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ABSTRACT 
This project studies how Mobility-on-Demand (MOD) transit systems can 

contribute to building smart, sustainable, and equitable cities in the U.S. We worked 

on two research thrusts.  

The first thrust is a collaborative effort between STRIDE researchers and industry partners Ford 

and Spin. This thrust aims to: 1) understand the spatio-temporal patterns of micromobility usage 

(focusing on e-scooters and e-bikes) in Washington, DC and the factors that drive the demand for 

micromobility use; 2) investigate how micromobility services can be integrated into the existing 

transit system to improve mobility and to reduce traffic congestion. Specifically, we leveraged 

big data analytics to analyze micromobility trip characteristics (travel time, trip distance, cost, 

etc.) and apply the state-of-the-art methods in machine learning to predict micromobility use 

across different neighborhoods. We conducted a five-city (Auburn, AL, Birmingham, AL, 

Miami, FL, Los Angeles, CA, and Washington DC) survey to investigate traveler preferences for 

micromobility options, to learn under what conditions the modal shift from cars/mopeds to 

micromobility options will take place, and to explore how micromobility services can serve as 

first-mile/last-mile feeders to public transit. Based on the survey results, we conducted travel 

behavioral analysis across five U.S. cities that vary in size and transportation contexts. As 

electrification of various transportation networks is an emerging issue, we have also analyzed the 

operational energy impacts of an integrated transit system in North Carolina. 

The aim of the second thrust is to assess the service characteristics of ridehailing and traditional 

demand-response transit for hospital trips in rural and urban settings in the Southeastern U.S. 

This research builds on previous STRIDE-funded research that assessed how changes in 

technology and policy are encouraging health providers and insurers to provide transportation to 

medical services through ridehailing services. The analysis compares service characteristics for 

operators and passengers, e.g., travel time, wait time, and cost, based on different scheduling 

scenarios. The results inform the services currently being proposed and developed by transit and 

health agencies to provide ‘Uber-like’ services through public agencies.  

For both thrusts of research proposed above, a focus is on how new mobility options, including 

micromobility and ridehailing, helped MOD transit riders get to essential destinations in the 

COVID-19 and post-COVID era. As virus-wary travelers stay away from crowds and public 

transit, these more personalized new mobility options may become more attractive for people to 

use. This project generates insights, from a traveler preference and behavior perspective, into the 

impacts of COVID-19 on MOD transit systems. 

 

Keywords (up to 5):  

Micromobility, congestion, machine learning, simulation, policy.  
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EXECUTIVE SUMMARY 
The rapid rise of shared mobility options such as ridehailing and micromobility (including 

station-based bikesharing, e-bikes, and e-scooters) has prompted transportation agencies at the 

federal, state, and local levels to develop Mobility-on-Demand (MOD) initiatives. MOD means 

an integrated and connected multi-modal network of safe, affordable, and reliable transportation 

options that are available and accessible to all travelers. As a competitive alternative to the use of 

personal cars, MOD transit systems can significantly reduce traffic congestion in major 

roadways.  

The key to the success of MOD initiatives is the integration among various publicly accessible 

travel options including conventional transit services, ridehailing, and micromobility. Given the 

short history of these shared mobility options, little is known about their spatiotemporal usage 

patterns (i.e., how people use these services across space and time), how they shape individual 

travel behavior and attitudes, and under what conditions these new mobility options can be 

effectively integrated into the existing transit network.  

To fill these knowledge gaps, STRIDE researchers, with support from industry partners Ford and 

Spin, completed two thrust areas of research. In the first thrust, we leverage big data analytics to 

analyze scooter trip characteristics and apply machine learning to predict scooter use across 

different neighborhoods. We also conducted a five-city (Auburn, AL, Birmingham, AL, Miami, 

FL, Los Angeles, CA, and Washington DC) travel survey to investigate traveler preferences for 

micromobility options. The major findings include: 

• Shared e-scooter users tend to be predominantly young adults who are male, white, 

employed, driver's license holders. 

• Some results are highly impacted by the deployment context of micromobility systems 

(i.e., the universtiy campus in Birmingham, AL versus downtown or the whole city area 

in other study areas). Educational attainment of the micromobility users varies among the 

cities, with Birmingham having a higher proportion of users with high school and some 

college education, while Washington D.C. has a higher percentage of users with 

bachelor's and post-graduate degrees. Age groups also differ among the cities, with 

Birmingham having a younger user group (18-24 years), while Washington D.C., Miami, 

and Los Angeles have a dominant middle-aged user group (30-39 years). Household 

income shows variation as well, with Birmingham having a significant portion of users in 

the $25,000-$49,999 income range, while higher income users ($100,000 or more) are 

more prevalent in Miami and Los Angeles. 

• The majority of shared e-scooter users have one or more vehicles in their households, but 

significant numbers of users without vehicles were observed in Washington D.C. and Los 

Angeles. 

• Approximately 10% of shared e-scooter trips were used to connect with public transit, 

suggesting an interest in integrating micromobility with public transportation. 
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• A small portion of shared e-scooter users (ranging from 3% to 7% across cities) were 

enrolled in low-income payment programs. 

• Incentives such as lower cost, larger service area, and greater availability of e-scooters 

were identified as factors that could encourage more usage. 

The second thrust aims to assess the service characteristics of ridehailing and traditional demand-

response transit (i.e., non-fixed route system that requires advanced booking by customers) for 

hospital trips in rural and urban settings. The analysis compared service characteristics for 

operators and passengers, e.g. travel time, wait time, and cost, based on different scheduling 

scenarios. The research team developed a novel, on-demand paratransit system that significantly 

reduces the time difference and an operator model that optimizes transportation resources and 

operating costs. The system was used to evaluate the trade-offs between operating cost and user 

experience. 

Together, the two research thrusts can inform the design of MOD transit systems and contribute 

to building smart, sustainable, and equitable cities in the Southeastern U.S.  Specially, they shed 

light on how new mobility options, including micromobility and ridehailing, can help MOD 

transit users get to essential destinations in the COVID-19 and post-COVID era. 

This project produces four types of results: 

• Predictive models (and the accompanying software codes) that can be applied to predict 

micromobilility use across neighborhoods in U.S. cities and to forecast people’s 

preferences for the new MOD transit system.  

• Individual behavioral insights that are derived from the survey results. These behavioral 

insights shed light on traveler preferences for the service attributes (e.g., cost, travel time, 

and wait time) of innovative mobility options and under what circumstances travelers use 

innovative mobility options to connect with public transit. 

• A novel, on-demand paratransit system that significantly reduces the time difference and 

an operator model that optimizes transportation resources and operating costs, which can 

be used to evaluate the trade-offs between operating cost and user experience. 

• A set of policy recommendations for transit and health agencies in the Southeastern U.S. 

to develop MOD transit systems that integrate conventional public transit and innovative 

mobility options such as micromobility and ridehailing. These recommendations cover 

the selection of geofencing locations for micromobility deployment and operational 

strategies to meet non-emergency medical transport needs.
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1.0 INTRODUCTION 
Emerging shared mobility services, such as carsharing, ridehailing (on-demand ride services), and 

micromobility (e.g., shared e-scooters and bikes), have rapidly gained popularity across cities and 

are gradually changing how people move around. The rise of shared mobility has prompted 

transportation agencies at the federal, state, and local levels to develop Mobility-on-Demand (MOD) 

initiatives. As the Federal Transit Administration (FTA) defines it, MOD indicates an integrated and 

connected multi-modal network of safe, affordable, and reliable transportation options that are 

available and accessible to all travelers. The key to the success of MOD concepts is the integration 

among various publicly accessible travel options including conventional transit services, carsharing, 

ridehailing, and micromobility. 

 

In recent years, dozens of transit agencies across the U.S. have developed partnerships with 

Transportation Network Companies (TNCs) like Uber and Lyft in order to better integrate the 

ridehailing services that TNCs provide with the existing transit system. The explosive growth of 

micromobility since 2019 has further inspired many to consider leveraging these flexible mobility 

options to address the “first mile/last mile” problem that has long hindered public transit. A MOD 

system that integrates conventional transit, ridehailing, and micromobility options is expected to 

provide travelers with better access to jobs, healthcare, food, and other essential services, reduce car 

trips and urban traffic congestion, and cut energy cost and emissions.  

 

STRIDE researchers are studying the opportunities and challenges that MOD transit systems provide 

for congestion management in the Southeastern US. Our work provides guidance to Departments of 

Transportation, transit agencies, cities, and metropolitan planning organizations (MPOs) as they 

engage on the following critical questions: 

• How will new mobility options impact usage of the existing public transit system? 

• What population groups have a greater propensity for multimodal travel and what factors 

matter for the integration between micromobility and public transit? 

• What strategies can promote the modal shift from private vehicles to MOD transit systems? 

• How do MOD transit systems address the needs of disadvantaged populations to access 

essential services, such as healthcare and jobs? 

• What are the operational energy impacts of a MOD transit system? 

1.1 OBJECTIVE 
THRUST 1: Integrating Public Transit and Micromobility for Smart, Sustainable Cities 

The first thrust is a collaborative effort between STRIDE researchers and industry partner 

Ford. This thrust aims to: 1) understand the spatio-temporal patterns of micromobility 

(focusing e-scooters and e-bikes) usage in Washington, DC and Gainesville, FL and the 

factors that drive the demand for micromobility use; 2) investigate how to integrate 

micromobility into the existing transit system to improve mobility and to reduce local 

congestion; 3) analyze the operational energy impacts of the integrated transit system. 

Specifically, we will leverage big data analytics to analyze micromobility trip 

characteristics (travel time, trip distance, cost, etc.) and apply the state-of-the-art methods in 

machine learning to predict micromobility use across different neighborhoods in 

Washington, DC and Gainesville, FL. We will conduct a four-city (Gainesville, FL, Miami, 
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FL, Birmingham, AL, and Auburn, AL) stated preference survey to investigate traveler 

preferences for miromobility options, to learn under what conditions the modal shift from 

cars/mopeds to micromobility options will take place, and to explore how micromobility 

options can serve as first-mile/last-mile feeders to public transit. Based on the survey 

results, we can then assess the transferability of the research findings by conducting a 

comparison study among four Southeastern cities. The findings are expected to produce 

policy recommendations for transit agencies and cities to plan and operate MOD public 

transit systems that are enhanced by micromobility services. 

THRUST 2: Evaluating Service Characteristics for Innovative Models of Access to 

Healthcare in the Southeast 

Previous STRIDE-funded research has assessed how changes in technology and policy are 

encouraging health providers and insurers to provide transportation to medical services 

through ridehailing services. The aims of the second thrust are to 1) assess the extent of 

innovative mobility options offered by transit agencies in the southeast and 2) to assess the 

service characteristics of innovative services such as ridehailing compared traditional 

demand-response transit for non-emergency medical trips in rural and urban settings in the 

Southeastern U.S. These results will assist departments of transportation and local transit 

agencies as they consider operational strategies to meet non-emergent medical transport 

needs. 

1.2 SCOPE 
Task 1: Spatio-temporal Pattern Analysis of Micromobility Use 

To understand how micromobility services are used in cities, we conducted a spatio-

temporal analysis of micromobility use patterns in Washington, DC. The spatio-temporal 

analysis focuses on computing the average trip length and duration, visualizing 

spatiotemporal distributions of the trips, and inferring micromobility trip purposes. We 

report the results in Section 2. 

Task 2: Travel behavior analysis of micromobility trip patterns, user preference, and its 

integration with public transit 

The team sought to understand (a) what micromobility system characteristics most 

significantly impact adoption by local populations, (b) how micromobility adoption would 

change local mode splits and traffic patterns, and (c) how micromobility options would be 

used for first/last-mile feeders for public transportation. In order to accomplish these 

objectives, the team developed survey to ask respondents how likely they will be to 

incorporate micromobility into their daily routines based on likely implementation scenarios 

(e.g. costs, availability, docking requirements, geofencing restrictions, etc.). After the 

survey receives IRB review and approval, it will be administered (using incentives to ensure 

representation) to four populations representing a range of US geographies: Washington 

DC, Miami, FL, Birmingham, AL, and Auburn, AL. We report the results in Section 3. 

Task 3: Assessing the Operational Energy Consumption of Integrated Transit System 
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The electrification of various transportation networks requires a critical look at the various 

issues that impact the uptake of vehicles and the design of efficient systems, as well as 

studies which review specific examples of electric vehicle usage and its effectiveness. In 

Section 4, the research team provides a discussion of the general background on vehicle 

fleet electrification and important issues to consider, followed by a case study conducted on 

public transportation bus fleets in North Carolina. 

Task 4: Assess the Service Characteristics of Innovative Models in the Southeast in Support 

of Health Care Services  

Traditional paratransit services generally required advance scheduling. New models allow 

for real-time deployment as well as scheduling. In this analysis, we compared service 

characteristics for operators and passengers, e.g., travel time, wait time, and cost, based on 

simulating different scheduling scenarios. Variation in service characteristics across urban 

and rural operating environments was a particular focus of the analysis. We developed 

simulation models using actual origin and destinations from transit providers in North 

Carolina across different built environments.  
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2.0 Spatiotemporal Pattern Analysis of Micromobility Services in 

relation to public transit 

2.1 Introduction 
In the recent years, the urban transportation system is experiencing a rapid change with the 

rise of micro-mobility, i.e., a variety of small, lightweight transportation devices such as e-

scooters and dockless bikes. In less than two years, e-scooters have been deployed on the 

urban streets of more than 120 cities worldwide. A recent study by Populus has further 

shown that around 70% people view e-scooters positively as they believe that e-scooters can 

expand transportation options by replacing short trips in automobile and complementing 

public transit (APTA, 2021). The first perception was validated empirically by a study 

conducted in Chicago, which showed that for trips between 0.5 and 2 miles, e-scooters 

present a strong alternative to private vehicles (Smith & Schwieterman, 2018). Similarly, 

after analyzing half a million e-scooter trips (during a three-month period) in the 

Indianapolis region, Liu et al (2019) found that the median duration and distance of these 

trips were 8 minutes and 0.7 miles respectively. Moreover, e-scooters offer a potential 

solution to the first-/last-mile problem of public transit, which refers to the inability of 

public transit to transport people to and from the doorsteps of their trip origins or 

destinations. E-scooters can also complement public transit by providing a shared mobility 

option to residents who live in places where transit services are inadequately supplied. 

The COVID-19 pandemic has dramatically disrupted the transportation systems and brought 

remarkable changes to different travel modes. Public transit is the hardest hit, and transit 

ridership across most U.S. regions plummeted by over 70% at the peak of the pandemic 

(Liu et al, 2020). As of June 2021, ridership across U.S. transit agencies was still half down 

compared to the pre-pandemic level (APTA, 2021). The impacts of COVID-19 on other 

travel modes differ significantly. COVID-19 initially devastated the shared micromobility 

business, bringing some companies to the brink of financial collapse (Hawkins 2020); as the 

COVID-19 crisis keeps on rolling, however, e-scooters and bikes rebounded (Tong, 2020). 

Early data from summer 2021 suggest that bikesharing trips in some cities have broken all-

time high records (Citi Bike, 2021). Finally, personal driving has experienced the least 

impact from COVID-19. While stay-at-home orders, curfews, and business shutdowns 

caused the U.S. vehicle miles travelled (VMT) to plummet in the beginning of the 

pandemic, VMT has slowly recovered over time (Streetlight, 2021). As of April 2021, the 

US average daily VMT was close to the pre-pandemic levels. 

Similarly, COVID-19 has caused dramatic changes to individual travel behavior such as trip 

purpose, mode choice, trip frequency, and trip distance. Survey research across the globe 

suggests that the impacts differ across countries and across socioeconomic contexts (Brough 

et al, 2020; Politis et al, 2021; Jokinen et al, 2019; Salon et al, 2021). In general, researchers 

have observed a large increase in telecommuting, a reduction in air travel, an accelerated 

growth in online shopping (especially grocery shopping), a sharp decline in transit and 

shared-mobility use and marked increases in walking and bicycling activities during 

COVID-19. These findings suggest that concerns for contracting the coronavirus has made 

individuals reduce the use of shared modes that require physical proximity to others or 



  
 Mobility-on-Demand Transit  

for Smart and Sustainable Cities 
 

  
17 

avoid physical altogether. Less obvious from the existing research is if and to what degree 

these changes will last, which means that the long-term implications of COVID-19 on total 

travel demand is uncertain. Regardless, there appears some consensus among transportation 

professionals that the micromobility boom will last and that promoting micromobility use is 

a key strategy that keeps people from driving. Once an individual purchases a private 

vehicle, they tend to significantly reduce the use of more sustainable modes; therefore, 

micromobility can play a major role in keep individuals from resorting to auto ownership in 

a pandemic era when transit and shared-mobility options are perceived as somewhat risky to 

use. 

While there is some preliminary analysis on usage patterns of shared e-scooters, there is yet 

a comprehensive assessment to understand if shared e-scooters can serve as a complement 

to public transit. Notably, much is unknown regarding the potential for transit and shared-

micromobility integration in the COVID-19 era and beyond. How have people used public 

transit and shared micromobility during COVID-19? How frequent do people use shared 

micromobility as a last-mile complement to public transit? What are the main barriers that 

prevent them from doing so? What strategies can be effective to promote the combined use 

of transit and shared micromobility? How bundled pricing of transit and shared 

micromobility may promote more combined use? We intend to provide answers to these 

questions with a spatio-temporal analysis of micromobility services in relation to public 

transit. 

2.2 The General Bikeshare Feed Specification Data 
The General Bikeshare Feed Specification (GBFS) data, which allow me to estimate e-

scooter trips and to understand the spatiotemporal dynamics between e-scooters and transit, 

provide further insights into the interactions between e-scooters and public transit. The 

GBFS data attributes include vehicle (bike or e-scooter) ID, latitude and longitude of 

vehicle location, whether the vehicles is reserved or disabled, battery level, etc. In addition 

to the GBFS data, we collect the General Transit Feed Specification (GTFS) data published 

by the Washington Metropolitan Area Transit Authority. 

The GTFS data provide information on transit routes, stops, and schedules. We developed a 

Python program to scrape the GBFS data at a one-minute time interval (vendors update their 

APIs at a different time intervals, ranging from one minute to 10 min). The raw GBFS data 

scrapped from the APIs indicate the supply of e-scooters in the city at a given time point; 

and by examining how the “bike ID” field changes over time, one may also infer trips from 

the GBFS data. Figure 1 illustrates the e-scooter availability and e-scooter trip data used in 

this study. Since the types of “bike ID” reported by each e-scooter vendor can differ, the trip 

information to be extracted differs across vendors (Xu et al, 2020). For vendors (e.g., Jump, 

Skip, Spin) that assign a consistent ID for the same scooter over time, one can infer trip 

origin-destination pairs; for vendors (Bird, Lime, Lyft, Razor) that assign a dynamic ID for 

the same e-scooter, one can only unlinked trip origins and destinations. Xu et al provides a 

detailed description of the trip inference algorithms adopted in this study. 

Note that some trips may be falsely identified due to GPS error or vehicle recharging. Thus, 

following (Zou et al, 2020), We have excluded trips that are shorter than 0.02 mile or longer 
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than ten miles, are shorter than five min or longer than 90 min, or have an average travel 

speed above 20 miles per hour. To compare the differences of trip patterns before and 

during COVID-19, We pick a typical week from each period for the subsequent analysis. 

Specifically, We analyze the week of July 15-21, 2019 for the pre-COVID period and the 

week of June 15-21, 2020 for the COVID-19 period.1 A comparison of the results for the 

before- and during-COVID weeks suggests that travelers have taken less e-scooter trips 

during COVID-19, largely as a result of reduced travel. On the other hand, e-scooter trips 

taken during COVID-19, on average, are longer in duration and distance (see Table 2 

below). This indicates that people who use transit for longer trips before may have switched 

to e-scooters, as the estimated transit ridership in Washington D.C. declined for over 60 

percent in the during-COVID week.2 The next section presents a detailed analysis of the e-

scooter availability and trip data to further shed light on e-scooter’s relationship with transit 

and bikeshare services. 

2.3 Supply of E-scooters and Public Transit 
The analysis of the supply side is fundamental to understand how e-scooters interact with 

Capital Bikeshare and public transit. If these services are offered at the same geographic 

locations, they would be competing for the same customer base; if e-scooters extend 

mobility services to neighborhoods with low access to the bikesharing and transit systems, 

e-scooters would be complementing existing travel modes. However, the relationship in 

question eludes a dichotomous classification, as both scenarios are likely to exist. To 

generate more nuanced knowledge on e-scooters’ relationship with bikesharing and public 

transit, a meaningful path of inquiry is to examine the intensity of these mobility services 

available at different locations. Since the service supply varies throughout the day, one shall 

also consider the temporal variations. In this study, we compare the supply of the three 

mobility options at four different points in time: 7:00 am (morning peak hour), 12:00 pm 

(midday), 5:00 pm (afternoon peak), and 8:00 pm (early evening). We measure the supply 

intensity of e-scooters and bikeshare with the number of available vehicles across space. 

Therefore, (daily) temporal changes in the supply of e-scooter and bikeshare services arise 

from two sources: one is imbalanced trip flows, as destinations of e-scooter and bikeshare 

trips gain available vehicles whereas the trip origins lose supply; and the other is 

rebalancing efforts from operators of e-scooters and Capital Bikeshare. We measure the 

supply of transit services at each transit stop by counting the number of vehicles passing by 

in the following hour (e.g., 7:00 am to 8:00 am). 

We use kernel density to measure the intensity of mobility-service supply across the city, a 

commonly applied approach to measure accessibility to spatially distributed attractions or 

resources such as hospitals and parks (Wang, 2012; Zhang et al, 2011). The “resources” 

considered here are transit stops, bikesharing stations, and e-scooters. The kernel density 

approach assumes that the level of accessibility to a given feature (e.g., e-scooter) decreases 

as the distance to it increases, and the value of accessibility reaches zero at a presumed 

threshold distance. This threshold distance is usually specified as the service radius of the 

feature being examined. Here We set this value as a quarter mile for transit stops, one sixth 

of a mile for bikesharing stations, and one eighth of a mile for e-scooters. These values are 

assumed to be the comfortable walking distances for DC residents to ride public transit, use 
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a shared bike, and to find an e-scooter.1 In addition, a population field can be specified to 

weight some features more heavily than others. We set the population field as the number of 

vehicles (a rail train is counted as five vehicles) passing by in an hour for transit stops, the 

number of available bikes for bikesharing stations, and one for e-scooters. 

