD estimation method 

this is the main task of the project, where the empirical data, analytical models and microscopic 

network simulations will be combined to produce an improved MFD estimation method. For 

the cities selected for further analysis in Task 2, the following steps will be followed to analyze 

the impact of detector placements:  

(i) network simulation models will be set up to reproduce the empirical observations, 

(ii) “ground truth” MFD: the network simulation models will be modified to report the 

actual traffic states on whole links (rather than the traffic state measured by the virtual loop 

detector at its specific location) 

(iii) The analytical insights derived in Task 3 will be used to come up with the simplest 

possible method to reconcile the ground truth MFD with the empirical MFD. It is expected that 

the method will modify the empirical data at each loop detector based on the placement of the 

detector within the link, but several other methods will be analyzed. 

4.0 RESULTS 
4.1 Analytical corridor approximation 

Recall that the LD bias refers to the bias between the link MFD and the LD-MFD and the subset 

bias refers to the bias between position-based subsets of LD-MFD. In this section, we assume a 

homogeneous corridor that obeys a symmetric triangular fundamental diagram (FD) to analyze 

LD bias and subset bias. As customary to simplify the analysis, we will use isosceles 

fundamental diagrams (free-flow speed = wave speed) since one obtains the same solutions 

using a general triangular FD (Laval and Castrillón, 2015; Laval and Chilukuri, 2016). 
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Table 1 Descriptions of constants and variables. Note that the symbols with asterisks are 
constants, and otherwise, variables. 

 

 

Fig 1 Initial conditions: (a) A fundamental diagram with different shock waves; (b) Time-space 

diagrams of the saturated and unsaturated condition. 

The corridor to be analyzed consists of 𝑁 links with an identical block length of 𝑙. The traffic 

signal on all intersections is fixed with green time, 𝐺, and red time, 𝑅, with no offset. The 

symmetric triangular FD has a free-flow speed of 𝑢, a critical density of 𝑘𝑐, and a capacity of 𝑄. 

As shown in Fig. 1(a) the queue initially grows at a shock wave speed 𝑠 in the upstream-most 

intersection, depicted as a state 𝐀, and clears at a wave speed 𝑤. The traffic state of zero flow 

with zero density, 𝑖.𝑒. , a void, is depicted as a state 𝐎. The traffic state of the capacity and the 

jam density are each denoted as state 𝐂 and state 𝐉, respectively. The variables and constants 

used are summarized in Table 1. Note that the symbols with asterisks are constants, and 

otherwise, variables. 

Here, it is important to introduce two dimensionless parameters, the mean block length to 

critical length ratio, 𝜆, and the mean red signal time to mean green signal time, 𝜌, which 
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significantly influence the MFD shape according to Laval and Castrillón (2015). The critical 

length, 𝑙, corresponds to the minimum block length that prevents spillbacks. Then 𝜆 is 

expressed as: 

𝜆 =
𝑙

𝑙∗
=

𝑙

𝐺/(
1

𝑢
+
1

𝜔
)
=

𝑙

𝐺/(
2

𝑢
)
=

2𝑙

𝑢𝐺
                                                                                                                  (1) 

Under the given settings, all possible patterns of the time-space diagram can be categorized 

according to four variables: (i) 𝑠, (ii) 𝜆, (iii) 𝜌, and (iv) 𝑛. First of all, the shock wave speed 

becomes the primary determinant. It decides whether the initial condition influences the 

downstream links. The critical state 𝐀 and the corresponding critical shock wave, 𝑠𝑐 , are 

obtained where the queue clearance wave intersects the end of the green phase (Fig. 1(b)). 

Thus, the critical shock wave speed is the slope between the origin and the queue dissipation 

point, 𝑠𝑐 =
𝑢

2𝜌+1
. If the shock wave speed is steeper than the critical shock wave speed (state 𝐀′

), the first queue clearance wave is obstructed by the queue of the next red phase. This conveys 

that the queue accumulated in the red signal phase loses a chance to completely vanish before 

the next cycle. On the other hand, if the shock wave speed is lower (state 𝐀′′), the queue 

clearance wave traverses through the green phase, causing the initial state 𝐀′′ to spread to the 

downstream link. Hereafter, the initial condition that exceeds or equals the critical shock wave 

speed is considered a saturated initial condition, otherwise an unsaturated. Under saturated 

conditions, the time-space diagram of the upstream-most intersection is duplicated at 

downstream links, while unsaturated initial conditions do not provide this guarantee. The 

uncertainty of the repetition ascribes to the spread of the initial state to the downstream links. 