Figure 1 shows the kernel density outputs for the before- and during-COVID week at 7:00 

am, respectively.3 The spatial patterns are similar at other time points (i.e., 12:00 pm, 5:00 

pm, and 8:00 pm), and so We do not present the results. Note that while the color ramp is 

the same for all maps, the corresponding value distributions are different. In other words, 

one should focus on the spatial patterns revealed by each map and not compare kernel 

density values across maps. These maps generate some useful insights. First of all, the 

spatial distribution of e-scooter supply is similar to that of station-based bikeshare except 

two noticeable differences. One is that e-scooters are more spatially concentrated around the 

Downtown and Capitol areas (located at upper part of Ward 2), where more trips are likely 

to be generated. The other is that e-scooters are accessible to a wider geographic area than 

bikesharing. This illustrates a key advantage of e-scooters: their free-floating nature allow 

them to be deployed everywhere, providing a great potential to fill the services gaps left out 

by station-based systems. On the other hand, e-scooter services do not appear to expand the 

service area of public transit. This is because Washington DC has widespread transit 

coverage in the first place. Moreover, the supply intensity of transit services is more evenly 

distributed than that of e-scooters and bikesharing, which reflects the fact that the operation 

of transit services is less market-driven than the other two modes. Finally, the spatial 

patterns are largely similar for the pre-COVID week and the during-COVID week. 

Noticeably, the kernel density values for transit supply in the during-COVID week are 

much lower than those in the pre-COVID week, which indicate a significant service cut. 
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FIGURE 1. SUPPLY OF E-SCOOTER, BIKESHARING AND TRANSIT 

2.4 Identifying Last Mile Transit Trips 
A special case for e-scooters to complement public transit is when they serve as a last-mile 

connection to transit. If an e-scooter trip starts or ends at a location next to a transit stop, it 

is likely a leg of a combined scooter-and-transit trip (Figure 2). Since previous studies on 

bikesharing find that travelers often use shared bikes to connect with rail services but not 

bus services, we focus on rail entrances only (Martens, 2004; Martin & Shaheen, 2014). We 

assume e-scooter trips that happen within a distance threshold of a rail entrance as potential 

integrated e-scooter-and-rail trips. Regardless of the distance threshold chosen here, some e-

scooter trips will be falsely labelled, and the bias can go both directions. An upward bias 

happens when trips falling within the distance threshold are not a leg of an assumed “e-

scooter plus transit” trip, and a downward bias happens when transit riders park the e-

scooter at a distance beyond the chosen threshold. Given these uncertainties, we use 30 feet 

as the threshold to get a lower bound estimate and use 100 feet to get a higher bound 

estimate. 

In the pre-COVID week, we estimated that between 1174 and 1489 e-scooter trips are 

potentially connecting to Metrorail, 8% to 12% of all trips. As people stay away public 
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transit during COVID-19, however, both the number and proportion of transit-connecting e-

scooter trips declined significantly. In this week, the estimated number of transit-connecting 

trips is between 6% to 7% of all trips. We further present the number of estimated transit-

connecting trips by time of day in Figure 1. The graph shows that more combined scooter-

and-transit trips happen during the peak hours, which indicate the use of e-scooters to 

facilitate commute trips by transit. Notably, in the pre-COVID week, about 20% of e-

scooter trips made in the morning peak hour are identified as transit-connecting trips. 

Therefore, as more and more cities embrace shared e-scooters services, commuting trips 

should be the main focus for transportation officials to promote e-scooters as a last-mile 

enhancement to public transit. 

 

 
 

FIGURE 2. IDENTIFYING FIRST-/LAST-MILE FEEDER TO TRANSIT 
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FIGURE 3. POTENTIAL LAST-MILE TRIPS TO METRO STATION 

 
FIGURE 4. POTENTIAL LAST-MILE TRIPS TO BUS STOPS 

Figure 3 and Figure 4 further show the number of potential last-mile e-scooter trips at Metro 

stations and bus stops, respective. In each figure, the right-hand side map indicates the 

locations of all Metro stations or bus stops, serving as a reference to the left-hand side map. 

 

2.4 Discussion 
The results suggest that where e-scooter services are provided significantly overlap with the 

service area of public transit. This suggests a potential substitution effect of e-scooters on 

public transit. On the other hand, about 10% of e-scooter trips are taken to connect with 

public transit, suggesting a potential for e-scooters to serve as last-mile complement to 

transit. During the pandenmic when many travelers are concerned about COVID 

contraction, shared e-scotoers provide a useful alternative to public transit and thus enhance 

the overall resilience of the transit system.  

 

Our analysis focuses on Washington DC, a city with one of the best public transit and 
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bikesharing systems in the country. The maturity of these systems leaves little room for a 

new mobility option to supplement the existing services or to fill their service gaps. 

Therefore, we expect one to find greater complementary effects of e-scooter services on 

public transit and bikesharing in most other U.S. cities. In other words, we expect the 

findings of this study to be only transferable to cities with robust transit and bikesharing 

systems. 

 

Combined e-scooter and transit use can significantly expand the geographic area that people 

can reach. Many strategies can promote the integration between public transit and shared 

micromobility. One strategy is to place enough e-scooter parking spaces at transit stops, and 

space for e-scooter charging stations would be an added bonus. Cities and regions can also 

improve the bike infrastructure surrounding transit stations so that people feel safe riding e-

scooters to connect with transit. Finally, public agencies should consider working with e-

scooter companies to integrate fare payment and to offer bundled pricing. 

3.0 Survey Findings Regarding Micromobility Trip Patterns, User 

Preferences, and Connection with Public Transit 

3.1 Introduction 
Over the past decade, micromobility systems have become incredibly popular to provide 

low cost, flexible, and efficient opportunities to support short-distance travel.  

Micromobility describes a variety of small, lightweight, and low-speed (up to 15 mi/h) 

transportation modes, including bicycles, e-bikes, e-scooters, electric skateboards, and 

electric pedal-assisted bicycles. Additionally, these modes have been linked to reduced 

congestion and increased community health. Between 2018 and 2019, the United States saw 

an increase in the number of shared micromobility trips by 60 percent, from 84 to 136 

million (NACTO, 2019). Of these modes, e-scooters and e-bikes are some of the most 

popular, but adoption, implementation and regulation is still not well understood. Both 

modes are ridden like their non-electric versions, but each are shared and have a motor 

allowing users to travel at higher speeds than they might normally achieve on their own.  

For example, more than 80 US cities have now adopted e-bikes or e-scooters in their traffic 

plans (Liu et al., 2020), and several transit agencies are now either directly managing these 

modes as part of their system operations or partnering with agencies like Lyft, Spin, Divvy 

and others to support “first and last mile” (FLM) access (Mohiuddin, 2021).  While they are 

popular for transit access, there is even more interest in using e-scooters and e-bikes for 

recreation and commuting purposes (Almannaa et al., 2020). 

Despite the increased popularity of shared micromobility services (such as e-scooters and e-

bikes), the literature confirms that there is still a lack of in-depth knowledge regarding the 

use of micromobility travel options including users' demographics, travel patterns, benefits 

and drawbacks, potential modal shifts and related impacts on traffic operations (Esztergár-

Kiss & Lopez Lizarraga, 2021). We conducted a multi-region survey to shed light on these 

topics. Specifically, we deployed surveys in four U.S. regions: Birmingham, AL, Los 

Angeles, CA, Miami, FL, and Washington D.C. The study areas represent a diverse set of 

regions (in terms of socioeconomic, land-use, and transportation contexts) in the U.S., 

making the results more transferable and generalizable. A comparison of similarities and 

differences in results across cities can generate rich behavioral insights on shared 

micromobility use patterns and trends.  



  
 Mobility-on-Demand Transit  

for Smart and Sustainable Cities 
 

  
24 

  

3.2 Literature Review 

Policies and Regulations of e-scooter and e-bike Across the US 

E-bike and e-scooter fall within the broad term of transportation mode named “micro-

mobility”. While the definition of micro-mobility differs from country to country and even 

from state to state in US, it is generally defined as an affordable, urban transportation 

solution that covers 5 miles or less (Runnerstrom, 2018). E-bike and e-scooter are 

distinguishable from manually driven micro-mobility mode through their speed. According 

to several states’ rules, the speed of e-bike and e-scooter can vary between 15 to 30 mph. 

Among all states across US, only 10 states have defined the e-bikes and e-scooters as a new 

transportation mode. Definition of e-scooter also varies from state to state where, Denver 

addressed scooter as “toy vehicles” and Detroit defines it as a transportation mode other 

than conventional bike and allow them to operate even through the most far right lane of the 

road.  (Herrman, 2019).  

States and cities of US are independent not only to define but also to make laws for use and 

purpose of these vehicles (NHTSA, 2020). Regulations regarding these vehicles varies for 

this reason across states and even for cities. One type of regulation is ordinance which is a 

written law, not easy to change and take considerable time to establish. Dallas and Oakland, 

California have this type laws for e-bike and e-scooters (Herrman, 2019). Another type of 

rule is pilot programs. Pilot programs are small-scale, short-term experiments that help 

cities learn how a large-scale project might work in practice. Denver, CO and Baltimore, 

MD have initiated pilot programs to provide e-bikes and e-scooter to operate on the roads. 

Agreement is another type of regulations which is structurally a legal contract between city 

and company for the maneuver of e-bikes and e-scooters on the roads. Administratively the 

least complicated type of regulation is permits. Permits are given to the operating company 

to manage legal operations without legal obligations of an agreement. Some cities and states 

also follow a combination of above types or follow no special regulations at all to operate e-

bikes and e-scooters like other physical and active micro-mobility mode (Herrman, 2019). 

One of the most important regulations regarding e-bikes is parking as they seldom have 

designated parking place and stations. Most cities direct parking to a upright position on a 

hard surface so that it doesn’t make any hindrance to utilities, crosswalks, ADA access, 

pedestrian or vehicular paths, or obscure the sight triangle. Cities allow parking in the 

sidewalk, street against buildings, against street furniture, in designated parking spots, and 

against an unmarked curb. Street furniture refers to signs, benches, transit stops, and posts. 

Designated parking spots are both temporary and permanent parking spots that were created 

for scooter parking with paint or another mechanism. Violation of the parking rule includes 

penalties in different manner in different cities (Herrman, 2019).  

E-bikes and e-scooters has also regulations on parking, insurances and educating the riders 

which also vary from place to places. Most cities expect the insurance liability to be taken 

by the company operating it and with the continuation of the expectations, 34% companies 

signed indemnification agreements before starts operating (Herrman, 2019). 
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Riders need to be aware of existing city traffic rules and regulations, safe (wearing a helmet 

operating at a safe speed) and courteous riding (yielding to a pedestrian), legal parking, 

terms of service, privacy, penalties, and age limitations.  Portland, OR introduced education 

of using scooter with safety in different ways while city of Meridian, ID didn’t give 

emphasis on that. After few years, city of meridian experienced failure of e scooter service 

due to mass people’s reluctance and negative impacts caused by scooter users’ negligence 

(Herrman, 2019). 

Adoption and Use Trends of e-scooters and e-bikes 

The role of e-scooters is not defined nationwide due to exclusive policies taken by states 

and requires uniform regulations for safe operation and better recognition as a mode 

(Byrnes et al. 2018). Across US cities and greater North America, e-bikes and e-scooters 

have also several types. Adoption of these micro-mobility mode depends largely on the 

types that are available in a specific area. Pedal assist e-bikes, throttle-assist e-bikes, 

scooter-style e-bikes, electric recumbent tricycles, and enclosed electric recumbent tricycles 

are the available e-bikes in North American region. Among them, Pedal- and throttle-assist 

e-bikes looks like the traditional bicycles and compatible to the principle of micro-mobility 

modes (Aono and Bigazzi, 2019). In a study of the stakeholders of e-bike reveals that, 

people prefer Pedal- and throttle-assist e-bikes more than the other types not only for the 

user friendliness but also for less conflicts with conventional bikes, safety, convenience to 

ride more distance than conventional bike, and easy regulation potentials (Shah, 2020; 

Fishman and Cherry, 2016; Popovich et al. 2014). Besides design, easy access and 

maneuverability also often influence adoption. In Washington DC, dockless e-bikes have 

more demand than capital bikeshare due to their provision of accessing and leaving the bike 

from and in places besides docking station (Clewlow et al., 2018).  Adoption of e-bikes and 

e-scooters also depends on the location and land use of the origin of the trips. Downtowns 

usually produces more trips than residential and institutional areas due to their mixed land 

uses. Cities with compact downtowns usually experience higher concentration of trips and 

adoption than other areas (Liu et al., 2020). E-bikes and e-scooters are found to be used for 

leisure activities in a greater portion too (Shah, 2020). Purposes of trips and options to meet 

certain purposes also have an impact on adoption of e-bikes and e-scooters. Non-

recreational or more specifically the purpose of commercial or FLM trips were found as in 

demand purpose in city centers like downtown Indianapolis during early morning and late 

evening peak periods (Liu et al. 2020). At the same time in Atlanta downtown, more desired 

trip purpose completed by e-scooter were found as business and leisure (Espinoza et al. 

2019). Racial issues also impact the adoption rate where black and African American 

people were found more reluctant to adopt e-bikes in potential e-bike and e-scooter’s 

thriving areas like Washington DC (Clewlow et al., 2018).  

E-scooters complement other travel modes or more specifically public transit. For this 

reason, cities, several ride-hailing service providers, and multimodal mobility providers are 

trying to incorporate transit, bike-share, and e-scooters in a common platform. It is thriving 

in cities with popular transit system, but smaller cities are far behind taking this opportunity 

(Schellong, 2019).  
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E-scooters have limitations performing efficiently in hilly areas and on brick-lined streets. 

Moreover, they are not suited well for inclement weather; and riders have nowhere to keep 

groceries or other belongings. Often high rents (fixed cost 1$ and variable cost: 

0.15$/minute) and low durability (3 months) discourage users to use e-scooter frequently. 

For some of these reasons, cities below 100,000 population cannot get enough riders to 

continue e-scooter running on roads (Schellong, 2019).  

One of the greatest hindrances on e-scooter expansion is scattered distribution of e-scooter 

stations and overall inconsistent availability and ignorance of people regarding its use where 

active transport mode, utilitarian trips making, flexible and cost-effective, other people 

walking and cycling in neighborhood, streets are safe for all road users (Mitra and Hess, 

2021; Ling et al. 2017). Promotional programs, events, materials and tax exemptions are 

regarded as some instrumental factors to bring e-bike programs into success (Aono and 

Bigazzi, 2019). Secured bike parking facilities and efficient insurance policies in rental can 

encourage people more (Fitch and Handy, 2020). Less requirement of energy, convenient 

riding on hilly areas and provision of accelerating to high speed and carrying heavier items 

are the potentials of e-bikes to proceed (Dill and Rose, 2012; Popovich et. al. 2014). For 

people from higher socio-economic status, e-bikes emerged as a cost saving and health 

beneficiary alternative though still people have discomfort for poor bike infrastructure and 

unwelcoming local policy environment (Mayer, 2020). Shared infrastructure for multimodal 

transportation, incorporation with transit hubs and subsidy program for low-income group 

can promote e-bike adoption at a significant level (Edge et al. 2020).  

Socio-economic Characteristics of Users 

Social and economic status are one of the most instrumental factors that can influence the 

adoption of e-bikes and e-scooters. In some cities people from low-income neighborhoods 

have lower access to e-bike and e-scooter due to the company’s uneven distribution of 

stations (Clewlow et al., 2018).  Some socio-economic studies says that, though e-bikes and 

scooters are becoming an in demand FLM mode, still fewer portion of users are from low-

income group who are more likely to use public transit (Mohiuddin, 2021). Except only 

income, several demographic and socioeconomic factors also play instrumental role behind 

people’s willingness to ride e-scooter and e-bike (Munira and Sener, 2017). Among them, 

employment rate, education levels, average age, and gender were considered as most 

influencing according to capital bikeshare (2012). Even, types of employment, 

environmental consciousness, health consciousness plays significant role on adopting e-

bikes and e-scooters in mega cities (Bao and Lim, 2021). Capital bikeshare study on 

Washington DC and nearby areas found that highly educated younger male who lives and 

work within urban core of Washington DC and its suburban areas are more likely to use e-

bikes for their daily commute (Capital bikeshare, 2012). 

Different results also found in some study from an evenly distributed survey data across US, 

containing more aged, lower education and lower income group dominating the distribution 

of ride share of e-bikes (Ling et al. 2017). Employment density and proportion of college 

going students in a neighborhood also have a positive influence on adopting e-scooter in 

Austin, TX (Caspi et. al. 2020). At the same time, studies of 7 major US cities also found 

positive correlation between dockless bike share availability and neighborhoods college 
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graduates’ density (Mooney et al., 2018). Income can’t significantly explain the e-scooter 

adoption as college students, where largest group of adopters are regarded as low-income 

individuals for their unemployment/part-time employment despite their high socio-

economic status. Feng et al. (2020) also found a great influence of gender on adoption of e-

scooter and e-bikes where 34.86% identified as female and 65.14% as male in their e-

scooter study on six states (CA, TX, GA, FL, NC, OH) based on twitter data. In Toronto, 

older and retired individuals are less likely where young, highly educated individuals with 

no children irrespective of gender prefers to use shared e-scooters (Mitra and Hess, 2021). 

Cities having sustainable transportation system like Portland experience median age up to 

48 years as most frequent users of e-bikes (Dill and Rose, 2012). Pilot studies from Portland 

and Baltimore found frequent users of e-bikes and e-scooters lies more specifically within 

20-40 (PBOT, 2018; BCDOT, 2019).  

Trip Patterns of Users 

The pattern of use of e-bikes and e-scooters also depends on several factors. Purpose of trips 

time of day, day of week, land use, and urban form plays important role behind the patterns. 

In Nashville, Casual riders start their trip on mid-day or early evening for social, shopping, 

and recreational use. Some trips were made for social purpose like evening dinner, lunch, or 

running errands among which a notable were from Saturday and Sunday. A significant 

number of trips at evening had the destination close to bars and restaurants (Shah, 2020). 

Origin and destinations of trip study shows that, in most cases trips are for single purpose 

and start and end within same land uses (McKenzie, 2019). Arrival peak and departure peak 

also varies considering the land uses where educational areas get arrival peak at morning 

hours and residential areas close to education or city center get departure peak at that time 

(Caspi et. al. 2020). Impact of land uses on trip pattern also depend on day of the week. In 

Washington DC, weekday trips were more concentrated in city core where weekend trips 

were more dispersed (McKenzie, 2019). Jiao and Bai (2020) found higher proportion of 

trips were made between 10 am to 10 pm regardless the day of the week at Austin, TX. 

Their study founds significant origin and destination at downtown and UT campus. At the 

same time, a study in Indianapolis found more trips in downtown and one mixed use 

residential area where the peak hour also varies from early morning, office hour to late 

evening for institutional, residential and downtown areas respectively (Liu et al. 2020).  

Trip Purposes of Users 

In cities having more tourist and recreational places, the peak hours are on weekends 

(Younes et al. 2020). Proximity to the city center, good walk score, bike score, availability 

of bike infrastructure, sustainable elements of urban development and transit stops make 

neighborhoods a hotspot area for e-scooter arrival and departure (Caspi et al. 2020; 

Hosseinzadeh et. al. 2021). Also, in another study on Austin, TX there were positive 

correlation of trip distribution with population density, higher education center, proximity to 

city center, transit stations, compact land use and better accessibility. It founds negative 

correlation between trip distribution and proportion of young residents within a 

neighborhood. The percentage of residential areas was not significant in the model (Jiao and 

Bai, 2020). In D.C. a study reveals that, most of e-scooter rides were made in middle of 

days of the weekdays, weekends and surge in festivals. It infers that e-scooter share 
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primarily fulfills the demand for non-commute related travel though evening peak-hour e-

scooter trips are also prominent during weekdays (Zou et al. 2020; McKenzie, 2019). 

Overall, suburban areas with medium population density and proximity to commercial 

developments are regarded as potential locations for the e-bikes and e-scooters to thrive 

(Zarif et al. 2019; Hosseinzadeh et al. 2021). In bike friendly cities, significant number of 

users use e-bikes for commuting and shopping with conventional purpose of leisure (Dill 

and Rose, 2012).  

Changing Mode Shares 

Though e-scooters and e-bikes can only fulfill some short and individual trip purposes due 

to their vehicle design, design speed and availability, they are already predicted to replace 

significant trips across US cities (Lee et al. 2019). A study in Rosslyn, VA found e-scooter 

riders have shifted respectively from Uber, Lyft, or a taxi (39%), walking (33%), personal 

or bikeshare bicycle (12%), bus (7%), or a personal car (7%) (James et. al. 2019). About 

34% local participants in a study conducted Portland, OR told that they have substituted 

their cars, ride hailing services or taxis by e-scooters for their trips achievable through e-

scooters (Zarif et al. 2019). In Toronto, Canada, 21% participants in a study were also 

pondering e-scooters to replace some of their daily trips while, the majority would like to 

substitute walking (60%) and using transit (55%) with e-scooters (Mitra and Hess, 2021). 

On the other hand, due to pandemic, transit user’s mega city like NYC dwellers is more 

likely to replace public transit for e-scooters and e-bikes though before pandemic the great 

toll of using e-bike was on cars in mega cities like Sacramento (Bao and Lim, 2021; 

Popovich et. al. 2014). Carpools and taxi trips are also more likely to be substituted by e-

bikes and e-scooters as long as the trip distance are within 5-6 miles in mega cities like 

NYC, Chicago, Portland and Austin (Lee et al. 2019). In Canada, e-bike companies are also 

instructed by experts to target non-conventional bike users as they are more likely substitute 

their current motorized modes for e-bikes (Gorenflo et al. 2017). Besides reducing personal 

vehicles uses, e-bikes and e-scooters are regarded as a potential to increase public transit 

use also (Smith and Schwieterman, 2018). Even in some big cities familiarity and use of e-

bikes sometimes increase the frequency of using conventional bicycle by the user instead of 

replacing them (Fitch et al. 2021). College students are more eager to adopt e-bikes 

replacing other mode of transport they use, a college campus study found graduate students’ 

reluctance to adopt the micro-mobility mode due to high cost comparing cars (Handy and 

Fitch, 2020). In another on campus study found shifting to e-bikes decreases the modal 

distribution of cars only and even from ride sharing cars (Langford et al. 2013; Rao, 2018).  

3.3 Auburn, AL 

3.3.1 Survey Design and Distribution 
 This study utilizes data collected from a survey of e-scooters and e-bikes collected 

in a suburban community.  Auburn, AL, is a suburban college town with over 65,000 

residents in a sprawling land development of roughly 60 square miles.  The majority of 

residents work for or are associated with Auburn University, which has an enrollment of 

about 30,000 undergraduate and graduate students.  The majority of these students live off 

campus. Initially, a survey of all adult residents of the Auburn, AL community (aged 19 and 
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older) was attempted.  However, preliminary recruitment and responses showed a nearly 

universal disinterest in e-scooters and e-bikes, with reasons mainly focusing on safety, 

facilities, and trip lengths.  After working with the Auburn University Transportation and 

Parking Services Program on campus, we conducted a second round of surveys with 

faculty, staff, and students.  Again, we found that faculty and staff were also disinterested in 

using these modes for two main reasons: (1) most faculty and staff live too far from campus 

to commute via these modes and (2) they do not have a need to get around campus during 

the day.  Finally, we conducted a survey focused exclusively on students who had the most 

potential for adopting e-scooters and e-bikes; they lived closer to campus, they lived closer 

to activity centers (e.g., shopping, restaurants, downtown) and they needed to travel across 

campus during the day.  This process revealed a great deal about e-scooters and e-bikes 

adoption and emphasizes how the success of these programs is based significantly on land 

use distribution.  This is consistent with expectations of the City of Auburn, and it is 

possible that if students adopt these modes for travel on/off campus, that it may expand to 

others as well.  Therefore, this population group is critical to understand their behaviors for. 

The final survey script was developed after working with two programs on the Auburn 

University campus: the Transportation and Parking Services and Campus Sustainability 

Offices.  The final questions are focused on providing information on specific goals that the 

campus had for e-scooters and e-bikes, as they are working on implementing an e-scooters 

and e-bikes share program in Spring 2023.  Some of the reasons Auburn University is 

considering these modes is to support access to/from the local transit system (Tiger Transit) 

and to reduce parking demand on campus). 

The survey included four main sections: (1) perceptions and experience with e-scooters and 

e-bikes, (2) likelihood of adopting e-scooters and e-bikes for different trip purposes, (3) 

amount willing to pay, and (4) demographic information.  The survey first provided a 

picture of the two modes along with a description of what they were if unfamiliar.  The first 

section asked if respondents had used e-scooters and e-bikes before, their current interest in 

each mode, and how they felt about five aspects of e-scooters and e-bikes.  Specifically, we 

asked them how much they agreed with the following statements, using a 5-point agreement 

Likert scale: 

• I would feel safe riding e-scooters and e-bikes around campus 

• I would feel safe e-scooters and e-bikes around the city of Auburn 

• I would feel safe walking around others using e-scooters and e-bikes 

• The arrival of e-scooters and e-bikes is a good thing for campus 

• e-scooters and e-bikes would make Tiger Transit easier for me 

The second section asked how likely respondents would be to use an e-scooter or e-bike to 

get around campus, travel from home to/from campus, attend off-campus social activities 

(visit friends, get food/drinks), and get groceries or do errands.  Each response was 

collected using a 5-point likelihood Likert scale.  The third section asked respondents what 

the maximum amount they would pay to rent an e-scooter and e-bike per ride.  Finally, the 
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fourth section asked about gender, role on campus, their main commute mode, where they 

currently live, and where they are resident when they are away from school. 

Responses were collected from on-campus students during the Spring 2022 semester.  

Collection was done both passively (setting up at a booth in the student center) and actively 

(recruiting from students across campus at well populated areas (the student center, coffee 

shops, etc.).  The final sample included 116 complete responses.  Based on the collection 

across campus, no single major was overrepresented nor was any role on campus 

overrepresented.  In fact, the distributions of respondents well represent the campus body, 

as seen in Table 1.  Additionally, Table 1 highlights a range of responses to the preferences 

and likelihood questions, which will be explored in the further analyses.  Interestingly, 

students are most interested in using e-scooters and e-bikes for travel off campus 

(commuting, social activities and errands/shopping), which bodes well for implementation 

across the community. 
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TABLE 1. SUMMARY OF SAMPLE 

CHARACTERISTICS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Respondent Characteristics 

Gender  
 

     Male 45% 

     Female 54% 

     Other 1% 

Role on Campus  
 

     Freshman 42% 

     Sophomore 16% 

     Junior 19% 

     Senior 14% 

     Graduate Student 9% 

Mode Typically Used to Get To/From Campus  

     Walking 51% 

     Bicycling 3% 

     Transit 19% 

     Driving 25% 

Distance Live from Campus  

     On Campus 34% 

     Short Distance 49% 

     Far Distance 17% 

Has Used eScooters or eBikes before 

     Yes 26% 

     No 74% 

Respondent Preferences/ Beliefs 

Which best describes whether you… 

"Feel safe riding eScooters or eBikes  

  around campus"  

     Strongly Agree 33.6% 

     Somewhat Agree 31.9% 

     Neutral 13.8% 

     Somewhat Disagree 13.8% 

     Strongly Disagree 6.9% 

"Feel safe riding eScooters or eBikes  

  around the community"  

     Strongly Agree 24.1% 

     Somewhat Agree 30.2% 

     Neutral 17.2% 

     Somewhat Disagree 21.6% 

     Strongly Disagree 6.9% 

"Feel safe walking around others using  

  eScooters or eBikes"  

     Strongly Agree 23.3% 

     Somewhat Agree 24.1% 

     Neutral 20.7% 

     Somewhat Disagree 20.7% 

     Strongly Disagree 11.2% 

"The arrival of eScooters and eBikes is a  

  good thing for campus"  

     Strongly Agree 32.8% 

     Somewhat Agree 23.3% 

     Neutral 26.7% 

     Somewhat Disagree 13.8% 

     Strongly Disagree 3.4% 

"eScooters and eBikes would make  

  using transit easier for me" 

     Strongly Agree 19.0% 

     Somewhat Agree 24.1% 

     Neutral 41.4% 

     Somewhat Disagree 6.9% 

     Strongly Disagree 8.6% 

Respondent Preferences/ Beliefs 

Likelihood of using eScooter or eBike 

to… 

…get around on campus 

     Very Likely 22.4% 

     Somewhat Likely 22.4% 

     Neutral 12.1% 

     Somewhat Unlikely 25.0% 

     Very Unlikely 18.1% 

…travel from home to/from campus 

     Very Likely 41.4% 

     Somewhat Likely 21.6% 

     Neutral 12.9% 

     Somewhat Unlikely 12.9% 

     Very Unlikely 11.2% 

…attend off-campus social activities  

     Very Likely 36.2% 

     Somewhat Likely 18.1% 

     Neutral 16.4% 

     Somewhat Unlikely 22.4% 

     Very Unlikely 6.9% 

…get groceries or do errands 

     Very Likely 58.6% 

     Somewhat Likely 21.6% 

     Neutral 12.9% 

     Somewhat Unlikely 3.4% 

     Very Unlikely 3.4% 

Respondent Preferences/ Beliefs 

Interest in Specific Modes  

     Prefer eScooters 35.3% 

     Prefer eBikes 6.9% 

     Support for Both 27.6% 

     Not Interested in Either 29.3% 
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3.3.2 Consideration of e-bike and e-scooter use  
This section supports the first objective: to determine how current mode use, preferences 

for micromobility, and travel distances impact perceptions of e-scooters and e-bikes. We 

consider three response sets: perceptions of how e-scooters and e-bikes impact the 

community, likelihood to adopt these modes for different purposes, and amount willing to 

pay for these modes.  

Figures 5 and 6 share how respondents perceived e-scooters and e-bikes impacts, based 

on commute mode and preference for micromobility mode, respectively.  Figure 5 

demonstrates that, overall, most respondents would feel safe riding on campus, and 

slightly less safe riding off campus.  Respondents were about evenly split between feeling 

safe walking around others riding e-scooters and e-bikes.  Pedestrian commuters 

especially dislike interacting with e-scooters and e-bikes. One exception is those who 

currently ride a bike to commute; they feel safe on and off campus, as well as around 

others.   Interestingly, those who bike or use transit are more likely to think e-scooters 

and e-bikes are a good thing for campus than those who drive or walk for commuting.  

These trends are also true for making using transit easier; surprisingly, only 60% of the 

transit commuters felt e-scooters and e-bikes would make their trips easier. Figure 2 

demonstrates much more dramatically different responses to these questions, based on 

which micromobility mode respondents prefer.  Figure 2 demonstrates that, overall, those 

who state they are not interested in either e-scooters or e-bikes are notably less supportive 

of the modes overall, even for others to use.  Similarly, those that support both 

micromobility mode have the highest levels of support.  Respondents who most prefer e-

scooters have higher levels of perceived safety than those who prefer e-bikes (on and off 

campus).  However, those who prefer e-bikes do not think that e-scooters and e-bikes are 

necessarily a good thing for campus or make transit use easier.  This indicates the users 

of the different micromobility modes may utilize them in different ways or have biases 

for/against them. 

Figure 7 to 9 present how likely respondents are to adopt micromobility modes for 

different trip purposes, based on commute mode, preference for micromobility mode, and 

distance they live from campus, respectively.  Figure 7 demonstrates that, overall, 

respondents reported they are not as interested in using micromobility across campus.  

However, they are more interested in micromobility for commuting, social activities and 

(especially) errands/shopping. Driving commuters report the highest level of interest in 

switching their cars for micromobility commute trips (a goal for the campus), which has 

meaningful impacts for community planning.  Also interesting is that bicycle commuters 

are least likely to adopt micromobility for any trip purpose.  Figure 8 presents adoption 

based on preferred mode.  Three things stand out from these responses: (1) we see the 

highest levels of adoption for respondents who see these modes as interchangeable and 

don’t have a high currently level of interest, (2) e-scooter users are most likely to adopt 

for groceries/errands and (3) e-bike users are most likely to adopt for commuting. Finally, 
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Figure 9 considers how choices vary by the distance a respondent perceives they live 

from campus.  The results do not vary significantly across any group.  On one hand, this 

is surprising because this is such an important factor in previous research on 

micromobility adoption.  On the other hand, most students (even those who live far) are 

still close to the distance limits micromobility supports.   
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(a) "I feel safe riding e-scooters or e-bikes around campus" 

 

(b) "I feel safe riding e-scooters or e-bikes around the community"  

 

(c) "I feel safe walking around others using e-scooters or e-bikes"  

 

(d) "The arrival of e-scooters and e-bikes is a good thing for campus"  

 

(e) "e-scooters and e-bikes would make using transit easier for me" 

FIGURE 5. PERCEPTIONS OF E-SCOOTER AND E-BIKE IMPACTS BY DAILY MODE TO CAMPUS 
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(a) "I feel safe riding e-scooters or e-bikes around campus" 

 

(b) "I feel safe riding e-scooters or e-bikes around the community"  

 

(c) "I feel safe walking around others using e-scooters or e-bikes"  

 

(d) "The arrival of e-scooters and e-bikes is a good thing for campus"  

 

(e) "e-scooters and e-bikes would make using transit easier for me" 

FIGURE 6. PERCEPTIONS OF E-SCOOTER AND E-BIKE IMPACTS BY PREFERENCES FOR MODES 
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(a) Adopt e-scooters or e-bikes to Get Around on Campus 

 

(b) Adopt e-scooters or e-bikes to Travel from Home To/From Campus 

 

(c) Adopt e-scooters or e-bikes to Attend Off-Campus Social Activities 

 

(d) Adopt e-scooters or e-bikes to Get Groceries or Do Errands 

FIGURE 7. LIKELIHOOD TO ADOPT FOR DIFFERENT TRIP PURPOSES BY DAILY MODE TO 

CAMPUS
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(a) Adopt e-scooters or e-bikes to Get Around on Campus 

 

(b) Adopt e-scooters or e-bikes to Travel from Home To/From Campus 

 

(c) Adopt e-scooters or e-bikes to Attend Off-Campus Social Activities 

 

(d) Adopt e-scooters or e-bikes to Get Groceries or Do Errands 

FIGURE 8. LIKELIHOOD TO ADOPT FOR DIFFERENT TRIP PURPOSES BY PREFERENCE FOR 

MODES
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(a) Adopt e-scooters or e-bikes to Get Around on Campus 

 

(b) Adopt e-scooters or e-bikes to Travel from Home To/From Campus 

 

(c) Adopt e-scooters or e-bikes to Attend Off-Campus Social Activities 

 

(d) Adopt e-scooters or e-bikes to Get Groceries or Do Errands 

FIGURE 9. LIKELIHOOD TO ADOPT FOR DIFFERENT TRIP PURPOSES BY DISTANCE LIVE FROM 

CAMPUS

0% 20% 40% 60% 80% 100%

Live On Campus (n=39)

Live Near Campus (n=57)

Live Far from Campus (n=20)

Very Likely Somewhat Likely Neutral Somewhat Unlikely Very Unlikely

0% 20% 40% 60% 80% 100%

Live On Campus (n=39)

Live Near Campus (n=57)

Live Far from Campus (n=20)

0% 20% 40% 60% 80% 100%

Live On Campus (n=39)

Live Near Campus (n=57)

Live Far from Campus (n=20)

0% 20% 40% 60% 80% 100%

Live On Campus (n=39)

Live Near Campus (n=57)

Live Far from Campus (n=20)



  
 Mobility-on-Demand Transit  

for Smart and Sustainable Cities 
 

  
39 

Figures 10 and 11 present information on willingness to pay for micromobility.  We have 

previously established that the majority of use would be off-campus for utilitarian travel.  

As such it is not surprising that people are willing to pay slightly higher prices per trip for 

efficient micromobility modes. 50% of respondents are willing to pay between $3 and $4 

per ride or less.  80% of respondents are willing to pay about $9 per ride or less.  The 

mean price per trip for each mode and for each trip purpose is also rather consistent, 

around $5.  e-bike users are willing to pay slightly more per trip (about $7).   

It should be noted that Auburn University previously had a bikeshare system that was 

free for the first 5 minutes and then charged per minute afterwards, so many respondents 

may not be able to interpret costs based on previous experience.  Additionally, many 

respondents did tell us they wished for a per minute price, rather than a lump sum, for 

this question. 

 

FIGURE 10. CUMULATIVE DISTRIBUTION FUNCTION OF RESPONDENTS’ AMOUNT WILLING TO 

PAY PER RIDE 
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FIGURE 11. RANGES OF AMOUNT WILLING TO PAY PER RIDE BY RESPONDENT PREFERENCES 

AND INTENDED USE 

3.3.3 Modeling likelihood of e-bike and e-scooter adoption 
This section supports the second objective: to determine what factors statistically 

influence adoption of e-scooters and e-bikes for different trip purposes.  This objective 

was achieved by estimating four ordinal logistic regression models, each using one of the 

likelihoods of adoption questions as a dependent variable: to get around campus, to 

commute, for social activities, for errands/shopping.  These dependent variables are most 

suited for the logistic regression, as they represent an increasing order of responses from 

least interested in adopting to most interested in adopting.  Each model includes a range 

of independent variables based on respondent characteristics and respondent 

preferences/beliefs (as outlined in previous sections).  The benefit of these models is that 

they can identify which factors have the most relative importance towards micromobility 

adoption among the critical user population in a suburban community.  Each model is 

statistically better than a naïve, constants only regression, and the most significant 

variables (at a 90% confidence level) are highlighted in Table 2.   

Respondent demographics are not relatively significant influencers of adopting 

micromobility modes, across all four trip purposes.  For example, women are less likely 

to adopt micromobility modes for errands/shopping compared to other genders and 

graduate students are more likely to use micromobility modes for commuting.  Those that 
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commute by anything other than personal vehicle are more likely to adopt micromobility 

than those that commute by car.  Perceived commute distance was not a significant factor 

in adoption rates. 

Respondents’ perceptions of modes, safety, and impacts were more significant predictors 

of micromobility adoption.  Respondents with a preference for e-scooters are most likely 

to adopt the mode to get around campus (as well as for commuting and social activities, 

but not shopping).  Respondents with a preference for e-bikes are most likely to adopt the 

mode to commute (as well as for getting around campus and shopping, but not social 

activities).  Respondents who generally like both micromobility modes are most likely to 

adopt the mode to social activities and shopping (as well as for commuting and getting 

around campus).  If individuals feel unsafe riding on campus, they will definitely not 

adopt that mode.  If individuals feel especially safe riding around the community, they 

are more likely to commute or go to social activities via micromobility modes.  

Interestingly, those that said they feel safe around other e-scooter and e-bike users on 

campus are less likely to adopt those modes themselves.  Finally, perceptions of transit 

improvements do not impact adoption.   

TABLE 2. ESTIMATION RESULTS OF LIKELIHOOD OF ADOPTION FOR FOUR TRIP 

PURPOSES 

Parameters 

 

Likelihood to Adopt an e-scooter or e-bike to… 

…get around  

on campus 

…travel from home 

to/from campus 

…attend off-campus 

social activities 

…get groceries  

or do errands 

Coeff. Sig. Coeff. Sig. Coeff. Sig. Coeff. Sig. 

Ordinal Regression 

Thresholds 
        

     Threshold 1 -3.498 0.11 1.296 0.54 -2.148 0.30 -2.347 0.29 

     Threshold 2 -1.301 0.55 2.786 0.20 -0.992 0.63 -0.562 0.80 

     Threshold 3 -0.351 0.87 3.710 0.09 0.024 0.99 1.065 0.63 

     Threshold 4 1.774 0.41 5.107 0.02 2.235 0.28 1.932 0.39 

Respondent 

Characteristics 
        

Gender (base: Other)         

     Male -1.190 0.54 -0.851 0.65 -0.954 0.60 -2.789 0.17 

     Female -1.307 0.50 -0.892 0.64 -1.207 0.51 -3.426 0.08 

Role on Campus (base: Freshman) 

     Sophomore 0.214 0.75 0.023 0.97 -0.291 0.65 0.312 0.69 

     Junior 0.671 0.32 0.886 0.21 -0.468 0.49 -1.068 0.22 

     Senior -0.860 0.28 0.203 0.82 -0.745 0.35 -1.227 0.26 

     Graduate Student 0.235 0.79 1.771 0.06 -0.060 0.95 -1.936 0.17 

Mode Typically Used to Get To/From Campus (base: Driving) 

     Walking -1.045 0.15 2.456 <0.01 -0.764 0.26 0.270 0.77 
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     Bicycling 0.001 1.00 2.820 0.10 1.059 0.50 1.911 0.26 

     Transit -0.666 0.32 1.298 0.09 0.697 0.32 0.127 0.89 

Distance Live from Campus (base: On Campus) 

     Short Distance 0.059 0.93 0.582 0.38 -0.633 0.31 -0.084 0.91 

     Far Distance 0.608 0.50 -0.060 0.95 -0.609 0.47 0.870 0.46 

Used e-scooter or e-

bike Before 
0.451 0.40 0.514 0.38 -0.035 0.95 -0.589 0.40 

 

Respondent 

Preferences/ Beliefs 
        

Interest in Specific Modes (base: Not Interested in Either) 

     Prefer e-scooters 2.536 0.00 1.927 0.01 1.576 0.01 1.031 0.18 

     Prefer e-bikes 1.565 0.08 2.564 0.01 -0.076 0.94 2.121 0.07 

     Support for Both 1.203 0.08 1.580 0.03 2.253 <0.01 2.639 <0.01 

Response to "I feel safe riding e-scooters or e-bikes around campus" (base: Neutral) 

     Strongly Agree 0.318 0.74 -0.438 0.65 -1.040 0.25 0.107 0.92 

     Somewhat Agree -0.500 0.48 -1.046 0.19 -1.645 0.03 -1.654 0.06 

     Somewhat 

Disagree 
-1.193 0.15 -1.531 0.13 -1.815 0.04 -1.629 0.19 

     Strongly 

Disagree 
-3.838 0.04 0.985 0.58 0.386 0.81 -20.737 1.00 

Response to "I feel safe riding e-scooters or e-bikes around the community" (base: Neutral) 

     Strongly Agree -0.061 0.95 0.669 0.49 1.739 0.06 0.380 0.72 

     Somewhat Agree -0.166 0.81 1.132 0.10 0.570 0.41 0.446 0.61 

     Somewhat 

Disagree 
-0.225 0.74 1.002 0.19 0.440 0.51 -0.371 0.69 

     Strongly 

Disagree 
1.836 0.20 -20.364 1.00 -2.113 0.22 -17.585 1.00 

Response to "I feel safe walking around others using e-scooters or e-bikes" (base: Neutral) 

     Strongly Agree -1.593 0.04 -0.489 0.55 -0.109 0.89 -0.914 0.34 

     Somewhat Agree -1.249 0.06 -0.528 0.46 0.428 0.51 0.788 0.28 

     Somewhat 

Disagree 
-0.428 0.52 -1.750 0.02 0.568 0.39 0.000 1.00 

     Strongly 

Disagree 
-1.710 0.17 -1.441 0.29 0.425 0.74 2.580 0.21 

Response to "The arrival of e-scooters and e-bikes is a good thing for campus" (base: Neutral) 

     Strongly Agree -18.969 1.00 -17.314 1.00 -20.375 1.00 -19.330 1.00 

     Somewhat Agree -1.117 0.16 -1.028 0.25 0.103 0.90 -1.379 0.39 

     Somewhat 

Disagree 
1.167 0.07 -0.337 0.61 0.213 0.74 0.370 0.63 

     Strongly 

Disagree 
1.494 0.06 0.259 0.75 -0.630 0.43 -0.493 0.60 

Response to "e-scooters and e-bikes would make using transit easier for me" (base: Neutral) 

     Strongly Agree 1.904 <0.01 0.782 0.26 1.251 0.06 1.134 0.11 

     Somewhat Agree -0.625 0.28 -0.332 0.56 -0.186 0.73 0.304 0.64 

     Somewhat 

Disagree 
-1.737 0.05 0.263 0.80 -0.532 0.57 -1.091 0.32 
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     Strongly 

Disagree 
-1.432 0.14 -0.242 0.81 -2.164 0.06 -21.014 1.00 

 Log 

Likelihood -125.91 -128.35 -138.47 -94.87 

Ratio Chi-Square 

Test 

115.11 84.39 68.09 74.67 

 

3.3.4 Discussion 
We seek to understand how such e-scooters and e-bikes modes could be incorporated into 

a suburban community, including who would adopt e-scooters and e-bikes and how they 

would be used. Specifically, the objectives of this work are to determine (a) how current 

mode use, preferences for micromobility, and travel distances impact perceptions of e-

scooters and e-bikes and (b) what factors statistically influence adoption of e-scooters and 

e-bikes for different trip purposes.  This work was done in connection with partners at 

Auburn University Transportation and Parking Services as well as the City of Auburn.  

Surveys were collected to understand preferences, perceptions, and willingness to pay to 

use e-scooters and e-bikes on and around the Auburn University campus.  The adoption 

rates for different trip purposes were estimated using ordered logistic regression models.   

There are a number of useful learnings from this research.  First, in a suburban 

community where the infrastructure to support micromobility currently doesn’t exist and 

distances to commute, shop, and recreate are quite far, there is minimal interest in these 

modes from the larger population.  However, there are opportunities to expand if the city 

can start with support for a core user group.  Second, distances were not critical factors in 

this analysis mainly due to that fact that trip distances are short for all trip types for the 

study group, which supports the previous reach.  Third, e-scooter and e-bike adoption 

should be focused on commuting and shopping trips.  Community members were most 

interested in these utilitarian trip purposes, rather than as just a means of travel.  Fourth, 

one of the major ways to support these trip types is to improve infrastructure between 

homes, campus, and shopping areas, as one of the biggest issues for adoption was 

perceived safety.  Fifth, adoption will benefit from improving perceptions of 

micromobility for the core adoption group as well as the wider community.  Sixth, 

micromobility will likely have little impact on transit use.   