This causes some cases of unsaturated initial condition to not be expressed in a closed form. 

Hence, we only address the saturated condition in the following. 

Fig. 2. depicts all possible types of time-space diagrams in the saturated initial condition. It is 

confirmed for all three cases that the traffic state patterns recur throughout the corridor, by 

extending the time-space diagrams to an infinite homogeneous corridor. Importantly, the 

existence of the jam state and the coverage of the void state distinguish three cases. As 

indicated by a blue line, the difference originates from the time it takes for the first vehicle in a 

green phase to reach the next intersection. 
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Fig 2 Three types of time-space diagram at the saturated initial condition. 

 A method to derive the MFD from the time-space diagram is explained in the following. Note 

that only the downstream links of the upstream-most intersection are considered. We assume 

all 𝑁 links have one detector installed on each, and the aggregation interval is a multiple of a 

cycle length. This enables setting the aggregation interval simply as a cycle length. In order to 

obtain the LD-MFD, firstly, draw a horizontal line on a time-space diagram at the position of a 

detector by the amount of the aggregation interval. Second, calculate the weighted average of 

the traffic state, 𝑖.𝑒. , a pair of density-flow, using the time proportion of each state as a weight. 

This corresponds to the FD of a detector, which is then a linear combination of traffic states 𝐎, 

𝐂, and 𝐉. Lastly, for every time interval measured, average the density-flow pair of all detectors 

to obtain the LD-MFD (Eq. (2)). While the LD-MFD uses the proportion of time as a weight, the 

link MFD can be obtained by using the proportion of the area of each traffic state throughout 

the link as a weight. The link MFD in the saturated initial condition equals to the intersection 

point where the stationary cut and the forward cut of MoC. 

𝑞𝐿𝐷 =
∑ 𝑞𝑖𝑙𝑖𝑖

∑ 𝑙𝑖𝑖
, 𝑘𝐿𝐷 =

∑ 𝑘𝑖𝑙𝑖𝑖

∑ 𝑙𝑖𝑖
                                                                                                                          (2) 

where𝑞𝐿𝐷 is the average flow, 𝑘𝐿𝐷 is the average density, and 𝑞𝑖 and 𝑘𝑖  are the flow and density 

measured by the loop detector 𝑖 of installed link length of 𝑙𝑖 . The MFD for each case through 

the above process is summarized in Table 2. We now disentangle the constraints and MFD 

formulae; i.e., how 𝜆, 𝜌, and 𝑛 act as the keys to distinguish these three. 

 

1. Case 1: No queues 
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According to Fig. 2(a), the first vehicle of the green phase never encounters the red phase and 

so do all other vehicles. Notice that only the void and the capacity state exist. This is only 

possible when the time for the vehicle to complete passing the link is equal to a multiple of a 

cycle length. This constraint is simplified using definitions of 𝜆 and 𝜌 as follows: 

𝑙

𝑢
= 𝑛(𝑅 + 𝐺)                                                                                                                                               (3a) 

𝜆 = 2𝑛(𝜌 + 1)                                                                                                                                             (3b) 

Since the traffic states are homogeneous along the link, MFD is not subject to any bias no 

matter where the detector is positioned. In any of the positions during a cycle 𝑅 + 𝐺, the void 

state 𝐎 and the capacity state 𝐂 are measured by the amount of the red time 𝑅 and the green 

time 𝐺, respectively. Thus, the FD of all loop detectors correspond to 
𝜌

1+𝜌
∙ O +

1

1+𝜌
∙ C + 0 ∙ J, so 

do the MFD. 

 

2. Case 2: Jam exists & voids are finite 

Compared to Case 1, Fig. 2(b) bares the jam state for a certain length. The jam accumulates 

because some vehicles departed at a previous intersection cannot pass the intersection ahead 

being blocked by the red time. This happens when the first vehicle of the green time was able 

to pass the next intersection without stopping but was not the foremost vehicle passed during 

its green time. That is, the time for the first vehicle to arrive at the next intersection is a 

multiple of a cycle length plus a partial or a full amount of green time. This condition is 

formulated as below: 

𝑛(𝑅 + 𝐺) <
𝑙

𝑢
≤ 𝑛(𝑅 + 𝐺) + 𝐺                                                                                                               (4a) 

2𝑛(𝜌 + 1) < 𝜆 ≤ 2𝑛(𝜌 + 1) + 2                                                                                                            (4b) 