There are many opportunities for future research into micromobility adoption in suburban 

and even smaller rural communities.  Topics can include adoption of personal 

micromobility modes instead of shared modes, a deeper review of the factors influencing 

adoption, focus groups on the perceptions of these modes, the infrastructure necessary to 

support these modes, and determining proper pricing schemes for these modes.   
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3.4 Birmingham, AL 

3.4.1 Survey Design and Distribution 
The Birmingham case study aimed at examining transportation users' preferences and 

attitudes toward the use of e-scooters, transit, and other travel options in the Birmingham 

region. This was accomplished through the design and dissemination of an online 

questionnaire survey and documentation of responses. The survey collected information 

from travelers in the Birmingham, AL region, including demographics, socio-economic 

data, travel mode choice factors, and information on the usage of shared e-scooters and 

public transit.  We used the UAB Qualtrics platform to develop, pre-test, and distribute 

the survey to potential participants and contracted with Qualtrics to recruit potential 

participants for the Birmingham study. Qualtrics handled also compensation of 

participants according to their standard business practices.  

The UAB Institutional Review Board (IRB) approved the study as exempt and the data 

collection took place in March 2022. Eligibility criteria for participation in the survey 

included residency in the greater Birmingham are and age requirements (18 years of age 

or older). Survey participants received the survey electronically, provided their consent 

for participation, and answered survey questions regarding their travel preferences and 

choices voluntarily. 355 respondents returned in completed surveys. As part of data 

processing, we performed a rigorous data validation process to eliminate incomplete 

responses, illogical answers, or other errors. Responses that did not pass validation tests 

were deleted from the database and 277 records remained for further analysis.  

The following paragraphs summarize survey responses focusing on demographic 

characteristics as well as travel behaviors and attitudes of Birmingham survey 

respondents (N=277). In addition, responses from public transit users (N=21), and shared 

e-scooter users (N=21) were examined to get some insights on understand modal choice 

determinants in the Birmingham region. 

3.4.2 Results 
Demographic characteristics summary 

The summary of demographic characteristics of all survey participants in the 

Birmingham region is displayed in Table 3. For all respondents, females in this study 

were sampled as about twice as males. The sampled participants were highly skewed to 

the white population (60%) and people with some college degree and above (70%). Most 

respondents owned personal vehicles (91%) and were employed (66%). 

             The majority of public transit users that responded to the Birmingham survey 

tend to be younger populations with some college degree or less and from households 

with fewer household vehicles and lower household income. Birmingham shared e-

scooter users shared some similar demographic traits with public transit users: younger 

population with some college degree or less, and from households with fewer household 
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vehicles. However, shared e-scooter users from higher income households ($125,000 and 

above) made up 14.28% of respondents. 

 

Travel Behavior and Attitude 

We asked the participants about the travel modes that they used in the last 30 days, travel 

modes change after the pandemic, factors affecting the choices of travel modes, and 

general attitudes towards shared e-scooters.  

 

TABLE 3. DEMOGRAPHIC CHARACTERISTICS OF ALL RESPONDENTS, PUBLIC TRANSIT 

USERS, SHARED E-SCOOTER USERS- BIRMINGHAM, AL CASE STUDY 

 

 All respondents Public transit users Shared e-scooter users 

Gender       

Male 95 34.30% 4 19.05% 9 42.86% 

Female 182 65.70% 17 80.95% 12 57.14% 

Race       

White 165 59.57% 7 33.33% 13 61.90% 

Black 69 24.91% 8 38.10% 6 28.57% 

Others 43 15.52% 6 28.57% 2 9.52% 

Education       

Less than high school 8 2.89% 1 4.76% 0 0.00% 

High school 75 27.08% 8 38.10% 8 38.10% 

Some college 99 35.74% 8 38.10% 8 38.10% 

Bachelor's 53 19.13% 3 14.29% 3 14.29% 

Post-graduate 42 15.16% 1 4.76% 2 9.52% 

Age       

18-24 38 13.72% 12 57.14% 8 38.10% 

25-29 22 7.94% 2 9.52% 5 23.81% 

30-39 57 20.58% 4 19.05% 1 4.76% 

40-49 41 14.80% 0 0.00% 4 19.05% 

50-59 46 16.61% 2 9.52% 3 14.29% 

60-69 42 15.16% 1 4.76% 0 0.00% 

70 or over 31 11.19% 0 0.00% 0 0.00% 

Number of People 

households       

1 68 24.55% 2 9.52% 4 19.05% 

2 90 32.49% 5 23.81% 6 28.57% 

3 58 20.94% 6 28.57% 4 19.05% 

4 38 13.72% 3 14.29% 6 28.57% 

5 14 5.05% 4 19.05% 1 4.76% 

6 or more 9 3.25% 1 4.76% 0 0.00% 
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Household income       

Less than $25,000 69 24.91% 6 28.57% 3 14.29% 

$25,000-$49,999 72 25.99% 8 38.10% 7 33.33% 

$50,000-$74,999 57 20.58% 6 28.57% 4 19.05% 

$75,000-$99,999  40 14.44% 1 4.76% 4 19.05% 

$100,000-$124,000 11 3.97% 0 0.00% 0 0.00% 

$125,000-$149,999 17 6.14% 0 0.00% 2 9.52% 

$150,000 or more 11 3.97% 0 0.00% 1 4.76% 

Vehicles in household                           

0 26 9.39% 4 19.05% 0 0.00% 

1 117 42.24% 5 23.81% 8 38.10% 

2 95 34.30% 7 33.33% 9 42.86% 

3 28 10.11% 4 19.05% 2 9.52% 

4 6 2.17% 1 4.76% 2 9.52% 

5 3 1.08% 0 0.00% 0 0.00% 

6 or more 2 0.72% 0 0.00% 0 0.00% 

Employment       

employed 183 66.06% 17 80.95% 19 90.48% 

unemployed 37 13.36% 4 19.05% 2 9.52% 

Retired 57 20.58% 0 0.00% 0 0.00% 

Driver licenses       

yes 250 90.25% 19 90.48% 21 100.00% 

no 27 9.75% 2 9.52% 0 0.00% 

Student       

yes 38 13.72% 9 42.86% 6 28.57% 

no 239 86.28% 12 57.14% 15 71.43% 

 

When asked about the travel modes used in the last 30 days, Birmingham study 

participants reported personal vehicle (44.60%) and walking (22.00%) as their most 

common travel mode choices. Only 4.40% reported using public transit and 9.00% relied 

on Uber/Lyft. Bicyclists and e-scooter/e-bike users made up 7.80% and 5.60%, 

respectively. The percentage distribution of travel modes used by Birmingham survey 

respondents in the last 30 days is displayed in Table 4. 

TABLE 4. TRAVEL MODES USED IN THE LAST 30 DAYS- BIRMINGHAM, AL CASE STUDY 

Travel modes Frequency Percentage 

Zip Car 0.80% 

Bicycle 7.80% 

Carsharing 0.80% 

E-Scooter/Bike 5.60% 

Personal Vehicle 44.60% 

Public Transit 4.40% 
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Ride-Hail (Uber/Lyft) 9.00% 

Scooter or Moped 1.80% 

Taxi 3.20% 

Walking 22.00% 

Since the survey took place during the pandemic, survey participants were also asked 

how their travel modes would change after the pandemic is over. Half or more of the 

participants reported remaining “about the same” for all travel modes. However, about 

one-third of participants stated that they expect to use “much less than before” or 

“somewhat less than before” transportation modes shared with others, including public 

transit, taxi or ride-hail (Uber/Lyft), carsharing, e-scooter, and biking (including e-bike). 

The detail of travel modes changes after the pandemic is displayed in Table 5. 

TABLE 5. TRAVEL MODES CHANGE AFTER THE PANDEMIC- BIRMINGHAM, AL CASE STUDY 

 Personal 

Vehicle 

Public 

Transit 

Taxi Or 

Ride-Hail 

(Uber/Lyft) 

Car- 

sharing 

Biking 

(including 

E-Bike) 

Scooter/ 

Moped 

E-

Scooter 

Walkin

g 

Much less than before 11.11% 29.50% 30.27% 33.33% 25.10% 27.20% 28.35% 14.56% 

Somewhat less than 

before 
12.26% 7.66% 8.43% 7.66% 5.17% 5.75% 4.98% 4.21% 

About the same 60.92% 55.56% 51.72% 52.49% 57.09% 54.79% 54.79% 48.66% 

Somewhat more than 

before 
6.13% 4.21% 6.90% 3.45% 9.20% 9.20% 8.05% 21.07% 

Much more than 

before 
9.58% 3.07% 2.68% 3.07% 3.45% 3.07% 3.83% 11.49% 

 

The Birmingham survey participants also rated the importance of factors affecting their 

travel mode choices. In general, compared to environmental impact, cost, time, 

reliability, comfort, and safety are more important to most travelers. The ratings of 

factors affecting travel mode choices are detailed in Table 6. 

TABLE 6. THE RATING OF FACTORS AFFECTING TRAVEL MODE CHOICES- BIRMINGHAM, 

AL CASE STUDY 

 Cost Time 

Reliabilit

y 

Comfor

t Safety 

Environmental 

impact 

Not at all important 7.28% 3.45% 1.53% 1.53% 2.30% 12.26% 

Slightly important 10.34% 8.43% 5.36% 6.51% 3.45% 14.56% 
Moderately 

important 19.92% 
18.01

% 10.34% 26.82% 
11.88

% 30.65% 

Very important 34.10% 
43.68

% 34.48% 38.31% 
28.35

% 26.44% 

Extremely important 28.35% 
26.44

% 48.28% 26.82% 
54.02

% 16.09% 
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Birmingham survey participants also expressed their attitudes toward the operation of 

shared e-scooter/e-bikes. From the general opinions expressed about e-scooter/e-bikes, 

about 50% of them thought “Riding e-scooter/e-bike is safe” and “the availability of 

shared e-scooter/e-bikes is a good thing”. However, 50% of them disagreed that “there 

are enough bike lanes to accommodate e-scooters/e-bikes use” or “there are enough 

parking spaces for proper e-scooters/e-bikes storage”. Although around 50% of 

participants thought that “shared e-scooter/e-bike can strengthen the operations of public 

transit”, about 40% of them suggested that “shared e-scooters/e-bikes will make people 

use transit less”. The attitudes toward the operation of shared e-scooter/e-bike are 

displayed in Figure 12. 

 

FIGURE 12. ATTITUDES TOWARD THE OPERATION OF SHARED E-SCOOTERS- 

BIRMINGHAM, AL CASE STUDY 

In this section, we investigate perceptions, attitudes, and preferences of Birmingham 

survey participants who traveled by public transit. We asked a series of questions, 

including the frequency of usage, satisfaction with the local transit service, factors that 

encourage more use of transit, access to/from transit stops, whether transit stops are too 

far to walk to, whether they use e-scooter to reach transit stop, and the reason(s) for not 

considering to use e-scooter to connect with transit stop.  

Based on the results from the Birmingham survey, only 21 out of 277 survey participants 

used public transit in the past 30 days which is consistent with results from earlier local 

studies. The frequency of public transit usage is displayed in Figure 13. Most of the users 

traveled by public transit less than once per week (42.86%) or 1-2 times per week 

(28.57%). 

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00%

Riding e-scooters/e-bikes is safe

There are enough bike lanes to accommodate
e-scooters/e-bikes use

There are enough parking spaces for proper e-
scooters/e-bikes

The availability of shared e-scooters/e-bikes is
a good thing

Shared e-scooters/e-bikes can strengthen the
operations of public transit

Shared e-scooters/e-bikes will make people
use transit less

Strongly agree Sort of agree Neutral Sort of disagree Strongly disagree



  
 Mobility-on-Demand Transit  

for Smart and Sustainable Cities 
 

  
49 

 

 

FIGURE 13. FREQUENCY OF PUBLIC TRANSIT USAGE- BIRMINGHAM, AL CASE STUDY 

Public transit users were also asked to rate their satisfaction with local transit services on 

a 5-point scale (5 is the highest rating) in terms of cleanliness, convenience, access to key 

destinations, ease of getting to bus stops, on-time performance, frequency of service, 

hours of operation, ease of transfer, and safety. As shown in Figure 14, the majority of 

public transit users gave a 3 point or above rating for their satisfaction with the 

Birmingham local transit service. 

 

FIGURE 14. THE SATISFACTION RATING OF LOCAL TRANSIT SERVICE- BIRMINGHAM, AL CASE 

STUDY 
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Furthermore, public transit users in Birmingham reported that improved transit service, 

increased convenience, and less travel cost (money and time) would encourage them to 

use public transit more often (Figure 15).  

 

FIGURE 15. THE CHANGES THAT WOULD ENCOURAGE MORE PUBLIC TRANSIT USE- 

BIRMINGHAM, AL CASE STUDY 

We also asked Birmingham survey participants that used public transit how they reached 

the public transit stop. Most transit users walked (50%) or biked (23.33%) from/to transit 

stops (Figure 16). 20 out of 21 public transit users agreed that transit stops being too far 

to walk to is a contributing factor to their mode choice decision when not choosing public 

transit.  

 

FIGURE 16. ACCESS TO PUBLIC TRANSIT- BIRMINGHAM, AL CASE STUDY 
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When asked whether they considered using a shared e-scooter to travel from/to transit 

stops, a majority of Birmingham transit users surveyed reported that they never or rarely 

considered using a shared -scooter (47.62% and 33.33% respectively). Key reasons for 

not considering shared e-scooter to connect with public transit, included concerns with 

convenience, cost, and safety (Figure 17). 

 

FIGURE 17. REASONS FOR NOT USING SHARED E-SCOOTER TO GET TO TRANSIT STOP- 

BIRMINGHAM, AL CASE STUDY 

 

Shared e-scooter users’ responses 

In this section, we examine preferences and attitudes of Birmingham survey participants 

that used shared e-scooters. The participants were asked a series of questions about their 

use of shared e-scooters, including the usage frequency, trip purposes, ownership of e-

scooters, payment methods, alternative travel modes if shared e-scooter was not 

available, changes that would increase shared e-scooter usage, and incentives for taking a 

“shared e-scooter + transit” trip. 

According to the Birmingham survey results, 21 out of 277 respondents reported 

traveling by shared e-scooters in the last 30 days. Over 50% of them used shared e-

scooters more than once per week. The usage frequency is displayed in Figure 18.  
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Shared e-scooters are expensive to use
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live/work
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FIGURE 18. THE FREQUENCY OF SHARED E-SCOOTER USAGE - BIRMINGHAM, AL CASE STUDY 

With respect to trip purpose, 31.43% of shared e-scooters trips were for fun/creation and 

20.00% of them were to go to/from work.  The shares of trips for going to/from school, 

connecting with public transit, and attending social activities were 11.43% each (Table 

7). Only 1 out of 21 shared e-scooter users owned a personal e-scooter. Paying on a per-

trip basis was the most popular payment method (40.91%). Daily passes and hourly 

passes made up 22.73% and 18.18% respectively (Table 8). 

TABLE 7. THE TRIP PURPOSE OF SHARED E-SCOOTERS - BIRMINGHAM, AL CASE STUDY 

Trip Purpose Percentage 

Connect with public transit 11.43% 

For fun/creation 31.43% 

Go to or from school 11.43% 

Go to or from work 20.00% 

Shopping or errands 8.57% 

To attend social activities 11.43% 

Others 5.71% 

 

TABLE 8. THE PAYMENT METHODS OF SHARED E-SCOOTERS - BIRMINGHAM, AL CASE STUDY 

Payment Methods Percentage 

On a per-trip basis 40.91% 

Hourly pass 18.18% 

Two-hour pass 9.09% 

Daily pass 22.73% 

Monthly pass 4.55% 

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00%

Only once

Less than once per week

1-2 times per week

3-4 times per week

5 or more time per week
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Low-income pass 4.55% 

 

When Birmingham e-scooter users were asked about the alternative travel modes that 

they would use, should shared e-scooters were not available, most respondents chose cars 

(including Taxi or Uber/Lyft) (38.10%) and walking (33.33%) as the replacement. 

TABLE 9. THE ALTERNATIVE TRAVEL MODES TO SHARED E-SCOOTER - BIRMINGHAM, AL CASE 

STUDY 

Alternative Travel Mode Percentage 

Bike 0.00% 

Car (including Taxi or Uber/Lyft) 38.10% 

Public Transit 14.29% 

Walk 33.33% 

No trip at all 0.00% 

Other 14.29% 

          

Birmingham survey participants who used e-scooters were also asked about changes that 

could increase the usage of shared e-scooter. Lower cost, expanded service areas, great 

availability of shared e-scooters, and more bike lanes for safer usage were selected as 

leading incentives (Figure 19).  

 

FIGURE 19. THE CHANGES THAT WOULD INCREASE THE USAGE OF SHARED E-SCOOTER - 

BIRMINGHAM, AL CASE STUDY 

When asked about changes that would increase the use of shared e-scooters/e-bikes to 

connect with public transit, about half of the Birmingham survey respondents mentioned 
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Easier to find a shared e-scooter/e-bike
when I need to use one
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scooters/e-bikes

Lower cost
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use safer

More parking space for e-scooters/e-bikes

 None of these changes would encourage
me to use more often
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that “bundled” or “integrated” payment methods would help. Furthermore, “single ride 

(one transit trip + one scooter trip) “and “25% discount on the per-minute rate for the e-

scooter trip” were listed as the most popular bundled and discounted payment methods. 

Other proposed changes that may support the integration of shared e-scooter and public 

transit include expansion of shared e-scooters service and better infrastructure around 

transit stops (Table 10). 

TABLE 10. INCENTIVES FOR INCREASING THE USE OF SHARED E-SCOOTERS TO CONNECT WITH 

PUBLIC TRANSIT - BIRMINGHAM, AL CASE STUDY 

Incentive  Percentage 

Getting a discount on the e-scooter/e-bike fare 12.28% 

Paying e-scooter/e-bike and transit trips with the same card or same app 19.30% 

Bundled "e-scooter/e-bike + transit" fare 12.28% 

Integrated payment options 19.30% 

Better bike infrastructure to travel to transit stops 12.28% 

More e-scooter/e-bike parking space around transit stops 10.53% 

More e-scooters/e-bikes available around transit stops 14.04% 

 

3.4.3 Discussion  
We surveyed local travelers about their preferences and attitudes related to the usage of 

shared e-scooter and public transit in Birmingham, AL. The Qualtrics Research Core tool 

was used to prepare the survey as it provided a user-friendly platform. Our survey results 

revealed that 7.58% of respondents used public transit and 7.58% of respondents (21 out 

of 277) used shared e-scooters respectively in the past 30 days.  The users of public 

transit and shared e-scooters shared similar demographic characteristics: younger 

population with some college degree or less, and from households with fewer vehicles.  

In general, survey respondents expressed positive views toward the public transit service 

and the operation of shared e-scooters in Birmingham. Meanwhile, both public transit and 

shared e-scooters users mentioned that better services, lower cost, and more convenient 

infrastructure would encourage more frequent usage. 

In terms of the integration of micro-mobility and public transit in the study area, our 

results revealed that travelers’ connections between public transit and shared e-scooters 

were limited. A majority of public transit users rarely or never considered shared e-

scooters as an option to travel to/from transit stops. They identified concerns related to 

convenience, cost, and safety as the major barriers towards using shared e-scooters to 

access transit stops. On the other hand, only 11.43% of shared e-scooters trips were used 

to connect with public transit, and 4 out of 277 Birmingham survey respondents reported 

using both public transit and shared e-scooters in the last 30 days. 



  
 Mobility-on-Demand Transit  

for Smart and Sustainable Cities 
 

  
55 

Although the integration of micro-mobility and public transit in the study area is 

currently non-existent, the findings from the survey helped us to identify some changes 

that hold promise toward increasing future usage of modes alternative to automobiles 

(such as public transit and e-scooters). Apart from improving infrastructure and providing 

more frequent service, financial incentives were also suggested as a means to increase 

usage of public transit and shared e-scooters. An integrated or bundled payment system 

with a “25% discount on the per-minute rate for the e-scooter trip” on a per-trip basis was 

identified as the most popular incentive. 

Even though this Birmingham survey of transportation users was limited in scope, it still 

provided some valuable insights on travel mode preferences of the local community, 

including shared modes such as e-scooters, e-bikes and public transit. We recommend 

expanding the scope of the study to increase the number of study participants in order to 

allow for comprehensive statistical analysis and modeling in future work. Moreover, 

since the survey was distributed online randomly, the potential self-selection bias could 

have resulted in skewed sampling issues. A method of multivariate sampling weights is 

recommended for future work to adjust the sample values to meet the projected census 

proportions. Otherwise, we caution that the findings from this study are only 

generalizable to study participants and settings that fit the demographic profile and 

context of this study. 

3.5 Miami, FL 

3.5.1 Survey Design and Distribution 
To understand micromobility usage and the influential factors, an online survey was 

conducted in south Florida. The survey contains four major components.  

The first section collects key demographic information including age, gender, race and 

ethnicity, household income, etc. and obtain a general picture on mode use, such as trip 

frequency by mode, factors affecting mode choice, and general attitudes toward e-

scooters and private vehicles. 

Depending on the mode usage information collected in the first section, the respondents 

were then branched to different sets of questions focusing on specific modes. For 

example, transit users were asked about transit service satisfaction, access/egress mode, 

incentives to use more transit, and considerations on using e-scooters for first/last mile 

connection. E-scooter users and moped users were also presented mode specific questions 

that help gauge their usage (such as trip purpose, distance, mode substitution, payment, 

etc.) and attitudes (such as factors to encourage more use of the mode, and fare/payment 

considerations). 

Then each respondent was asked to provide detailed trip information, including purpose, 

mode, distance, travel time and cost/fare, for a recent trip they made that was within 10 

miles.  
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The last section presents the stated preference (SP) scenarios that were customized based 

on the trip information provided for the revealed preference (RP) trip. The respondents 

were asked to select their preferred mode among four alternatives, given the 

corresponding travel time and cost needed to complete the trip. A total of 8 SP scenarios 

were presented to each respondent. Detailed SP design are discussed below (Azimi et al., 

2020). 

Stated Preference (SP) Design 

Each scenario presents four alternative modes as follows: 

Self-reported mode – this is the RP mode upon which the other alternatives are compared 

with. To make sure that micromobility modes are competitive with other modes, the 

respondents were asked to only consider trips within 10 miles. 

Shared e-scooter – respondents use a shared e-scooter for their entire journey from 

beginning to end. Shared e-scooter trips are the slowest mode, but are flexible and 

convenient for short-distance trips.  

E-scooter plus transit – respondents use e-scooter for the first or last mile of the trip to 

connect with transit for the rest of the trip. The benefit is in the affordability of Transit for 

relatively longer distance.  

Shared moped – respondents use a shared electric moped for the entire trip from 

beginning to the end. 

Each alternative mode was described by two attributes:  

Travel Time – the total estimated travel time for the entire trip. It is estimated based on 

the distance that the respondent reported for the RP trip. Three levels of speed were 

considered for e-scooter mode to provide variations among the scenarios. The detailed 

calculation for each mode varies, as shown in Table 11.  

Cost – the total costs associated with the trip including fare for transit, e-scooter or 

moped, and cost of driving and tolls and parking if applicable for driving mode. Again, 

three levels of cost per minute for e-scooter services were considered, as shown in Table 

11. 

TABLE 11 ALTERNATIVE ATTRIBUTES AND ATTRIBUTE LEVELS CALCULATIONS 

Attribute Travel Time Cost 

Revealed 

Trip 
Self-reported 

Personal Vehicle – Travel Distance * 0.2 + 

Parking and tolls 

Walking – $0 

Transit – Self Reported 

Uber – Self Reported 

E-Scooter Three speeds: 9, 12, 15 mph Three costs: 0.145, 0.29, 0.35 $/min 
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Travel Time =  
Travel Distance

Speed
 Cost =  $1 +  

Travel Time ∗  Travel Cost

min
 

E-Scooter 

+ Transit 

Three e-scooter speeds: 9, 12, 15 mph 

2 Transit Speeds: 10 mph for bus, 30 mph for 

metro 

Travel Time =  
1 mile

 E − Scooter speed 
+  

Travel Distance –  1

Transit Speed
 

Three E-Scooter costs: 0.145, 0.29, 0.35 $/min 

Cost =  1$ +  Travel Time ∗  Travel Cost 

Moped 
Three Speeds: 15, 20, 25 mph 

Travel Time =  
Travel Distance

speed
 

Three costs: 0.195, 0.39, 0.49 $/min 

Cost =  $1 +  
Travel Time ∗  Travel Cost

min
 

 

Fractional factorial design resulted in 48 choice-sets, which were divided into 6 blocks 

with 8 scenarios in each block. Respondents were randomly assigned to one block.  An 

example of an SP scenario is shown in Figure 20.  

 

FIGURE 20. EXAMPLE OF A SP SCENARIO. 

Survey Implementation 

The survey was created and administered using the Qualtrics platform. The survey 

targeted south Florida residents in the Miami-Dade, Broward, and Palm Beach Counties. 

A sampling plan was developed according to 2015-2019 American Community Survey 

(ACS) 5-year estimates in terms of gender, age, income, race, and ethnicity. Survey links 

were distributed to potential respondents, and responses were collected between 

September 29, 2021 and November 8, 2021. As other quotas filled relatively quickly, it 

was difficult to recruit older adults (55 or older). Since micromobility modes are probably 

more attractive to younger adults, we decided to relax the age quotas to meet the sample 

target 

In addition to sampling quotas that filtered out disqualified participants, the survey 

implemented built-in filters that flagged bots, speeders (completed the survey in less than 

7 minutes), and inconsistent responses, etc. In addition, constraints were set on trip 

purpose for the RP trip, so that the data contained a variety of work, school, social, and 

shopping and errands trips. 

In the end, after data cleaning and filtering, 407 complete responses were obtained and 

used for this study. Table 12 presents the sample composition in reference to 2015-2019 

ACS 5-year estimates. 
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Table 12 Final Demographic Sample and ACS Target 

 

 

 

 

 

Respondents were asked various attitudinal, mode use, e-scooter specific, transit specific, 

and moped specific questions. Summarizing these statistics graphically helps to show 

patterns in the data that can give us insight into the travel patterns in South Florida.  

Mode Use 

Walking and Personal Vehicle were the most common modes reported during the past 30 

days. This is expected given the nature of Miami’s population. Only 16% of respondents 

reported not using a personal vehicle withing the past 30 days. 25% of respondents 

reported using an E-Scooter in the past 30 days, which was greater than the number of 

respondents that said they had used a moped. This result was surprising given how new 

E-Scooter are as a mode of transportation.  

Demographic ACS 2019 Sample 

Gender Female 52% 52% 

Male 48% 48% 

Age 18-34 28% 38% 

35-55 35% 48% 

55+ 38% 14% 

Household 

Income 

<$50k 46% 44% 

$50k-$100k 29% 31% 

>$100k 25% 25% 

Race White 72% 69% 

Black 20% 23% 

Asian 3% 1% 

Ethnicity Hispanic 45% 47% 

Non-Hispanic 56% 53% 
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FIGURE 21 PERCENT OF RESPONDENTS THAT USED EACH MODE IN THE PAST 30 DAYS 

The average number of modes of transport used by different income groups showed a 

clear pattern with higher income groups using more modes. Income group that used the 

fewest number of modes was those who earned less than $25,000 with an average of just 

over 2 modes used in the past month reported Figure 22 Average Number of Different 

Modes of Transport Used by Different Income Groups. The income group that had the 

highest number of modes used in the past month was $75,000 - $99,999 with those 

making 150,000 close behind with both at around 3.1 modes used in the past month 

reported (Figure 22) 
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FIGURE 22 AVERAGE NUMBER OF DIFFERENT MODES OF TRANSPORT USED BY 

DIFFERENT INCOME GROUPS 

Mode Use Varied by Gender with men using more “risky” modes (E-Scooter, Moped, 

Bike). 45% of Male respondents reported having used a bike in the past month while only 

21% of women did. Men are more willing to engage in risk taking behavior, places with 

safer infrastructure have more balanced ridership levels with equal parts men and women 

(Figure 23). 

 

FIGURE 23 MODE USE BY GENDER 

Only those who used Uber, E-Scooters and Transit were asked how frequently each mode 

was used. All 3 of these modes had a bell distribution with most people using them 
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occasionally to 4 times per week. E-scooter users were more likely to be towards the top 

of the spectrum with more users reporting using E-Scooters 3-4 times a week. Transit 

users were most likely to use it 1-2 times per week. And a plurality of Uber users said 

they use it only occasionally (less than once per week) (Figure 24). 

 

FIGURE 24 FREQUENCY OF USE BY MODE 

Attitudes 

Respondents were asked which was most important in selecting their mode of travel. 

Safety came out on top with 68% saying that it’s extremely important. Environmental 

impact was the least important with only 29% saying it’s extremely important (Figure 

25). Apart from safety, reliability was the second most important with Travel Time and 

cost following. The results show that the best way to get people to switch modes is to 

make that mode safer and more reliable.   

 

FIGURE 25 TRAVEL MODE ATTITUDES 

0% 5% 10% 15% 20% 25% 30% 35% 40%

Rarely (less than once per month)

Occasionally (less than once per week)

1-2 times per week

3-4 times per week

5 or more times per week

Frequency of Use by Mode

Uber

Escoot

Transit

0% 20% 40% 60% 80% 100%

Safety

Reliability

Cost

Time

Comfort

Environmental Impacts

Importance in selecting mode of travel

Extremely important

Very important

Moderately important

Slightly important

Not at all important



  
 Mobility-on-Demand Transit  

for Smart and Sustainable Cities 
 

  
62 

Responses about E-Scooters didn’t show a significant trend. Most people agreed that they 

strengthen transit and are good for the city with only 12% saying they disagree. The 

biggest complaints were with parking and bike lane access, where 32% disagreed with 

the statement that there is enough parking and 29% disagreed that there are enough bike 

lanes (Figure 26).  

 

FIGURE 26 E-SCOOTER ATTITUDES 

Car and Lifestyle Attitudes showed a significant trend in the attitudes of respondents. 

Respondents had a big preference for owning things, and owning a car, and were averse 

to living without a car, using public transit, and traveling using non-motorized modes 

(Figure 27).  

 

FIGURE 27 CAR AND LIFESTYLE ATTITUDES 
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Transit Users 

Transit users reported mixed results in terms of their satisfaction with transit services. 

Ease of transfers had the fewest percentage of 5-point ratings, while access to key 

destinations had the most. However, the difference between the two was little as Ease of 

transfers had 32% 5-point ratings, while Access to key destinations had 44% 5-point 

ratings. Surprisingly, transit users were mostly satisfied with their transit services, most 

gave 4 or 5 points, while fewer gave 1 or 2points in all categories (Figure 28).   

 

FIGURE 28 TRANSIT USERS 

Figure 29 shows which mode transit users reported taking to transit. A plurality of transit 

users walked to transit with 44% reporting doing so, while the remaining 56% was evenly 

divided between Biking at 21%, Driving/drop-off at 18% and Uber/Lyft at 17%.  
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FIGURE 29 MODE USED TO GET TO TRANSIT 

All respondents were asked which incentive would most likely get them to ride transit 

more frequently. Covid-19 was still a big threat when the survey was conducted, so 35% 

of respondents reported Covid-19 as a big barrier to riding transit more frequently. 

Besides covid-19 waiting time, travel time, coverage, and fares were all close to 2nd with 

all being between 27% and 29% (Figure 30). This shows that the transit system needs 

many upgrades to convince more people to use it. Transfers were not much of a concern 

with 11% reporting that fewer transfers would make them use transit more frequently.  

 

FIGURE 30 INCENTIVE MOST LIKELY TO MAKE RESPONDENTS RIDE THE BUS OR TRANSIT 
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Last Mile Problem of Transit 

The next set of questions are designed to determine how likely respondents are to use E-

Scooter as a last mile connection to transit. The goal is to determine whether the 

availability of E-Scooters can overcome the barrier created by the last mile problem and 

induce more transit ridership.  

First respondents were asked how often they consider using transit when they make a 

trip. A small percentage of respondents said they never consider taking transit (18%) 

meaning a large majority of respondents at least occasionally consider taking transit, 

regardless of which mode they end up using in the end (Figure 31). 

 

FIGURE 31 HOW OFTEN DO YOU CONSIDER USING TRANSIT WHEN YOU TRAVEL? 

Respondents were then asked how often they ended up not using transit when they 

considered using transit. The responses varied with 20% always using transit when they 

consider it, while only 10% said they frequently end up not using transit when they’ve 

considered it (Figure 32).  

 

FIGURE 32  HOW OFTEN DO YOU END UP NOT USING TRANSIT? 

Respondents who answered in the previous questions that they at least occasionally end 

up not using transit are then asked whether the distance to the transit stop an important 

factor in their decision to not to use transit. A large majority (88%) said that at least 

sometimes transit stops being too far away was an important factor (Figure 33).  
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FIGURE 33 TRANSIT STOP TOO FAR AWAY? 

Respondents who answered in the previous question that distance was an important factor 

at least sometimes were then asked if they have considered using shared E-Scooters to 

connect to transit. The results were split pretty evenly with 39% saying they sometimes 

or frequently do consider using shared e-scooters and the rest (61%) saying they never or 

rarely do so (Figure 34).  

 

FIGURE 34 CONSIDER USING SHARED E-SCOOTERS? 

Respondents were then split into two groups, those who answered that they sometimes 

frequently or consider E-Scooters and those who rarely or never consider E-Scooters. 

They were then asked what factors lead them to the decision not to use E-Scooters. 

Unavailability of E-Scooters was the top concern for both frequent and rare groups with 

50% and 45% of respondents reporting that this was one of their reasons to not use E-

Scooters. A major difference was found in the cost of E-Scooters, with those who 

frequently consider E-Scooters reporting it as a reason not to use E-Scooters 39% of the 

time, and those who rarely consider E-Scooters said it was a reason not to use E-Scooters 

14% of the time (Figure 35).   
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FIGURE 35 REASONS NOT TO USE E-SCOOTERS 

Respondents who sometimes or frequently consider using E-Scooters were finally asked 

how often they ended up using a shared E-Scooter when they considered it. A majority of 

the respondents (53%) said they always or most of the time end up using shared E-

Scooters when they consider it. Very few (5%) said they never end up using shared E-

Scooters when they consider them (Figure 36).  

 

FIGURE 36 PERCENTAGE OF RESPONDENTS WHO USED SHARED E-SCOOTERS AFTER 

CONSIDERING IT 
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Respondents who reported using E-Scooters or Mopeds in the past 30 days were given 

this set of questions to answer about how they use their micromobility vehicles. 

Respondents were asked about the reason the most common purposed for their trips made 

using E-Scooters or Mopeds. E-Scooter and Moped trips had a similar pattern with the 
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greatest percent of respondents saying they use micromobility for Fun/Recreation (64% 

E-Scooter, 60% Moped). The fewest percent of respondents said they used their 

micromobility to go to school (24% E-Scooter, 23% Moped). The overall trend shows 

that micromobility is used less frequently for people’s daily commutes compared to other 

kinds of recreational trips (Figure 37).  

 

FIGURE 37 REASONS TO USE E-SCOOTERS 

Respondents were then asked what proportion of their micromobility trips were to 

connect to transit. The range of responses was broad with varied responses for how often 

micromobility trips were to connect to transit. Most respondents did not frequently 

connect to transit with their micromobility with only 26% of E-Scooter users and 29% of 

Moped users reporting that they connect to transit ¾ of the time or more (Figure 38).  
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FIGURE 38 PROPORTION OF MICROMOBILITY TRIPS TO TRANSIT 

Respondents were asked about ownership of E-Scooters and mopeds. Most respondents 

said that they owned their own E-Scooter or moped, and of those that didn't most of them 

said they planned to purchase one in the future (Figure 39). 

 

FIGURE 39 MICROMOBILITY OWNERSHIP PERCENTAGES 

Although most respondents reported having their own hey scooter when asked about 

whether they use shared E scooters only 27% sad that they only use their own scooter 

around 40% said they only use shared E scooters for less than half of their trips and 33% 

said they use shared scooters for more than half of their trips. 28% of Moped users 
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similarly said that they only use their own moped, while only 23% since they use shared 

mopeds for more than half of their trips (Figure 40). 

 

FIGURE 40 SHARED MICROMOBILITY USAGE PERCENTAGES 

Respondents were asked which changes to E-Scooter or moped to Transit connections 

would encourage them to make this kind of connection more frequently. None of the 

options given to the respondents were favored more than any other all options received 

around 20% of respondents vote. Respondents were also asked about what type of Fair 

bundling would be most attractive to getting them to use a scooter and moped to transit 

connections more frequently. Here respondents favored simpler options that don't require 

the user to think about how fare bundling will work. The 30-day unlimited fare and 24 

hour unlimited fare were most popular with 29% saying they prefer the 30 day unlimited 

fare and 31% saying they prefer the 24 hour unlimited fare (Figure 41). 
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FIGURE 41 CHANGES THAT WOULD ENCOURAGE USING MICROMOBILITY TO CONNECT 

TO TRANSIT 

 

FIGURE 42 FARE BUNDLING PREFERENCES 

Other options were given to respondents for ways that they can bundle E-Scooter and 

Moped fares with other incentives. By far the favored option was 25% discount on the 

permanent rate with 53% of E-Scooter users preferring this option and 65% of moped 

users preferring this option. This is likely because the permanent rate is the largest 

expense for when using shared E scooters and shared mopeds so at 25% discount will 

result in the greatest benefit for riders (Figure 43). 
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FIGURE 43 MICROMOBILITY BUNDLE INCENTIVES 

Respondents were asked whether they carry passengers with them on their E scooter 

slash moped. 18% of E-Scooter Respondents said they never carry passengers, and 41 

percent said they rarely do so meaning Most of the respondents said they rarely or never 

carry passengers with theme when they ride. The same applied to moped users who also 

had more than 50% report but they rarely or never carry passengers with them. This result 

is expected as these modes of travel are meant for individuals, And carrying passengers is 

prohibited on shared E-Scooters (Figure 44).  
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Respondents were asked how often they wear a helmet while riding east scooters or 

mopeds. Helmet usage was higher among moped users with almost half of moped users 

always using a helmet but only 38% of E-Scooter users reporting that they always wear a 

helmet Another surprising finding was how often east scooter users do not wear helmets 

with 33% reporting they rarely or never wear a helmet  (Figure 45).  

 

FIGURE 45 PERCENT OF RESPONDENTS THAT WEAR A HELMET WHILE RIDING ON THEIR 

E-SCOOTER/MOPED 

3.5.2 Identifying attitude factors 
 In order to identify attitudinal factors, an exploratory factor analysis (EFA) was 

performed. The EFA process reduces a large number of observable correlated parameters 

to a number of uncorrelated parameters that are referred to as factors (Mair, 2018). This 

method has been commonly used in transportation research to examine individuals’ 

attitudes and preferences (Azimi et al., 2021; Rieser-Schüssler & Axhausen, 2012; Sarker 

et al., 2022). The amount of the variation of the parameters that is explained by a factor is 

shown by the eigenvalue. More variation is explained by any latent factor than individual 

parameter when the eigenvalue greater is than one (Cliff, 1988).  

The EFA results are demonstrated in Table 3. The factors that speak for a person’s 

attitude were each given a brief description. It also includes the eigenvalues for each 

identified latent factor and the variance explained by each factor as well as the total 

variance explained by each category. 

 

 

 

TABLE 13. IDENTIFIED FACTORS (LATENT ATTITUDE) 
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Latent 

Factor 
Description Eigenvalues 

% of 

variance 

explained 

Cumulative % 

of variance 

explained 

E-scooter 

benefits 

Reflects individuals’ positive belief in the benefits 

of e-scooter such as safer mode, better last mile 

connection, improve traffic conditions; also 

represents people’s ability and interest to use new 

technologies. 

4.191 32.235 32.235 

E-scooter 

infrastructur

e 

Indicates people’s positive belief in the current 

infrastructures which can accommodate e-scooter  

1.601 12.315 44.550 

Alternative 

modes 

Represents the preference for transit, active mode 

(walking/biking) and negative interest in car use 

and learning new technologies. 

1.384 10.644 55.193 

Vehicle 

ownership  

Indicates people’s preference to own cars and other 

things 
1.117 8.589 63.783 

 

 3.5.3 Model structures 
The survey data consisted of multiple entries for each respondent, so with that in mind 

the model structure chosen was the mixed logit (ML) model which accounts for the 

nature of panel data and allows for the analysis to be conducted without the limitations of 

the standard logit model such as random taste variation, unrestricted substitution patterns, 

and correlation in unobserved factors over time (Greene et al., 2006). Any discrete choice 

model resulting from random utility maximization has choice probabilities that may be as 

closely approximated as desired by a ML model under modest regularity criteria 

(Mcfadden & Train, 2000). ML models also work well with both inter- and intra-

individual taste variations even without accounting for the unobserved inter- and intra-

individual heterogeneity (Krueger et al., 2021). 

The model assumes that there is a utility that each respondent 𝑖 gets from each of the 

alternatives 𝑗, and that this utility can be expressed as 𝑈𝑖𝑗. The utility is assumed to be 

partially stochastic and partially deterministic, and as such, it is composed of two main 

components. The first component, β𝑖𝑗, is a vector of coefficients for all the variables in 

the model. The other component is the random term 𝜖𝑖𝑗 which represents the stochastic 

portion of the model. If 𝑥𝑖𝑗 are the observed variables for respondent 𝑖 in alternative 𝑗 this 

gives us the simplest version of the ML Model:  

𝑈𝑖𝑗 = 𝛽𝑖𝑥𝑖𝑗 + 𝜖𝑖𝑗 

The coefficients 𝛽𝑖𝑗 can be further broken down into their components with 𝛼 as the 

mean and 𝜇𝑖 representing the deviations in that mean for each respondent. Breaking the 



  
 Mobility-on-Demand Transit  

for Smart and Sustainable Cities 
 

  
75 

coefficients allows for some of the parameters to have a distribution of values instead of 

simple coefficients, represented by 𝑧𝑖𝑗. The resulting utility model is: 

𝑈𝑖𝑗 = 𝛼𝑥𝑖𝑗 + 𝜇𝑖𝑧𝑖𝑗 + 𝜖𝑖𝑗 

In the model used for this experiment, two parameters had random distributions. These 

two values that varied with each of the alternatives presented, time and cost. The utility 

function can then be transformed to show these variables directly: 

𝑈𝑖𝑗𝑛 = 𝛼𝑥𝑖𝑗 + (𝛼𝑇𝑇̅̅ ̅̅ ̅ + 𝜎𝑇𝑇𝜇𝑖,𝑇𝑇)𝑇𝑇𝑗𝑛 + (𝛼𝑇𝐶̅̅ ̅̅ ̅ + 𝜎𝑇𝐶𝜇𝑖,𝑇𝐶)𝑇𝐶𝑗𝑛 + 𝜖𝑖𝑗𝑛 

𝑈𝑖𝑗𝑛 = Utility of individual 𝑖 choosing alternative 𝑗 in scenario 𝑛 

𝛼 =  vector of fixed coefficients  

𝑥𝑖𝑗 =  Fixed observed variables for respondent 𝑖 choosing alternative 𝑗 that does 

not vary with scenario 𝑛 

𝛼𝑇𝑇̅̅ ̅̅ ̅, 𝛼𝑇𝐶 = mean travel time and travel cost coefficients 

𝜎𝑇𝑇 , 𝜎𝑇𝐶 = Standard deviations of travel time and travel cost coefficients 

𝑇𝑇𝑗𝑛, 𝑇𝐶𝑗𝑛 = Travel time/cost for alternative 𝑗 in scenario 𝑛 

𝜇𝑖𝑗,𝑇𝑇 , 𝜇𝑖𝑗,𝑇𝐶 = effects of standard normal random distribution ~ N(0,1) 

𝜖𝑖𝑗𝑛 = Independent and identically distributed error term 

 

Modeling Heterogeneity Through Variable Interaction Effects 

The essential assumption of the mixed logit model is that the model's coefficients are 

realizations of random variables. Because of the changeable nature of the coefficients, the 

mixed logit model can easily capture user heterogeneity. This assumption broadens the 

scope of the classic multinomial logit model (MNL) by allowing the coefficient to vary 

among decision makers and circumstances. This is accomplished by dividing the error 

term into two parts: the random error term with mean zero, 𝜖𝑖𝑗𝑛  which is independent 

and identically distributed (IID) and also exists in the standard logit model, and the 

additional error component,  𝜂𝑖𝑗𝑛 is assumed to be correlated over alternatives and is 

expected to follow a given distribution pattern. This makes the basic utility function: 

𝑈𝑖𝑗 = 𝛽𝑖𝑥𝑖𝑗 + |𝜂𝑖𝑗𝑛 + 𝜖𝑖𝑗| 

One common way to look at mixed logit models is to link the non-IID error component to 

the model coefficients and treat them as though they were distributed randomly. To put it 

another way, the mixed logit model views each coefficient as a random parameter with a 

mean and a standard deviation across individuals and scenarios as opposed to normal 

logit models, which theoretically assume that coefficients are fixed for every member of 

the population. From an utilitarian perspective, this variance is commonly known as 

"preference heterogeneity," which refers to the large behavioral variety that exists 

between individuals in their preferences or decision-making processes. 
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The utility function can be modified with the following interaction terms between the 

random parameters and each of the exogenous factors added in order to further 

investigate whether the reported individual and trip-related features can account for the 

observed taste difference among users: 

𝑈𝑖𝑗𝑛 = 𝛼𝑥𝑖𝑗 + (𝛼𝑇𝑇̅̅ ̅̅ ̅ + 𝜎𝑇𝑇𝜇𝑖,𝑇𝑇)𝑇𝑇𝑗𝑛 + (𝛼𝑇𝐶̅̅ ̅̅ ̅ + 𝜎𝑇𝐶𝜇𝑖,𝑇𝐶)𝑇𝐶𝑗𝑛 + 𝛾𝑇𝑇(𝑆𝑖𝑗 ∗ 𝑇𝑇𝑗𝑛)

+ 𝛾𝑇𝐶(𝑆𝑖𝑗 ∗ 𝑇𝑇𝑗𝑛) + 𝜖𝑖𝑗𝑛 

Where: 

𝛾𝑇𝑇 = interaction coefficient for travel time 

𝛾𝑇𝐶 = interaction coefficient for travel cost 

𝑆𝑖𝑗 = Potential sources of heterogeneity which are as subset of 𝑥𝑖𝑗 

The mixed logit model shows whether the interacted variable (𝑆𝑖𝑗) is significant 

based on the value of the interaction coefficient. In this study, trip time (TT) and 

travel cost (TC) were two important factors that were treated as random 

parameters. To examine user heterogeneity, interaction terms between the two 

random factors and the other characteristics were investigated. Negative 

interaction coefficients suggest stronger sensitivity towards the random 

parameter, whereas random parameters reflecting disutility indicate lesser utility 

function sensitivity towards that particular random variable (i.e., lower overall 

influence of the variable on the utility function) (Hensher & Rose, 2005).  