As traffic states are non-homogeneous along the link, identifying the critical position that turns 

the void state into the jam state is necessary. Separating the travel time into a multiple of a 

cycle length and the remainder gives us the length of the jam state. The distance vehicle 

traveled during 𝑛-multiple of cycle length is 𝑢 ⋅ 𝑛(𝑅 + 𝐺). The remaining distance of 𝑙 −𝑢 ⋅ 𝑛(𝑅 + 

𝐺) is bisected by the void state and the jam state due to the symmetry of the FD. Then, the 

length of jam state and the void state are (𝑙 − 𝑢 ⋅ 𝑛(𝑅 + 𝐺))∕2 and (𝑙 + 𝑢 ⋅ 𝑛(𝑅 + 𝐺))∕2, 

respectively. If the loop detector is installed downstream of the critical position, the jam state 𝐉 

and the capacity state 𝐂 will be each measured for the red time 𝑅 and the green time 𝐺 during 

an aggregation interval (𝑅 + 𝐺). On the other hand, if the detector is installed at upstream of 

the critical position, the red time and the green time are each occupied by the void state 𝐎 and 

the capacity state 𝐂. With specifying that 𝑁𝑑 and 𝑁𝑢 detectors are installed at each 

downstream and upstream of critical position, the LD-MFD will have a linear combination of: 
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𝜌

1+𝜌
∙

𝑁𝑑

𝑁𝑢+𝑁𝑑
∙ O +

1

1+𝜌
∙ C +

𝜌

1+𝜌
∙

𝑁𝑑

𝑁𝑢+𝑁𝑑
∙ J                                                                                                (5) 

Here, the bias of LD-MFD is unavoidable unless the number of detectors in each position label is 

proportional to its length: 𝑖.𝑒. , 𝑁𝑑 ∝ (𝑙 − 𝑢 ⋅ 𝑛(𝑅 + 𝐺))∕2 and 𝑁𝑢 ∝ (𝑙 + 𝑢 ⋅ 𝑛(𝑅 + 𝐺))∕2. 

Namely, the link MFD, which is theoretically a weighted average of each traffic state’s area, can 

be simply calculated by substituting corresponding lengths to the number of detectors. Similar 

to Buisson and Ladier (2009), partitioning the loop detectors by their position gives us the 

position-based subsets of the MFD. For example, the downstream subset can be obtained by 

substituting 𝑁𝑑 = 1 and 𝑁𝑢 = 0 to the LD-MFD. The corresponding MFD expressions can be 

found in Fig. 2. 

 

3. Case 3: Jam exists & voids are infinite 

Compared to Case 2, jam is accumulated for a shorter period of time and the void fills the gap 

(Fig. 2(c)). The red time is already initiated before the first vehicle of the green time arrives at 

the next intersection. The amount of red time elapsed before the jam accumulation remains as 

the void. This is only available when the link travel time of the vehicle equals a multiple of a 

cycle length plus a full green time plus a partial red time, as below. 

𝑛(𝑅 + 𝐺) + 𝐺 <
𝑙

𝑢
< 𝑛(𝑅 + 𝐺) + 𝐺 + 𝑅                                                                                              (6a) 

2𝑛(𝜌 + 1) + 2 < 𝜆 < 2(𝑛 + 1)(𝜌 + 1)                                                                                                (6b) 

The critical position is obtained by the relationship between the free-flow speed 𝑢 and the 

queue clearance duration 𝐺. Using that the jam always dissipates exactly before the red phase 

begins, the spatial length of the jam state is 𝑢 ⋅ 𝐺∕2. The loop detectors located downstream 

of the critical position will measure the void state 𝐎 for time 
𝑙

𝑢
− 𝑛(𝑅 + 𝐺) − 𝐺, the capacity state 

𝐂 for green time 𝐺, and the jam state 𝐉 for the rest of a cycle. At the upstream of the critical 

position, the void state 𝐎 and the capacity state 𝐂 are observed by the amount of red time 𝑅 

and the green time 𝐺, respectively. With the assumption of the number of detectors 𝑁𝑑  

and 𝑁𝑢 , the weighted average gives LD-MFD. The link MFD and the position-based subsets are 

calculated likewise to Case 2 and one can refer to Table 2. 
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Table 2 Summary of link MFD, LD-MFD, and position-based subsets. 