 3.5.4 Model results 
Overview 

A variety of demographic characteristics, trip attributes, and attitude factors emerged as 

significant variables affecting mode choice of micromobility services as shown in Table 

3. The level of significance for each variable is given by the z-value in parenthesis—all z-

values are above 1.96 indicating at least a 95% level of significance. 

 

 

Table 14 Base Mode Choice Model Result 

   E-scooter 
E-Scooter + 

Transit 
Moped 

Constant   -0.476 (-1.42) -3.734 (-8.19) -2.307 (-5.26) 

Alternative Attributes Time -0.08 (-19.52) 
𝜎𝑇𝑇 = 0.146 (22.82) 

𝜎𝑇𝐶 = 0.431 (23.66)   Cost 
-0.071 (-

19.28) 

Demographics Education High school graduate or less   -0.688 (-2.64) 
 Bachelor 0.755 (4.31) 0.644 (3.09) 0.47 (2.37) 

Age Age 18-29 1.342 (6.09) 1.836 (6.9) 0.745 (2.79) 
 Age 40-49 0.411 (1.98) 0.952 (3.97) 1.442 (6.16) 
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   E-scooter 
E-Scooter + 

Transit 
Moped 

 Age 50-59 -1.15 (-4.57) -1.646 (-4.36)  

 Age 60-64 -1.544 (-3.98)   

Ethnicity Hispanic -0.372 (-2.11)   

Race Black  0.907 (4.01) 0.849 (3.81) 

Income Income $25k or less   1.276 (3.92)  

 Income $50k-$75k  0.673 (2.66)  

 Income $75k-$100k 0.512 (2.11) 0.668 (2.33) 1.16 (4.08) 
 Income $100k-$125k -0.738 (-2.5)  -2.014 (-5.64) 
 Income $150k or more   -1.765 (-4.15) -0.886 (-2.41) 

Vehicle 

Ownership 
Number of vehicles: 2 -0.795 (-4.6) -0.99 (-4.69) -0.672 (-3.4) 

Marital Status Single -1.82 (-9.33) -1.861 (-8.12) -1.154 (-5.21) 

Type of Home Detached house   0.808 (3.56) -0.637 (-3.29) 
 Townhouse -0.794 (-3.3)   -1.579 (-5.43) 

Student Status Student: full time 1.379 (5.26) 0.984 (3.14)  

Employment 

Status 
Employment: full time -0.661 (-3.49) -0.733 (-3.07)  

 Employment: self   0.956 (2.97) 
 Employment: unemployed  -0.849 (-2.3)  

Trip Attributes Trip Purpose Trip purpose: School 1.067 (4.84) 1.158 (4.33) 1.048 (3.61) 

 Trip purpose: Shopping   -0.706 (-3.23) 

Trip Distance Trip distance: 1 to 2 miles 0.532 (3.19)  0.526 (2.66) 

Attitudinal Factors E-scooters 

attitudes 
Pro-e-scooter 0.355 (3.98) 0.256 (2.08) 0.488 (4.56) 

 E-scooter infrastructures 0.643 (6.76) 0.865 (7.44) 0.591 (5.3) 

Lifestyle 

Attitudes 
Pro-alternative mode  0.371 (3.68) 0.577 (5.32)  

 Pro-car ownership -0.565 (-6.13) -0.287 (-2.58) -0.42 (-3.78) 

Importance in 

mode choice 

Reliability -0.384 (-3.59) -0.254 (-2.02) -0.628 (-4.34) 

Safety 0.343 (3.48) 0.54 (4.63) 0.298 (2.12) 

Environmental impacts 0.191 (2.2) 0.37 (3.59) 0.293 (2.99) 

Log-Likelihood LL = -2694.2 

Likelihood ratio test: 𝜒2 = 2612 (p.value = < 2.22e-16) 

McFadden R2 0.32649 

Number of observations No. of Individuals = 407 No. of observations = 3,256 

 

Demographic Variables 

Table 14 shows that individuals with a higher education degree (Bachelor’s degree and 

above) were more likely to switch to any of the three micromobility alternatives, with an 

especially strong preference for e-scooters.  This is not a surprising result given the recent 

marketing and placement of shared e-scooters in neighborhoods around universities 

(Caspi et al., 2020) or with condominium and high-rise housing oriented towards student 

and professional populations (Mitra & Hess, 2021).  

In comparison to older respondents, younger people (under age 50) were more likely to 

choose micromobility options, particularly e-scooters. The “middle-aged” group (ages 

40-49) stood out for their preference for mopeds. This result fits the marketing and 
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distribution strategy for shared e-scooters. Cost may also be a factor since mopeds are 

more expensive to own or rent which might make them less attractive for the youngest 

age cohort (Orozco-Fontalvo et al., 2022). Negative coefficients for older adults (ages 50 

or above) toward e-scooter options suggests that they were more likely to stay with their 

current mode. This could be attributed to several factors, such as reduced agility needed 

to ride or drive micromobility vehicles, safety concerns, along with a resistance to change 

in general (McQueen, 2020). 

Regarding race and ethnicity, it seems that people who identify as Hispanic were less 

likely to prefer e-scooter mode, while those who identify as Black showed preferences for 

mopeds and e-scooters plus transit options.  It should be noted that in South Florida, 

Hispanic, and to some extent Black, populations are not necessarily “minority” or lower 

income.  Further studies that more carefully discern taste preferences might reveal 

significant trends, or their lack, based on race and ethnicity (Sanders et al., 2020) 

Income showed an interesting transition in preference for micromobility from acceptance 

among lower income groups to rejection among higher income groups. Not surprisingly, 

lower income respondents (less than $100k) showed significant preference for e-scooters 

plus transit. In South Florida, lower income people are more likely to use public transit in 

general, so this preference seems reasonable (McQueen, 2020). Higher income groups 

(above $100k), on the other hand, showed significant rejection for all micromobility 

options reflecting an unwillingness to ride e-scooters or mopeds for last-mile options. 

Finally, only the middle income ($75-100k) group was interested in using e-scooters, 

again perhaps relevant to the marketing and distribution strategies of e-scooters in more 

high-rise condominium neighborhoods where this income range may be prevalent (Mitra 

& Hess, 2021).  

Car ownership showed negative impacts on all three micromobility options, as expected. 

An individual or family with multiple cars probably lives in a region that requires longer 

transport distances and so they are likely to find less utility in micromobility options 

(Schimek, 1996) 

Surprising, single respondents were less likely to choose micromobility options of any 

kind. This was an unexpected result as single people seemed to fit in the profile that 

would find micromobility attractive, such as being young or a student, live in apartments 

or condominiums in dense areas, or have lower income. Other marital options did not 

have a significant effect on the mode choice. Further study may be needed in this aspect. 

The type of house showed an interesting effect which was an unwillingness to use e-

scooters and mopeds among people who lived in townhouses. Townhouses typically lack 

storage and might be part of a suburban development where micromobility vehicles 

cannot be left on the street due to homeowner association rules. These regions also tend 

to be car-reliant with long distances even to shopping and other services. These factors 

might all contribute to this negative view of micromobility among townhouse dwellers 
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(Mitra & Hess, 2021). People who lived in detached houses also showed negative 

preference for mopeds but were positive toward the e-scooters + transit option. This may 

be due to lower density and the need to travel longer distance. 

Full-time students showed strong preferences toward e-scooter and e-scooter + transit 

options, as expected. Students can be more flexible with their transportation options and 

are more likely to take shorter trips which are better served by e-scooters. Again, the 

marketing and distribution of shared e-scooters also fit with this preference. Full time 

employment is correlated with less willingness to choose e-scooters or e-scooters + 

transit options. The reliability, convenience and speed of private car commuting to a full-

time job may take priority, even if e-scooters might offer a more cost-effective alternative 

(Mitra & Hess, 2021). Those who were self-employed preferred mopeds, which provide a 

flexible and affordable mode of transportation that meet their needs to do multiple work 

or run errands that can be common for people who have their own business (Reck & 

Axhausen, 2021). 

For trips to school, and for shorter trips of 1-2 miles, the preferences toward e-scooters 

and mopeds makes sense. On the other hand, shopping trips showed a significant 

negative correlation with the use of mopeds, representing the difficulties of carrying 

larger amounts of goods and materials in a micromobility vehicle (Li et al., 2020).  

Attitudinal Factors  

The attitudinal factors that emerge from the model were mostly self-explanatory. 

Respondents who had positive views toward e-scooters (e.g. riding e-scooters is a safe 

way to get around, the arrival of shared e-scooters is a good thing for the city, shared e-

scooters can strengthen public transit operations, etc.), believed that there was sufficient 

e-scooter infrastructure (e.g., my city has enough bike lanes to accommodate e-scooter 

use, my city has enough space for proper e-scooter parking, etc.), preferred alternative 

modes (e.g., I hope to live without a car, I try to use public transit whenever I can, etc.) 

showed preferences to use all micromobility options. On the other hand, respondents who 

preferred to own vehicles were less likely to switch to micromobility of any kind. 

Reliability, at least its perception, may be an obstacle to the adoption of micromobility. 

The significant negative coefficients related to reliability are understandable, but perhaps 

not warranted.  People’s perception of a lack of reliability for micromobility options 

might be a result of lack of information, since most people do not have a lot of experience 

using e-scooters or mopeds.  However, it is true that reliance on shared vehicles will have 

less predictability than a private vehicle that is under one’s immediate control.  By the 

same token, shared micromobility options to some degree might be more reliable than 

owning a private vehicle as the services would always be well maintained and available 

(Abduljabbar et al., 2021). Travel time reliability can also be more consistent with 

micromobility as these modes don’t get stuck in traffic.  
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Finally, safety and environmental impacts were positive factors in leading people to 

choose micromobility options of any kind. This is a significant finding that extends 

across all the micromobility options. Given the common, and probably correct, 

perception that small micromobility vehicles and public transit, save on fuel, the 

environmental impact concern makes sense as a motivating force to use micromobility 

(Shaheen et al., 2019). Safety as a motivating factor is perhaps more nuanced since e-

scooters and mopeds are not always considered to be safer than cars or other options. 

However, it may be that people are more aware of car crashes, or aware that they can be 

more severe given the weight of the vehicle (Abduljabbar et al., 2021) 

Modeling interaction effect 

Table 15 shows that individuals who consider themselves Hispanic were less sensitive to 

cost as a factor in their choice of mode. On the other hand, respondents who considered 

themselves white were more sensitive to time and cost. This is an interesting result given 

that Hispanic respondents were found by the Federal Highway Administration to use a 

larger percentage of their income on travel expenditures  (Travel Patterns of People of 

Color, 2000) 

When looking at incomes it was found that middle income respondents were less 

sensitive to cost, while high income respondents were more sensitive to time. High 

income respondents being more sensitive to time is reasonable given that transportation 

costs will be a smaller percent of their income. It’s interesting that middle income 

respondents had a lower sensitivity to cost,   

Table 15 Interaction Effects Model Result 

Source of Heterogeneity Time Cost 

Hispanic  0.084 (5.26) 

White -0.021 (-3.39) -0.088 (-5.8) 

Income $50k-$75k  0.118 (6.98) 

Income $150k or more -0.072 (-4.66)  
Vehicle own: 1  -0.075 (-4.25) 

Vehicle own: 2 -0.034 (-5.18)  
Single -0.049 (-6.75) 0.105 (6.43) 

Employment: full time  0.077 (4.57) 

Trip purpose: Shopping  0.105 (5.86) 

E-scooter infrastructure is sufficient -0.011 (-2.82) -0.076 (-8.43) 

Pro-alternative mode (transit/non-motorized)  0.061 (6.55) 

Reliability 0.019 (4.85)  
Environmental impacts  -0.03 (-4.09) 

Log-Likelihood LL = -2634.3 

Likelihood ratio test: 𝜒2 = 2731.7 (p.value = < 2.22e-16) 

McFadden R2 0.34144 

Number of observations No. of Individuals = 407 No. of observations = 3,256 
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Vehicle ownership showed a predictable trend with respondents from households with 

one vehicle were more sensitive to cost while those with two vehicles were more 

sensitive to time. Respondents with two vehicles in their household implicitly value the 

time savings of having two vehicles compared to the increased cost of ownership of these 

two vehicles.  

In view of marriage status, it was found that single respondents were more sensitive to 

time and less sensitive to cost. Single respondents do not have to consider as many people 

when looking at travel options with them having the lowest rates of joint travel patterns 

(Babu & Anjaneyulu, 2021). With fewer joint trips single respondents would likely also 

likely not take cost into consideration as much as the time the trip would take for 

themselves.  

Full time employees were found to be less sensitive to cost when compared to those with 

other employment status’. Part time employees have less income than full time 

employees due to both fewer hours and less pay per hour compared to full time work 

(DuRivage, 2016). The result then makes sense, part time employees will be more willing 

than full time workers to compensate on other aspects of travel time if it means a reduced 

cost.  

Trip purpose was another factor that was found to influence how sensitive respondents 

were to time and cost. When the trip purpose was shopping, respondents were less 

sensitive to cost. This result is interesting and may indicate that respondents who are 

already going to spend money on shopping may be more willing to spend more on 

transportation to the shopping trip or may be traveling further for the shopping trip which 

would make cost less important compared to time.  

Opinions about infrastructure and mode use also affected sensitivity to time and cost. 

Those who said E-scooter infrastructure was sufficient were more sensitive to cost or 

time, while those who were pro alternative modes were less sensitive to cost. Those who 

said E-Scooter infrastructure was sufficient are likely to be more accepting of switching 

to another mode, which means they will base their decision on the time and cost of the 

different modes rather than other attributes of those modes. Those who are pro-alternative 

modes were likely less sensitive to cost because they are likely choosing alternative 

modes despite the higher costs.  

Those who rated reliability as important to their mode choice were less sensitive to time 

while those who rated environmental impacts as important to their mode choice were 

more sensitive to cost. People who value reliability will likely choose a mode that they 

consider more reliable even if the travel time is longer. Modes that are more affordable 

also tend to be more environmentally friendly which could be the reason why those that 

value environmental friendliness also choose modes that are more affordable.  
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3.5.5 Discussion 
The model identified a number of variables as critical drivers in people's desire to switch 

to micromobility choices. Based on past research and common understanding regarding 

the logistics, marketing, and distribution of e-scooters and mopeds, as well as their 

relationship with transit usage, these findings make sense in general. E-scooters, in 

particular, have rapidly infiltrated student and professional communities with high-

density housing and rail-based transit in South Florida. 

The planning and policy of transportation can be significantly impacted by these findings. 

First off, there are several opportunities for the development of micromobility modes. 

Currently, e-scooter usage is not as prevalent as it is for private vehicles and public 

transportation. The survey results suggest that many people would switch to e-scooter or 

other micromobility options if the travel cost and travel time are competitive. In this 

regard, programs could be developed to reduce the cost and make shorter more rapid 

paths for micromobility users. This could be done through incentives provided by 

municipalities or through infrastructure changes that make micromobility a faster mode 

through highly congested areas. 

If micromobility solutions are easily accessible, younger, more educated, lower-income 

people—especially students—might be eager to switch. Respondents were more inclined 

to pick micromobility choices when their attitudes on infrastructure and environmental 

effects were favorable. College campuses could implement micromobility programs to 

encourage students to use alternative modes of transportation. This could help reduce 

university parking demands, as well as help solve congestion issues around campuses. 

Micromobility services could also be expanded in areas with a high concentration of 

college graduates. If these college students already experienced micromobility while in 

school, it is likely that they will continue to use it as they move on and enter the 

workforce. 

With the goal of evaluating the demand for e-scooters in South Florida, this study 

investigated the different attributes that would motivate people to switch from their 

current mode to micromobility using a SP survey conducted between September and 

November of 2021in the three largest counties in South Florida. The impact of attitudinal 

and socioeconomic and demographic variables were examined using a ML model. 

Overall, the findings give us a picture as to what kinds of attitudes or perceptions may 

motivate people to switch to micromobility under certain circumstances. Young, 

educated, low-income people, and students might be willing to switch if the services are 

readily available. Attitudes around safety, environmental impacts, and infrastructure 

readiness would encourage people to choose an alternative mode. These are factors that 

could be changed through policy decisions such as improving cycling infrastructure and 

highlighting the environment benefits of e-scooters and transit.  
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The results of this study shed important and insightful light on the variables influencing 

South Florida residents' decisions to use micromobility services and emphasize the 

distinctive attitudes that shape those decisions. This study broadens our understanding of 

South Florida residents' choices for and reasons for employing micromobility. With this 

information, mobility options may be better estimated and policies and services that cater 

to South Florida's mobility demands could be better designed. 

As a survey and modeling-based study, these data have some inherent limitations.  When 

compared to data on observed behavior, SP data only indicate what people say they 

would do. Due to personal values or memory constraints, respondents may be 

unintentionally prejudiced toward reporting choices that differ from the actual behavior. 

With regards to declarations that express the intentions for future activities, these 

constraints are further exacerbated. Another limitation of this study is that it does not 

address physical aspects of the environment where people use e-scooters. Mode choice 

for micromobility is very dependent on the built environment, although some of these 

effects were captured through the attitude factors, analyzing the direct effects of the 

readiness and availability of bike lanes and other infrastructure would be a good 

expansion on the findings.  

3.6 Washington DC 
We designed a web-based survey that contains three components. The survey was piloted 

among a small group of individuals, including travel-behavior researchers and individuals 

who are familiar with the transportation systems in Washington D.C., whose feedback 

was incorporated to develop the final version of the survey. The first set of questions ask 

the use of different travel modes (personal vehicle, walking, public transit, biking, e-

scooter, scooter or moped, ridehail or taxi, carsharing), expected mode use after COVID-

19, and travel attitudes and preferences related to public transit and e-scooters. Transit 

users are asked additional questions related to the last-mile access problem, and e-scooter 

users are asked questions regarding trip purpose, use of e-scooters to connect with transit, 

and barriers to combined use of e-scooters and public transit. The second set of questions 

collect information on individual demographic and socioeconomic characteristics. 

The third set of questions seek to elicit traveler responses to bundled “transit + e-scooter” 

pricing schemes, that is, to evaluate how lower pricing can make individuals shift from 

using other travel modes to combined use of transit and e-scooters. Since bundled pricing 

of transit and e-scooters is not implemented in practice yet We use the commonly 

adopted method of stated choice experiments (Swait et al, 2000). To design realistic 

stated choice experiments that can effectively elicit traveler responses, We apply 

orthogonal main-effects experimental design to obtain nine stated choice experiments 

based on the following trip attributes and attribute levels: e-scooter travel speed (6 mph, 9 

mph, 12 mph), e-scooter pricing (one dollar to unlock and 32 cents per minute use, and 

one dollar to unlock and 40 cents per minute use), and bundled pricing discount (waive of 

e-scooter unlock fee, 25% off e-scooter trip costs, and 50% off e-scooter trip costs); since 
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Washington D.C. has a Metro system and a bus system, which has different trip fares and 

travel speed, the choice experiments are further distinguished by Metro and by bus. Table 

3.1 shows the respective trip attribute levels for the nine choice experiments. 

To improve the realism of the stated choice experiments, each respondent is presented 

with individual-specific mode choice scenarios tailored to their prior trip experiences. 

Specifically, we asked respondents to estimate the trip attributes of a one-way trip that 

they regularly make before COVID-19 and then constructed the stated choice 

experiments by pivoting around these self-reported trip attributes. Trip attributes that 

each respondent reported include the trip purpose, travel mode used (personal vehicle, 

walking, transit, or taxi/ridehail), trip length, trip cost, and components of travel time 

(e.g., for a transit trip, individuals are asked to estimate the waling to and from transit 

stops, wait time, and riding time). In each stated choice experiment, respondents are 

asked which of the three travel options they would choose for the one-way trip that they 

described: the current travel mode, e-scooter, or the “e-scooter + transit” option. 

Individuals are expected to choose the option that maximize their personal utility, and so 

their choice of the three options is likely to differ as trip attributes for the e-scooter and 

the “e-scooter + transit” options change across stated choice experiments. Finally, to 

reduce the cognitive burden for each survey respondent, We presented a random subset 

(five) of the nine stated choice experiments to each respondent; previous research has 

shown that the validity of responses to stated choice experiments decreases if respondents 

are overburdened (Swait et al, 2000). 

We administrated the survey to individuals who live, work, or frequently visit 

Washington D.C. through a variety of means, including personal social networks (some 

of whom helped share the survey to friends or members of email lists), advisory 

neighborhood commissions email lists and newsletters (some commissioners that We 

reached out kindly agreed to help promote the survey), and social media platforms such 

as Facebook groups, Twitter, and Linkedin. Moreover, the e-scooter company, Spin, 

helped market the survey to its users in the DC region. No monetary compensation is 

offered to survey respondents, but they can get a promo code which can be used to 

redeem for $5 Spin rider credits at the end of the survey. Respondents are offered an 

option to opt out the stated choice experiments, in which case they will get a promote 

code worthy of $3 Spin rider credits (only 17 respondents did so). In the end, 357 

individuals in the DC region started the survey. After a data cleaning process, We kept a 

total of 271 responses for further analysis, and We used 221 individuals who provided 

completed responses for the stated choice experiments for mode choice modeling. 

3.6.1 Sociodemographic Profile of Sample 
Table 16 presents the sociodemographic profile of the survey sample. Among the 

survey respondents, 53% of them are e-scooter users and 45% of them are transit 

users. The actual adoption rate of e-scooters in Washington DC is likely much 

lower than 53%. We oversampled e-scooter users because of two reasons: one is 
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that the survey has been marketed to the Spin e-scooter user email list, and the 

other is that e-scooter users are more likely to be interested in responding. Also, 

the share of individuals who use public transit in Washington DC is likely lower 

than what the survey suggests; this indicates that e-scooter users tend to also be 

transit users.  

The percentage of respondents who are males and Whites are close to 60% and 

70%, respectively. A disproportionately high percentage (above 85%) of 

respondents are below 50 years old. These results imply that the adoption of e-

scooters is higher among males, Whites, and younger adults, which are consistent 

with previous survey findings (NACTO, 2020; NABSA, 2020). Moreover, most 

survey respondents (over two thirds) have a household income above $75,000, 

and only 6% of respondents have a household income below $25,000. This 

indicates a undersampling of lower-income individuals in the survey; moreover, 

e-scooter users tend to have higher household income. Furthermore, a large 

majority (85%) of respondents are employed or self-employed, and only a small 

percentage (11%) of them are students. Finally, regarding potential technological 

and physical barriers to adopting e-scooters or other smart mobility mobility, We 

find that very few respondents face these barriers. 

 

TABLE 16. SOCIODEMOGRAPHIC PROFILE OF THE SURVEY RESPONDENTS 

 Description Count Percentage 

Sample size Total number of valid responses 257 100.0% 

E-scooter use Indicates if the respondent is an e-scooter user 137 53.3% 

Transit user 

Gender 

Female 

Indicates if the respondent is a transit user 

Indicates if the respondent’s gender is in a given category 

115 

 
105 

44.7% 

 
40.9% 

Male 

Race/ethnicity 

Hispanic 

 
Indicates if the respondent’s race/ethnicity is in a given category 

152 

 
7 

59.1% 

 
2.7% 

White  177 68.9% 

Black  28 10.9% 

Have a college degree 

Age 

Under 25 

Indicates if the respondent has a college degree 

Indicate if the respondent’s age is in a given category 

224 

 
27 

87.2% 

 
10.5% 

25-29  62 24.1% 

30-39  90 35.0% 

40-49  44 17.1% 

50-59  17 6.6% 

60-69  9 3.5% 

70 or over  8 3.1% 

Household income Indicates if the respondent’s household income is in a given category  

Less than $25,000  14 5.8% 

25, 000−49,999 27 11.3% 

50, 000−74,999 34 14.2% 

75, 000−99,999 44 18.3% 
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100, 000−124,999 28 11.7% 

125, 000−149,999 25 10.4% 

$150,000 or more 68 28.3% 

Student Indicates if the respondent is a student 29 11.3% 

Employed Indicates if the respondent is employed (including self-employed)  216 84.7% 

Own a vehicle Indicates if the respondent has access to a personal vehicle 165 64.2% 

Have a smartphone Indicates if the respondent has a smartphone 256 100.0% 

Have a mobile data plan Indicates if the respondent has a mobile data plan 255 99.6% 

Have internet access Indicates if the respondent has internet access at home 256 100.0% 

Have a disability Indicates if the respondent has a disability 251 98.0% 

 

3.6.2 Travel Preferences for Transit and E-scooters 

We now present survey results on travelers’ behavior and preferences, focusing on 

questions related to public transit and e-scooters. Figure 46 shows the distribution 

of how respondents have used different travel options including personal vehicle, 

walking, scooter or moped, e-scooter, public transit, taxi or ridehail (to be jointly 

termed as for-hire vehicles or FHV), carsharing, and biking in the past 30 days. All 

respondents have selected the “walking” option, and most of them have used 

“personal vehicle,” “e-scooter,” and “taxi or ride-hail,” and biking. 

 
FIGURE 46. IN THE PAST 30 DAYS, HAVE YOU TRAVELED WITH THE FOLLOWING MODES? 

Among the individuals who have taken public transit (bus or Metro) in the past 30 

days (Figure 47), a large majority of them used it less than once or only 1-2 times 

per week. This means that most survey respondents are choice users of public 

transit. The 15 individuals who used transit 5 or more times per week are likely 

essential transit riders for whom public transit is a primary mode of travel. 
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FIGURE 47. IN THE PAST 30 DAYS, HOW OFTEN DID YOU USE PUBLIC TRANSIT (BUS OR METRO) 

 
FIGURE 48. IN THE PAST 30 DAYS, HOW OFTEN DID YOU RIDE E-SCOOTERS 

Similarly, most e-scooter users have ridden e-scooters for less than once or 1-2 

times per week (Figure 48). However, 24 individuals used e-scooters 5 or more 

times per week; a further breakdown of these individuals shows that about half of 

them own personal e-scooters. These results suggest that Washington DC has a 

robust e-scooter customer base. 
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FIGURE 49. EXPECTED CHANGE IN USE OF MODES OF TRAVEL POST-COVID 

We further asked survey respondents about their expect use of the following travel 

modes after COVID-19 is no longer a threat: personal vehicle, walking, public 

transit, biking (including e-bikes), scooter or moped, e-scooter, taxi or ridehail 

(Uber/Lyft), and carsharing (see Figure 49). Several notable patterns can be 

observed from the data. Individuals generally expect their use of different modes to 

be about the same except for two modes: public transit and for-hire vehicles. For 

public transit, the most selected option is “much more than current use,” second by 

“somewhat more than current use,” then followed by “about the same;” very few 

individuals expect themselves to use public transit less frequently than current. For 

FHV, the most selected option is “somewhat more than current mode,” second by 

“about the same”, followed by “much more than current use,” and finally the two 

“less than current use” options. Also, much more people expect their use of 

different modes to increase rather than to decrease (except for personal vehicles) 

post COVID-19, indicating a tendency to increase travel. 
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FIGURE 50. WHEN YOU TRAVEL, HOW OFTEN IS PUBLIC TRANSIT AN OPTION THAT YOU 

CONSIDER 

Figure 50 reveals if public transit is a mode that people consider when they travel. 

The idea beyond asking this question is that if many people do not even consider 

using public transit when they travel, then any strategy that aims to enhance public 

transit would not be effective for them; and when more people consider transit as a 

possible option when they travel, transit-enhancing strategies are more likely to be 

successful. 

 
FIGURE 51. HOW OFTEN HAVE YOU CONSIDERED USING TRANSIT BUT THEN USED A DIFFERENT 

MODE INSTEAD 

Figure 51 shows how often people considered using public transit for a trip but 

then ended up using a different travel mode instead. The results suggest that this 

happens very often, as only a very small minority (7%) of respondents indicate that 

this never happens to them. 
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FIGURE 52. WHEN YOU CONSIDERED USING PUBLIC TRANSIT FOR YOUR TRIPS BUT ENDED UP 

USING A DIFFERENT TRAVEL MODE, WAS THE DISTANCE TO THE NEAREST TRANSIT STOP TOO 

FAR AWAY AN IMPORTANT FACTOR? 

Figure 52 further shows if the last-mile problem is an important factor in making 

people end up not using transit for their trips even though they considered it. The 

last-mile problem of public transit refers to the difficulty of buses and trains in 

transporting people to or from the doorstep of their origins and destinations. The 

results suggest that last-mile access is indeed a major issue that impedes people 

from using public transit. 
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FIGURE 53. IF YOU ENDED UP NOT USING SHARED E-SCOOTERS TO REACH TRANSIT STOPS EVEN 

THOUGH YOU CONSIDERED IT, WHY?  

 
FIGURE 54. WHAT ARE THE TOP TRIP PURPOSES FOR WHICH YOU USE E-SCOOTERS? 

 

 

The survey follows up with asking respondents if they have considered using 

shared e-scooter to reach transit stops when walking is undesirable and if they have 

indeed did it. If an individual responded by suggesting that they have considered 

using shared e-scooters to access transit stops but ended up not doing it, a follow 

up question asks why. Figure 53 presents the results. These results suggest that the 

top three reasons are: shared e-scooters are hard to find, other travel options are 

more convenient to use, and the cost of shared e-scooters is too high. 

Figure 54 shows the main trip purposes for e-scooter trips. This question is only 

displayed to individuals who are e-scooter users. The results suggest that 

individuals mainly use e-scooters for shopping trips or running errands, commuting 

trips, attending social activities, and leisure trips (i.e., for fun or recreation). 

Figure 55 provides insights into which mode that shared e-scooters have replaced. 

Specifically, the question asks which mode that people would use for their last 

shared e-scooter trip if a shared e-scooter had not been available. Most people 

responded by suggesting that they would have walked. Other commonly replaced 

travel modes include biking, driving (personal car or for-hire vehicles), and taking 

public transit. 
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FIGURE 55. THINK ABOUT YOUR LAST SHARED E-SCOOTER TRIP IN WASHINGTON DC. IF A 

SHARED E-SCOOTER HAD NOT BEEN AVAILABLE, HOW WOULD YOU HAVE TRAVELLED AROUND?  

 

 
 
 

 

FIGURE 56. WHAT PROPORTION OF YOUR E-SCOOTER TRIPS WERE TO CONNECT WITH PUBLIC 

TRANSIT 
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FIGURE 57. WHAT CHANGES WOULD INCREASE YOUR USE OF SHARED E-SCOOTERS TO 

CONNECT WITH TRANSIT? 

Figure 56 shows results for the following question: roughly speaking, what 

proportion your e-scooter trips were to connect with public transit. About 40% of 

all e-scooter users never used e-scooters to connect with transit. For another 37% 

of e-scooter users, less than 25% of their e-scooter trips are to connect with transit. 

For the rest of all e-scooter users, they at least a quarter of e-scooter trips to 

connect with transit. 

Figure 56 follows up by asking respondents what changes could increase their use 

of shared e-scooters to connect with public transit. The top-ranking options 

selected by respondents are the following: bundled e-scooter and transit fare, 

integrated fare payment for e-scooter and transit trips, increased availability of e-

scooters at transit stops. Moreover, enhancing the bike infrastructure surrounding 

transit stops and providing more parking space at transit stops are deemed 

important by many respondents. 

Finally, Figure 57 shows which changes can make people use public transit more 

often. The most selected options are: shorter waiting time, shorter travel time, 

transit stops closer to home/workplace and key destinations, better on-time 

performance, lower fare, and better earlier morning/late night/weekend services. 
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FIGURE 58. WHICH OF THE FOLLOWING IS MOST LIKELY TO MAKE YOU USE PUBLIC TRANSIT 

MORE OFTEN? 

 

FIGURE 59. PURPOSE OF THE REPORTED TRIP 
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FIGURE 60. TRAVEL MODE USED FOR THE REPORTED TRIP 

Figure 59 shows the number of these reported trip by purpose. About 140 of the 

reported trips are commuting trips, about 70 of them are social or entertainment 

trips, about 50 of them are shopping or errands trips, and about 10 of them are 

school trips reported by students. Figure 60 further shows the travel mode used for 

these trips. The results suggest that about 105 individuals reported a public transit 

trip. Moreover, 60 trips are personal vehicle or walking trips, and 30 trips are for-

hire vehicle trips. 

 

3.6.3 Travel Preferences for Transit and E-scooters 
In this subsection, we further present results from discrete choice modeling of the 

stated preference data. As discussed above, to construct the stated choice 

experiments, we first asked respondents to report a one-way trip that they frequently 

make before COVID-19. A total of 240 respondent completed the stated choice 

experiments. Each of them took five choice experiments, resulting in a total of 1200 

choice situations. To evaluate how individuals respond to trade-offs among 

different trip attributes such as time and money, we developed the following utility 

functions:  

UCar = ivtt ∗ IVTT + ivtt ∗OVTTDIST + ovttdist ∗OVTTDIST +Costinc∗

COSTINC UWalk = ascwk + ivtt ∗OVTTDIST + ovttdist∗OVTTDIST 

UTransit = asctrans + ivtt ∗ IVTT + ivttdist ∗OVTTDIST + ovttdist ∗OVTTDIST +Costinc∗COSTINC 

 

+ lowinctr ∗LOWINCOME + usertrtr ∗TRANSITUSER 

 

UFHV = asc f hv + ivtt ∗ IVTT + ivtt ∗OVTTDIST + ovttdist ∗OVTTDIST +Costinc∗COSTINC 

UE-scooter = ascesct + ivtt ∗ IVTT + ivtt ∗OVTTDIST + ovttdist ∗OVTTDIST +Costinc∗COSTINC 

+ userscsc ∗E-SCOOTERUSER + Age30 ∗AgeBLW 30 + Age50 ∗AGEABV 50 + white∗WHITE 

 

UE-scooter+Transit = ascttesc + ivtt ∗ IVTT + ivtt ∗OVTTDIST + ovttdist ∗OVTTDIST +Costinc∗COSTINC 
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+ userscet ∗E-SCOOTERUSER + usertret ∗TRANSITUSER + lowincet ∗LOWINCOME 

 

+ Age30 ∗AgeBLW 30 + Age50 ∗AGEABV 50 + white∗WHITE 

 

where IVTT is the in-vehicle time, OVTTDIST is out-of-vehicle time divided by 

distance, and COSTINC is trip cost divided by household income. The alternative 

specific constants (ASC) for walking, transit, FHV, e-scooter and “e-scooter+transit” 

are indicated by ascwk, asctrans, ascfhv, ascesct, ascttesc, respectively (the ASC for 

driving is thus assumed to be zero). Table 17 presents a description of the model 

coefficients and the associative travel modes if the coefficient is mode-specific. 

TABLE 17. DESCRIPTION OF MODE COEFFICIENTS 

Variable code Description Alternative 

ascwk Alternative specific constant for the walking mode Walkinhg 

asctrans Alternative specific constant for the transit mode Transit 

ascfhv Alternative specific constant for the FHV mode FHV 

ascesct Alternative specific constant for the e-scooter mode e-scooter 

ascttesc Alternative specific constant for the ”e-scooter + transit” mode e-scooter and transit 

ivtt in-vehicle travel time all modes 

ovttdist out-of-vehicle time divided by distance all modes 

costinc trip csot divided by household income all modes 

lowinctr Indicates if the respondent has a household income below $25,000 Transit 

lowincet Indicates if the respondent has a household income below $25,001 e-scooter and transit 

usertrtr Indicates if the respondent is a transit user transit 

usertret Indicates if the respondent is a transit user e-scooter and transit 

userscsc Indicates if the respondent is an e-scooter user e-scooter 

userscet Indicates if the respondent is an e-scooter user e-scooter and transit 

age30 Indicates if the respondent’s age is below 30 e-scooter, e-scooter and transit 

age50 Indicates if the respondent’s age is abvoe 50 e-scooter, e-scooter and transit 

white Indicates if an individual is White e-scooter, e-scooter and transit 

 

 

Figure 61 presents the outputs of the model. Unsurprisingly, IVTT, OVTT, and 

COSTINC are all statistically significant and negative. ASCWK is negative, which 

suggests that individuals prefer to walk over driving when everything else is equal; 

by contrast, the negative coefficients of ASCTRANS, ASCFHV, ASCESCT, and 

ASCTTESC indicate that individuals prefer driving over transit, FHV, e-scooter, 

and “e-scooter + transit” when everything else is equal. LOWINCTR is negative, 

suggesting that low-income individuals are less likely to select transit over the e-

scooter and “e-scooter + transit” options. WHITEES and WHITEET are both 

negative and statistically significant, which means that White respondents are less 

likely to select the e-scooter and “e-scooter + transit” options compared to non-

White respondents. USERSCSC, and USERSCET are positive, suggesting that e-

scooter users have a stronger tendency to choose the e-scooter and “e-scooter + 

transit” options compared to nonusers. 

 



  
 Mobility-on-Demand Transit  

for Smart and Sustainable Cities 
 

  
97 

Based on these coefficients, we have also computed some willingness-to-pay 

measures. We estimated that for five mile trip, people whose household income is 

between $25,000 and $50,000 are willing to pay $8 per hour in-vehicle travel time 

and $11 per hour out-of-vehicle travel time. 

FIGURE 61.  MODEL OUTPUTS 

 

3.6.4 Discussion 
The survey results from Washington DC suggest that many transit users are also 

e-scooter users, and there is a great interest among travelers to use micromobility 

options to connect with public transit. The discrete choice modeling results 

suggest that lower pricing offered by “e-scooter and transit” bundles can be an 

effective strategy to incentize modal shift from driving to combined use of e-

scooter and transit. In addition, major strategies to promote micromobility as a 

last-mile complement to transit including bundled pricing, fare payment and app 

integration, and enhancing bike infrastrucutre surrounding transit stops. 
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3.7 Comparison of study findings across study areas 
In order to better understand shared micromobility use patterns and trends across 

different geographical areas, we also compared and contrasted survey results from four 

cities, namely Birmingham, AL, Washington D.C., Los Angeles, CA, and Miami, FL. 

The four study areas considered represent a diverse set of regions (in terms of 

socioeconomic, land-use, and transportation contexts) in the U.S., making the results 

more transferable and generalizable. Across the four cities in our study, we obtained 1498 

survey responses, where 499 study participants self-identified as shared e-scooter users 

(33.31% of the total number of study participants). Variations in the use of shared e-

scooter services were observed from city-to-city, ranging from a low of 7.58% of 

respondents in Birmingham (21 out of 277) to a high of  49.05% in Washington, D.C. 

(207 out of 422 respondents) identifying as shared e-scooter users. Los Angeles and 

Miami reported 47.57% and 20.83% survey participants being shared e-scooter users, 

respectively.   

Analysis of the survey results revealed similarities and differences among the shared e-

scooter users across the four cities in the study. We found that most shared e-scooter 

users tend to be males, white, employed, driver’s license holders, and non-students. This 

is a common theme across all four datasets analyzed. On the other hand, the users’ 

characteristics vary from city-to-city with respect to educational attainment, age, 

household income, and the number of people and vehicles in the household across the 

four cities.  

In light of educational attainment, the majority of shared e-scooter users in Birmingham 

had high school (38.10%) and some college education (38.10%). This is in sharp contrast 

with shared e-scooter users in Washington D.C. that overwhelmingly held higher 

education degrees (Bachelor’s degree: 50.24% and post-graduate: 38.16%) and even Los 

Angeles and Miami where the largest share of e-scooter users had bachelor’s degrees 

(44.09% and 42.35%, respectively). 

Differences among study cities were observed also among age groups. The survey 

analysis revealed that shared e-scooter users in Birmingham tend to be young, with 

38.10% reporting being 18-24 years of age. However, Washington D.C., Miami, and Los 

Angeles reported the middle-aged group (30-39 years of age) as the dominant user group 

among all shared e-scooter users age groups (34.30% in Washington D.C., 44.71% in 

Miami, and 33.33% in Los Angeles. 

With respect to household income, survey participants from Birmingham with an annual 

household income of $25,000 -$49,999 made up 33.33% of shared e-scooter users, 

followed by those in the $50,000-$74,999 and $75,000-$99,999 categories (19.05% 

each). In Miami, users with a higher annual household income ($100,000 or more) 

accounted for 32.94% of shared e-scooter users. This is consistent with the results from 
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Los Angeles, where the higher income users (with an annual household income of 

$100,000 or more) made up to 29.03% of shared e-scooter users. In Washington D.C., the 

higher income users take up to 41.00% of e-scooters’ share, while the group with less 

than $25,000 has the lowest share (4.35%). 

We also examined availability of vehicles and its relationship to shared e-scooter use 

among the four cities studied. We found that the majority of shared e-scooter users have 

one or two or more vehicles in their households. However, users without a vehicle in the 

households in Washington D.C. and Los Angeles also make up a sizeable share of shared 

e-scooter users (37.20% and 24.19% respectively). 

When considering the number of persons in the household, a large number of shared e-

scooter users come from one-person (37.20%) and two-person (40.10%) households in 

Washington D.C. This was consistent with the findings from Los Angeles that reported 

that 25.81% of shared e-scooter users come from a one-person household and 39.78% 

from a two-person household. The users in Miami and Birmingham tend to spread out 

among different types of households.  

Our results also revealed that approximately 10% of shared e-scooter trips were used to 

connect with public transit across the four cities studied, indicating some interest and 

need to integrate micromobility services with the local public transportation system. In 

addition, the data analysis showed that a small portion of shared e-scooter users (ranging 

from 3% to 7% in different cities) were enrolled in low-income payment programs. For 

the agencies and policymakers aiming to promote the usage of shared e-scooters, “lower 

cost”, “larger service area”, and “greater availability of e-scooters” are the most 

frequently mentioned incentives to encourage more usage. 

Overall, the study findings offered some fresh insights regarding the relationships 

between several social-economic variables and the usage of shared micro-mobility. The 

findings have important implications for stakeholders of the shared micromobility 

industry as they try to establish a clear picture of who uses shared e-scooters across 

different cities in the United States. This, in turn, will help city planners, policy makers, 

and industry partners alike, to improve upon marketing and deployment practices of 

shared e-scooter services in the near future.   

 

4.0 Assessing the Operational Energy Consumption of an 

Integrated Transit System: A Case Study on Bus Fleets in North 

Carolina 

4.1 Introduction 
Recently, the transportation sector has replaced electricity as the largest US source of 

greenhouse gas emissions by sector due to advances in clean electricity production. 
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However, transportation systems are energy intensive in the US due to structures of urban 

form and reliance on personal vehicle travel. Improving the environmental impacts of the 

operational energy consumption in the transit system is important for reducing carbon 

emissions across sectors. For public transportation, and buses in particular, there are also 

opportunities to reduce fossil-based energy consumption, reduce emissions, and electrify 

transit fleets to meet climate goals and improve transportation systems. 

When considering the challenges of electrifying transportation, fleets of vehicles have their 

own considerations that are important to consider beyond the decision making of private 

consumers. Fleets can be defined as a collection of vehicles that either operate as a unit for 

the same purpose or are operated under the same ownership (Webster, n.d.). As vehicle 

fleets either consider or actively pursue electrification, different considerations emerge that 

affect an organization’s willingness to purchase electric vehicles. Most common 

considerations include financial decisions, but organizations often consider other aspects 

of fleet electrification, such as environmental consideration or sustainability initiatives, 

when making the decision to convert their fleets to electric vehicles (Golob, Torous , 

Bradley, Brownstone, & Soltani Crane, 1997). 