 

 

4.2.2 Discussions on subset bias and LD bias 

Figs. 3 and 4 illustrate MFD realizations of the corridors with different network parameters. The 
FD is drawn at the back for comparison with the MFDs. Case 1 shows that neither the LD bias 
nor the subset bias resides in the MFD since the corridor has an ideal signal setting that the 
queue never forms (Fig. 3(a)). Regardless of 𝑛 and 𝜆, the MFD of a corridor always lies exactly 
on the free-flow branch of FD and only moves along the branch depending on the 𝜌. 
Specifically, the yellow–green dot displayed a much slower critical shock wave speed and a 
smaller average density than the blue dot due to its higher 𝜌 value. This means that insofar as 
two different corridors have the same 𝜌 value, their MFDs stand identical regardless of 
different 𝑛. 

Unlike Case 1, differences between MFDs can be discerned in the remaining cases. The link 
MFD, LD-MFD, upstream subset, and downstream subset are labeled with a solid circle, grey-
filled symbols, open circle, and open square, respectively. Slopes that connect the origin and 
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the points of MFD are considered free-flow branches of the corresponding MFD. The shaded 
area shows the possible range between the upstream and downstream subsets to which the 
free-flow branch of LD-MFD can fall on. The dotted line will be the range of the exact point of 
LD-MFD that can be placed. In the saturated initial condition, the bias takes place only in 

average density values. Despite the cases, the average flow is always 
𝟏

𝟏+𝝆
𝑸, which is consistent 

with the stationary cut of MoC (Daganzo and Geroliminis, 2008). Calculations reveal that the 
link MFD corresponds to the point where the stationary cut and the forward cut intersect 
regardless of parameters and cases (Fig. 4(a)). 

 

Fig 3 Case 1 with no bias and the representation of the subset bias on Cases 2 and 3 

1. Subset bias 

We can identify the subset bias through the difference between position-based subsets, i.e., 
the downstream subset and the upstream subset; see Figs. 3(b) and 3(c). Regardless of the loop 
detector distribution, the upstream and downstream subset is determined by the network 
parameters; see green and pink LD-MFDs. It is prominent that the downstream subset 
underestimates the average free-flow speed while the upstream subset overestimates it. In our 
analytical approximation setting, the downstream subset holds the key to determining the 
subset bias, as the slope of the upstream subset is always fixed with the free-flow speed of FD, 
𝑢. 

In Case 2, the downstream subsets fall exactly on the congestion branch of FD regardless of the 

parameters. The magnitude of the subset bias, which is 
𝟐𝝆

𝟏+𝝆
𝒌𝒄with respect to the average 

density, is determined only by the value of 𝜌. Larger 𝜌 decreases the maximum average flow 
and increases the subset bias, i.e., green area (𝜌 = 1) is larger than the red (𝜌 = 0.1). This means 
that the subset bias is inevitable unless 𝜌 is negligibly small. 

In Case 3, the downstream subsets do not lie on the congestion branch. As the subset bias with 

respect to the average density equals (𝟐(𝒏 + 𝟏) −
𝟐𝝆

𝟏+𝝆
) 𝒌𝒄, the subset bias gets smaller when 𝜆 

approximates the right-hand side of the constraint of Case 3 (Eq. (6b)). This is because the 
corridor becomes more free-of-congestion with the approximation of 𝜆. We can also notice that 
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(i) identical 𝜌 does not guarantee the same subset bias, i.e, cyan ≠ orange and (ii) larger 𝜌 does 

guarantee neither a larger subset bias nor a linear increment by 𝜌. 

 

2. LD bias 

LD bias is clearly recognizable by the green and pink symbols in each Figs. 4(b) and 4(c), i.e, the 
difference between the circle symbol and the grey-filled symbol. While the link MFD is fixed 
according to the network parameters, LD-MFDs can take place anywhere between the 
upstream and downstream subsets depending on the distribution of detectors. The link MFD is 
generally closer to the upstream subset than the downstream subset under this setting because 
the length of the jam state is shorter than half of the link length. LD bias will converge to zero 
when the number of detectors of each position is proportional to its length: e.g.,𝑵𝒅 ∝ (𝑙 − 𝑢 ⋅ 

𝑛(𝑅 + 𝐺))∕2 and 𝑵𝒖 ∝ (𝑙 + 𝑢 ⋅ 𝑛(𝑅 + 𝐺))∕2 for Case 2. This validates the findings from 

Courbon and Leclercq (2011) that the uniform distribution of the detectors across the corridor 
can best emulate the MoC. 

Since the range to which LD-MFDs and link MFDs can exist is equal to subset bias, the 
estimation of subset bias helps conjecture the maximum amount of LD bias. In terms of Case 2, 

the size of the range of LD-MFD with respect to the average density is 
𝟐𝝆

𝟏+𝝆
𝒌𝒄. The range 

increases as 𝜌 increases, which might lead to a higher LD bias. Insofar as two corridors have the 
same 𝜌 such as red and yellow symbols, the position-based subsets, i.e., the maximum amount 
of LD bias, are identical despite different link MFDs. When having the same 𝜌 value, the 
possible range of LD-MFD is shorter in Case 3 than in Case 2. This is because the LD bias of Case 
3 is affected by 𝜆, 𝜌, and 𝑛. Especially for Case 3, the possible ranges of LD-MFD of two 
corridors with equal 𝑛 and 𝜆 are proportional to the rate of 𝜌. 
 

3. Remarks of analytical corridor approximation 

In this section, we adopted a symmetric triangular FD in a homogeneous corridor to distinguish 
and give a credence to the existence of LD bias and subset bias. Under the saturated initial 
condition, subset bias is inevitable unless the traffic signal system (i) is perfect that never forms 
a queue (Case 1) or (ii) has a negligibly small red time portion under Case 2, or (iii) satisfies 
diminutive 2(𝑛 + 1) − 𝜆∕(1 + 𝜌) under Case 3. We also identified that the position-based 

subsets are determined by the network parameters, 𝜆, 𝜌 and 𝑛. Note that detectors must be 
installed on all links for subsets to be dependent only on the network structure.  

Additionally, we reinterpreted that the uniform distribution of the detectors across the corridor 
assures the non-existence of LD bias. However, the LD bias occurs unless the signal timing is 
perfectly programmed as Case 1. This implies that it will be rare for the LD-MFD not to be 
biased in real world. Despite the importance of accurate traffic state representation, we may 
never know the link MFD unless we have an almighty information about the network. When LD 
bias is directly immeasurable, we propose that the subset bias can be used to estimate the 
maximum amount of LD bias. In a fortunate case, a negligible subset bias will allow us to 
conclude that the LD-MFD is unbiased. Otherwise, the existence of subset bias cautions users to 
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carefully rely on the data as it may not represent the traffic state at an aggregated network 
level. 

As the findings are identified even in a simplest and tractable setting of a triangular FD, other 
renowned FD models can be used to show the same implications; i.e., the LD bias exists, the 
downstream and upstream subset is each minimum and maximum of link MFD, and thus the 
subset bias can be used to estimate the possible range of LD bias. For applicable compendium 
of models, readers are referred to Bramich et al. (2022). 

 

Fig 4 The implication of Link MFD and the representation of the LD bias (Note: Link MFD is 
always identical to the intersection of the MoC forward cut and stationary cut.) 

 

4.2. Simulation results 

We have taken both signal and network settings into account figuring out the influential factor 
of the MFD shape, by changing 𝜆. Fig. 3 illustrates the MFDs of four networks with different 𝜆 
and the aggregation interval of 3 minutes. The average flow and the density are each 
normalized by the value of 𝑄 and 𝒌𝒋, respectively. Note that the free-flow speed and the wave 

speed of FD are each 4.3 and 1.3 when normalized. The forward cuts of the MoC and the SMoC 
calculated through the parameters of each network are also superimposed. 

We can verify that the random positioning within the position range does not hinder the 
accurate representation of the link MFD since the link MFD and LD-MFD aligns well on all four 
figures. Also, it is observed that the link MFD is well bounded by the forward cuts of the MoC 
and the SMoC. As discussed in both previous sections, free-flow branch slopes are high by order 
of upstream, midstream, and downstream subsets. In view of a congested branch, the 
downstream subset overestimates its slope and the upstream subset underestimates it. Hence, 
from the viewpoint of subset bias, the downstream and upstream subsets show each left-skew 
and right-skew distribution from the link MFD. We have explicitly shown that the upstream 
subset is not bounded by the forward cut. The midstream subsets of all four figures are 
considerably close to the upstream subset, meaning that the jam state is not likely to propagate 
beyond the third downstream point. Following are the main observations as 𝜆 increases. 
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• The maximum average flow increases since the long blocks are not prone to spillbacks. This is 
consistent with the findings from Zhang et al. (2013) that the shorter blocks tend to have a 
lower maximum flow rate. 

• It is observed that free-flow branches of other MFDs including the link MFD approach that of 
the upstream subset. The free-flow branch of the upstream subset also gets steeper and closer 
to the free-flow speed 𝒖𝒇 . This implies that the duration of the traffic jam is canceled out by 

the long block length. 

• Larger 𝜆 assures the smaller subset bias. While the free-flow branches highly differ by the 
subsets in shorter blocks, these become overlapped as 𝜆 increases. Recalling that we have 
stated that the possible range of LD bias is equivalent to the subset bias, longer blocks have less 
chance to show bias in the LD-MFD. 

• This is also analytically demonstrated by the slope of MoC and SMoC forward cut (Table 3). 
The average speed of the observer passing the origin increases when 𝜆 gets larger. Namely, the 
difference between the free-flow slope of the upstream subset and the slope of forward cuts 
becomes smaller. For long blocks, 𝑢𝑚𝑎𝑥 approximates the free-flow speed 𝒖𝒇. However, in 

short blocks, 𝑢𝑚𝑎𝑥 is just half of the free-flow speed (see Fig. 3). 

Table 3 The forward cut parameters of the MoC and the SMoC. Note that 𝜸𝒎𝒂𝒙 and 𝒖𝒎𝒂𝒙 are 
the number of blocks that the observer with free-flow speed can pass without stopping and the 
average speed of the observer in the forward cut passing the origin, respectively. 𝒖𝒔𝟏

# and 𝒖𝒔𝟐
#  

are the average speed of the observer in SMoC, each corresponds to the steepest forward cut 

and the next steepest forward cut. Also note that 𝑐 = (1 +𝜹𝟐) 𝝆𝟐/(𝜆(1 + 𝜌)). 
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Fig 5 The link MFD, the LD-MFD, and the position-based subsets for different values of 𝜆 

5.0 CONCLUSION 
This project presented an analysis of the impacts of loop detector position within the link on 

the resulting MFDs. Previous research has been based either on empirical data or simulation. 

Here, we have (i) added an analytical approach based on kinematic wave theory that enables 

the explanation of these impacts in the corridor MFD, (ii) postulated a logistic regression model 

based on empirical data to predict the occurrence of bias on a given network, and (iii) revealed 

that the network parameter 𝜆 plays a key role in the bias magnitude while the aggregation 

interval of the loop detector has no significant impact. 

In the analytical approach, the symmetric triangular diagram on a corridor was used to envision 

and distinguish possible biases induced by the nature of loop detectors. Subject to the 

saturated initial condition constrained by the shock wave speed, the time-space diagram was 

classified according to the values of 𝜆, 𝜌, and 𝑛. Formulae of the link MFD, LD-MFD, and the 

position-based subsets were cataloged. Several visualizations of MFDs and biases were 

presented. Under an ideal signalization, neither LD bias nor subset bias is apparent. If the 
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network is programmed for the first vehicle of the green time to arrive at the next intersection 

during the green time (e.g., 𝜆 < 1), the subset bias only depends on 𝜌. If the first vehicle arrives 

during the red time of the next intersection, the subset bias is subject to 𝜆, 𝜌, and 𝑛. It was 

proved that the LD bias is inevitable unless the signal is programmed perfectly or red time is 

negligible or the loop detectors are uniformly distributed. Also, the possible range of LD-MFD 

can be obtained by the subset bias formulas presented here. If the subset bias is negligible, we 

can conclude that the LD-MFD is unbiased. However, if there is a significant subset bias, it is 

important to use caution when relying on the data as it may not accurately represent the traffic 

state at the network level. The analytical approach can be improved by considering an offset as 

an additional variable and identifying MFDs in unsaturated initial conditions. Also, other 

renowned FD models can be deployed to follow the same procedure. 

Our simulation results indicated that the overlapping phenomenon described in the above 

paragraph can be explained by the network parameter 𝜆. For short-block networks (𝜆 < 1) we 

have seen that the different branches do not overlap and that they tend to overlap for very 

long-block networks (𝜆 ≫ 1). Although the empirical data does not include signal settings to 

verify these hypotheses, this finding highlights the importance of parameterizing urban 

networks according to their 𝜆-value. Additionally, taking the benefits of simulation, we explored 

the effects of the aggregation interval, and we found that it is not a determining factor in any 

biases that may exist in the MFD.  
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6.0 RECOMMENDATIONS  
The results of this paper strongly indicate that a correction method can be devised to improve 

the estimation of the link MFD using loop detector data. Overlapping position-based subset 

MFDs are fortunate to not require correction. However, when the subset bias is observed, LD-

MFD may not accurately represent link MFD, which requires a correction method. As we have 

seen, both the topology of the network such as 𝜆, and the distribution of positions should play a 

key role. This is currently being investigated by the authors.   
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