This report includes a general background on vehicle fleet electrification and important 

issues to consider, followed by a case study conducted on public transportation bus fleets 

in North Carolina. Electrifying transportation is one of the major challenges in 

decarbonizing the energy system – yet electrifying transportation does not necessarily 

reduce the overall amount of energy needed to meet service needs. Co-benefits to 

increasing electric vehicle usage abound, including improved air quality, a reduction in 

noise pollution, and increased energy efficiency (Manzolli, Travao, & Antunes Henggeler, 

2022). Yet despite the potential for these co-benefits and large-scale emission reductions, 

overall demand for electricity could increase at power plants (Ou, et al., 2021). Additional 

energy may be required depending on the timing of charging and the stress placed on 

electric grids to meet increased loads. Suffice to say, the electrification of various 

transportation networks requires a critical look at the various issues that impact the uptake 

of vehicles and the design of efficient systems, as well as studies which review specific 

examples of electric vehicle usage and its effectiveness.   

4.2 Vehicle Fleet Electrification: Issues to Consider 
Transportation electrification is not without its challenges in terms of grid stability, 

material procurement, market infiltration, and infrastructure matching to ensure its 

success and equitable access over time. Special attention must be given to the 

electrification of fleets and how organizations plan for fleet electrification and design 

their plans, spaces, and investments to accommodate changing infrastructure and 

operating needs.  
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Fleet electrification will increasingly need to consider how charging necessities impact 

routing of fleet routines, whether range is an issue, the time of charging for vehicles, and 

the impacts on local and regional grids.  System coordination and standardization must 

also be considered, as well as equity concerns and opportunities to make the transition to 

electrification in the transportation sector more accessible. If vehicle fleets are electrified, 

what are the potential impacts on planning from an organizational perspective? How does 

organizational planning need to be adjusted? What planning considerations need to be 

made to accommodate fleet electrification regarding infrastructure, interagency 

coordination, and grid connection? Other literature reviews in the field of fleet 

electrification often cover topics related to specific fleets i.e. buses (Manzolli, Travao, & 

Antunes Henggeler, 2022) or two wheelers (Weiss, Dekker, Moro, Scholz, & Patel, 

2015), technological reviews that cover battery efficiencies and power generation (Li, 

Khajepour, & Song, 2019), or general trends in electric or alternative fuel vehicles that 

discuss adoption behavior of firms and barriers to adoption (Mohammed, Niesten, & 

Gagliardi, 2020).  

Fleets involve the decision making more so of firms and government entities as opposed 

to individual consumers and are considered an essential part of designing and managing 

space to uptake electric vehicles as efficiently as possible. Manzolli et al (2016) point out 

that the change from internal combustion vehicles to electric vehicles in the public sector 

and for vehicle fleets is essential because “relying on private vehicle decarbonization 

only cannot deliver comprehensive space management efficiency solutions in urban 

environments” (Manzolli, Travao, & Antunes Henggeler, 2022, p. 1). Fleet travel patterns 

may be random or predictable, depending on the task, which changes the consideration of 

the purchaser as they assess the needs of their specific fleet  

Barriers to fleet electrification include the upfront costs of purchasing vehicles, which 

tend to be lower for internal combustion vehicles if left unsubsidized. Another barrier 

which affects usership regardless of cost is the purpose of the vehicle and the perceived 

flexibility of use. Studies note that overcoming barriers to the electric vehicle adoption 

will require “non-rival” actions between different entities, namely governments and car 

makers, to encourage the uptake of electric vehicles (Sousa, Almeida, & Coutinho-

Rodrigues, 2020). Charging infrastructure is also considered of utmost importance 

(Sousa, Almeida, & Coutinho-Rodrigues, 2020), the presence or absence of which may 

impact who is willing to buy electric vehicles, especially when needing the capacity to 

charge multiple vehicles in a fleet. 

The electrification of vehicles has also created much discussion about the capacity to 

store energy and create batteries that operate efficiently and according to the needs of 

both the vehicles and the power grids they interact with daily. The operational energy 

requirements of electric transportation do not necessarily entail unidirectional increases in 

energy use, which typically involves energy flowing in one direction from the grid to the 

charging vehicle. Electric buses or personal vehicles may interact with the grid in 
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multiple directions, using their battery capacity to act as energy storage and as an energy 

source when necessary. For instance, the rise of vehicle-to-grid interactions have enabled 

the management and smart charging of batteries to smooth out the intermittency of 

electricity generation and provide a storage reservoir for times when there is excess 

available electricity supply (Yuan, Dorn - Gomba, Dorneles Callegaro, Reimers, & 

Emadi, 2021).  

Additionally, aggregated fleets of buses can serve as batteries. Using a Vehicle-to-Grid 

simulation model, Elliott and Kittner (2022) estimate that if North Carolina were to 

electrify all school buses, utilities could shave approximately 2.6 GWh of electricity from 

peak load periods. This would be the equivalent of turning off multiple coal fired power 

plants for several hours. Adding operational flexibility to the transportation sector could 

lead to greater synergies between the electric grid and transportation system if managed 

and operated using efficient systems. Vehicle fleets have the potential in aggregate to 

reduce peak electric loads. However, transit systems will need to integrate with the 

electric grid to achieve certain benefits, and agencies may operate schedules independent 

of electric grid needs. Increased interactions with the electric grid require a greater degree 

of coordination among agencies to create efficient systems.  

Other technologies, such as wireless power transfer and fast charging stations, are being 

implemented to help integrate electric vehicles into transportation networks. Especially 

for fleets that have established routes and networks, optimizing charging locations and 

deciding on the timing of charging is an integral part of designing routes and enabling 

fleets to operate either as heterogenous fleets with a mixture of EVs and ICEVs or as 

purely electric fleets (Iliopoulou & Kepaptsoglou, 2019). 

4.2.1 Economic Considerations 
Different studies report the importance of looking beyond the financial considerations to 

other aspects of electrifying vehicles within systems that are designed for internal 

combustion engines. Increasing charging infrastructure is considered a key component, as 

are solving mechanical issues, such as extending range and extending battery life in 

vehicles. Some research cautions against creating more costs associated with electric 

vehicles, such as priced electricity at public charging stations or higher taxes related to 

electric vehicles and their infrastructure, as this may deter people from making the initial 

purchase. 

Funding and purchasing power for electric vehicles varies depending on location and the 

local composition of operations that rely on public funding and taxation versus private 

funding or market mechanisms. Cordera et al (2019) write that punitive measures taken 

against internal combustion engine (ICE) vehicles may be the most effective on buyers 

who are purchasing in the next three years. However, incentives are imperative, 

especially for lowering purchase prices which can be a main deterrent (Cordera, 

Dell'Olio, Ibeas, & Ortuzar, 2019). Kuppusamy et al. (2017) argue that government 
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subsidies and research and development efforts should focus on reducing battery cost 

before increasing battery range and should focus on reducing battery recharge time before 

tackling other inconvenience factors (Kuppusamy, Magazine, & Rao, 2017).  

In general research and policy efforts appear to focus on the rapid uptake of electric 

vehicles across transportation sectors, which creates a need to prioritize economic 

policies and financial considerations that will be the most impactful to adoption 

decisions. General literature on electric fleets highlights the importance of developing 

infrastructure and providing financial support to promote adoption. Rosenberger, et al. 

(2022) studied electrification potential in Hamburg, Germany, finding that with the 

increased availability of charging infrastructure, electrification potential in Hamburg, 

Germany could increase 35 percent (Rosenberger, Tapia, Friedrich, & Flamig, 2022). 

Bae, et al. (2022) had similar findings in a study examining alternative-fuel vehicles 

(AFVs). Funding and technical guidance on construction of charging infrastructure was 

recommended to promote adoption (Bae, Kumar Mitra, Rindt, & Ritchie, 2022). In 

addition, educational programs highlighting the benefits of AFVs were also 

recommended. 

4.2.2 Distinguishing Between Public and Private Fleets 
The literature on public fleets is primarily focused on electric bus fleets, yet public fleets 

may be comprised of light duty, medium duty, or heavy-duty vehicles, depending on the 

need. Large considerations for public fleets include funding mechanisms and public 

policies regarding their funding and adoption, and route optimization, which may require 

planning and coordination across various sectors of government.  

Large cities, as well as those with a municipal transport body that strongly favors low-

emission vehicles (LEV), are more likely to promote tests and implementation of low-

emission buses (Taczanowski, Kolos, Gwosdz, Domanski, & Guzik, 2018). Zero or low-

emission buses were also found to be more common in large cities that are “highly 

positioned in urban hierarchy, economically sound and which are characterized by a well-

developed tertiary economy as well as by high human capital” (Guzik, et al., 2021). 

Guzik, et al. (2021) elaborate on the importance of “the availability of people with 

appropriate qualifications to implement electromobility” and “the appropriate operation 

of the electric rolling stock and energy infrastructure devices” (Guzik, et al., 2021, p. 24 

of 29). They highlight the importance of economic and human resources in 

electrification, suggesting that technical and financial support are a highly critical 

component in promoting and ensuring the success of the transition to electric vehicles. 

Public perception, manager opinions, inspiration from other cities, and expectations that 

in the future regulations and grants will favor LEVs were also found to be strong drivers 

of low-emission bus fleet adoption. 
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4.2.3 On Emissions Scopes 
As organizations choose to electrify their fleets either partially or fully, part of the 

consideration is the reduction in emissions that comes from fleet electrification. Emission 

inventory protocols distinguish emissions by their scope, representing emissions by three 

different scopes: direct emissions, indirect emissions from purchased energy, and indirect 

emissions from corporate value chains (American Public Transportation Association, 

2018, p. 7). Agencies that choose to electrify may be considering the availability of 

credits for their electric vehicles, legal requirements, and the benefit of emissions 

reductions overall.  

Regional and local land use patterns further impact an agency’s ability to reduce 

emissions via fleet electrification, with the degree to which they are able to reduce 

emissions being related to frequency of use, vehicle miles traveled, and the limitations of 

the local landscape for facilitating the development of electric vehicle infrastructure and 

more efficient travel in general (American Public Transportation Association, 2018, pp. 

28 - 30).  

4.2.4 Carbon Intensity from Local and Regional Grids 
The carbon reduction benefit of converting to electric vehicles is highly dependent on the 

energy mixture of the local and regional electric grids. Policies which target the 

procurement of electric vehicles, whether by requiring a transition to electric vehicles 

over a certain time period or offering voluntary incentives, are reliant on and should 

consider further regulation of the electric grid which charges electric vehicles.  

Fleet conversion can impact multiple grids as well, which may require further organized 

interactions and coordination between multiple agencies. The need for a coordinated 

approach applies on the national level as well, depending on the governmental structure 

and who maintains governing control of the electric grid. For example, countries within 

the European Union who wish to calculate their GHG savings have previously used the 

“average electricity mix” of member states to calculate GHG savings, despite input 

sources into the electric grid being highly variable when comparing member states (Moro 

& Lonza, 2018, p. 2)  

As electrification in the transportation sectors and other sectors increases studies point to 

a need for grid expansion to accommodate the increased demand, with recent reports 

predicting that electricity consumption may increase between 23% to 32% by 2050 

(Blonsky, et al., 2019).  Multiple factors influence the need for grid expansion, and the 

conservation about grid expansion is undeniably coupled with considerations for grid 

stability. Studies predict that transportation will have a significant impact on electricity 

demand, which is further complicated by how vehicles connect to the grid to charge. 

Uncontrolled electric vehicle charging versus charging in a controlled, predictable 

capacity can have a substantial influence on the stability of the grid, effecting its overall 

efficiency and cost-effectiveness. Questions remain about what benefits combining 
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technologies might provide as people consider merging vehicle electrification with ideas 

for energy storage and renewable energy production. 

4.2.5 Buses as Fleet Vehicles 
Buses are an important focal point for studying fleet electrification, as they almost always 

operate in the form of a fleet and for public transportation, more than 80% of passenger 

journeys around the world are taken by bus (Manzolli, Travao, & Antunes Henggeler, 

2022, p. 2) (Glotz - Richter & Koch, 2016). Studies point to a substantial reduction in 

operational costs with bus fleets, which helps offset the initial investment, as does the 

promise of the declining cost of batteries. As charging remains a consistent issue across 

fleet types, Manzolli et al. (2022) detailed the issues related to charging for bus fleets, 

mentioning that although there is “no consensus regarding the best strategy to recharge 

[bus] fleets”, there are viable options including overnight charging, opportunity charging, 

and in-motion charging (Manzolli, Travao, & Antunes Henggeler, 2022, p. 7). The 

optimal decision will relate to the particular needs of the fleet and to what will ultimately 

cause less stress on the electric grid (Manzolli et al., 2022, p. 7). However, there is a 

general consensus that the use of battery-powered vehicles does reduce CO2 emissions 

when compared to diesel powered vehicles when considering the entire life cycle of the 

vehicle, from well to wheel. The benefit of carbon emissions reductions will further 

improve with more renewable input into the electric grid, improvements in battery 

technology, and proper battery recycling (Manzolli et al., 2022, p. 9).  

When designing efficient transportation systems that utilize bus fleets, Manzolli, et al. 

(2022) also point to the need to consider the following issues related to planning and 

operation: fleet size, routes and whether they are fixed or variable, how to minimize total 

cost of ownership, the benefits of considering lighter weight vehicles as opposed to heavy 

weight (ie, short buses) to reduce total energy consumption, and charging location 

planning which requires a comprehensive analysis of the vehicle scheduling. Moving 

forward, Manzolli et al. (2022) concludes that studying mixed fleets is crucial to 

understanding the implications of transitioning to electric vehicle fleets, as some fleets do 

fully convert to electric yet many acquire EVs gradually – operating a mixture of electric 

and ICE vehicles. This is true of bus fleets in addition to other types of fleets, and the 

ultimate composition of the bus fleets depends on the decision making of the individual 

operators.   

4.3 Opportunities for Fleet Electrification in North Carolina 
Focusing on bus fleets in North Carolina as a case study, the remainder of this report 

summarizes the operational energy challenges of electrifying public bus transit fleets and 

estimates the effect on air pollution emissions for different transit agencies in North 

Carolina. 

Buses represent an interesting case study for electrification, as they have unique 

challenges but can also help significantly reduce local CO2 emissions and air pollution. 
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With advances in lithium-ion battery storage technology, electric buses have emerged as 

a potential electric public transportation option. However, range, the time of use, and the 

time of charging are important considerations for bus routes.  Most electric school buses, 

for instance, range from 100-155 miles with a battery energy capacity of 126-210 kWh 

per bus (Elliott & Kittner, 2022). Public buses have larger potential ranges yet less 

downtime for charging and discharging due to higher utilization rates.  

Electric transportation will increase energy consumption across sectors. However, on a 

net basis, electrification dramatically reduces CO2 emissions and air pollution emissions 

when energy demands are shifted from internal combustion engines to electricity 

produced in power plants (Ou, et al., 2021). Conventionally, many buses use diesel fuel, 

which causes air pollution and challenges for public health. The electrification of buses is 

a promising solution to the pollution and CO2 emission issues that are apparent with 

conventional diesel usage.   

In North Carolina, there are additional opportunities to investigate the energy 

requirements for electrifying bus fleets. Here we review potential environmental and 

energetic benefits of replacing diesel buses with electric buses for major transit systems 

in North Carolina. This case study represents one of the potential benefit streams. For 

expanded examples that have been published in the peer-reviewed literature, we also 

refer to reports such as Ou et al. 2021, which examines the net emissions and energy 

impact of increasing shares of personal vehicle electrification throughout the United 

States. Elliott and Kittner (2022) examine the operational energy implications of school 

bus electrification in North Carolina – integrating the transit system with the route 

schedules and peak electric grid demands. 

For this Task, our research on fleet electrification has allowed us to contribute and 

publish two new peer-reviewed papers on transportation electrification. These include 

“Operational grid and environmental impacts for a V2G-enabled electric school bus fleet 

using DC fast chargers” and “Evaluating long-term emission impacts of large-scale 

electric vehicle deployment in the US using a human-Earth systems model.” 

Additionally, we have been working on a case study in North Carolina using public 

transit agency transportation data to understand the potential avoided emissions and 

opportunities from switching from diesel-based buses to electric buses. 

4.4 Data Acquisition by Input 
Vehicle or Engine Group 

The Vehicle Group used for all DEQ inputs is “Transit Bus.” 

 

Class 

All vehicles considered are classified as “Medium-Size Heavy-Duty Transit Bus,” or class 

6 (MN DOT, n.d.).  All vehicle data was filtered to represent all “bus, transit >= 27’6” and 

“bus, suburban >= 27’6,” or class 6 vehicles, from the Vehicle Type Name category.  
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Calculations therefore excluded data obtained from all vehicles listed as “Bus, articulated 

>=55’,” “Bus, double-deck,” “Bus, intercity >= 32’6”,” “Bus, trolly replica any length,” 

and “Small vehicle, <27’6.”   

 

Quantity 

The quantity of buses was obtained from the American Public Transportation Association 

(American Public Transportation Association (APTA), n.d.). The quantity of buses was 

then adjusted by filtering for class 6 vehicles of Power Type Name “Diesel” and of Mode 

Name “Bus.”   

 

Baseline Engine Model Year 

The baseline Engine Model Year was estimated to be 2009 based on a weighted average 

for each transit system’s Year Built category, followed by an average of those values (See 

Sample Calculation 1).  

 

Baseline Fuel Type 

ULSD (Diesel) was the fuel type used in all DEQ calculations.  This input was filtered 

for in the Power Type Name category of the APTA data. 

 

Annual Miles Traveled 

The Annual Miles Traveled for each agency was obtained directly, via private 

communication with each agency.  Each agency’s Annual Miles Traveled was adjusted to 

account for only class 6 vehicles of Power Type Name “Diesel” and of Mode Name “Bus” 

(See Sample Calculation 2). 

 

Annual Fuel Gallons 

Annual Fuel Gallons was calculated by dividing the “Annual Miles Traveled” by an 

average 4.41 miles per gallon (Proc, Barnitt, Hayes, Ratcliff, & al., 2006).  Each agency’s 

Annual Fuel Gallons was adjusted to account for only class 6 vehicles of Power Type Name 

“Diesel” and of Mode Name “Bus” (See Sample Calculation 3). 

 

Annual Idling Hours 
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The number of daily idling hours is assumed to be 3.7 hours per day for all transit buses 

(Office of Energy Efficiency and Renewable Energy , 2021).  An assumed 365 operation 

days returns a value of 1350.5 Annual Idling Hours per vehicle. 

 

Upgrade Year 

The lifetime of each vehicle was assumed to be 6 years, making the Upgrade Year 2015. 

 

Remaining Life of Baseline Engine/Vehicle 

To avoid greater inconsistencies between different transit agencies, the Remaining Life of 

all vehicles was assumed to be 1 year.   

 

Upgrade Cost 

The Upgrade Cost of one class 6 diesel transit bus to one class 6 all-electric transit bus is 

approximately $750,000 (Sierra Club, n.d.).  

4.5 Calculations 
Sample Calculation 1: Weighted Average Calculation for Baseline Engine Model Year 

To determine the best assumption for Baseline Engine Model Year, a weighted average 

calculation was performed on the “Year Built” column from the APTA data.  This was 

computed by dividing the first row of “Active Vehicles, Number of” by the total number 

of active vehicles.  Then, if multiplied by the first row of “Year Built,” and summed, this 

returns a weighted average for the Baseline Engine Model Year.  An average of each transit 

agency’s weighted average was then performed to determine the Average Baseline Engine 

Model Year across agencies. 

= ("Active Vehicles, Number Of" 𝑅𝑜𝑤 1 / Quantity of Buses (Active) ∗   "Year Built" 𝑅𝑜𝑤 1) + ⋯

+ ("Active Vehicles, Number Of" 𝑅𝑜𝑤 𝐿𝑎𝑠𝑡 / Quantity of Buses (Active)

∗   "Year Built" 𝑅𝑜𝑤 𝐿𝑎𝑠𝑡) 

 

Sample Calculation 2: Adjustment for Annual Miles Traveled 

The Annual Miles Traveled for diesel buses in each transit agency was a collection of the 

miles traveled by all diesel vehicles that record data within APTA.  This includes more 

than just Class 6, diesel transit buses.  To adjust for this, we assume that all reported 

vehicles travel the same distance each year.  With this assumption, it is now possible to 

proportion the number of miles to represent only Class 6, diesel transit buses.  We 

accomplished this by using an excel function, “SUBTOTAL,” which is capable of 

summing a series of rows that have been filtered.  If the “SUM” function alone had been 

used, it would have included all rows within the range, including those hidden by the filters.  

To get the correct ratio of miles traveled by Class 6, diesel transit buses to total miles, the 

following formula was used:  
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= (𝑆𝑈𝐵𝑇𝑂𝑇𝐴𝐿(9, “𝐴𝑐𝑡𝑖𝑣𝑒 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠, 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓” 𝐶𝑜𝑙𝑢𝑚𝑛)

/ 𝑆𝑈𝑀(“𝐴𝑐𝑡𝑖𝑣𝑒 𝑉𝑒ℎ𝑖𝑐𝑙𝑒, 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓” 𝐶𝑜𝑙𝑢𝑚𝑛)) ∗ "𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝑢𝑒𝑙 𝐺𝑎𝑙𝑙𝑜𝑛𝑠"  

 

This returns the ratio of miles traveled by Class 6, diesel transit buses against the “Annual 

Miles Traveled.” 

 

Sample Calculation 3: Fuel Gallon Adjustment 

The Fuel Gallon Adjustment is necessary to ratio for the same reason as the Annual Miles 

Traveled: only Class 6, diesel buses are accounted for in this estimate.  Therefore, to adjust 

for this, the Adjustment for Annual Miles Traveled is divided by the Miles Per Gallon to 

obtain the Fuel Gallon Adjustment: 

= 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑖𝑙𝑒𝑠 𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑 / 𝑀𝑖𝑙𝑒𝑠 𝑃𝑒𝑟 𝐺𝑎𝑙𝑙𝑜𝑛 

 

4.6 Assumptions 
 DEQ Assumptions 

Emissions from the electric grid are not included in the results of avoided emissions from 

tracking diesel buses.  In gallons, fuels other than ULSD have been converted to ULSD-

equivalent gallons.  Cost effectiveness estimates include only the costs which you have 

entered and do not include infrastructure costs.  The DEQ defines the “Total Cost 

Effectiveness” as “the total amount of money (USD) spent on the project (including 

administrative costs) in order to reduce one short ton of pollutant over the lifetime of the 

vehicles/engines in your project” (US EPA, 2021). 

Health Benefit Assumptions 

The EPA provides assumptions in the form of a health benefits summary that details the 

health benefits methodology in the model (US EPA, 2010).  Health benefits are assumed 

to occur because of decreases in diesel emissions.  As the health benefits summary states,  

The Benefits Module uses the 2002 National Emissions Inventory (NEI) data and the 2002 

National Air Toxics Assessment (NATA) model results to estimate the relationship of 

changes in diesel emissions to changes in primary particulate matter air concentrations for 

each county in the U.S. The Benefits Module then uses previously generated outputs from 

the Environmental Benefits Mapping and Analysis Program (BenMAP) model to estimate 

the value of changes in the incidence of avoided premature mortality and several excess 

morbidity endpoints (p. 6). 

 

Calculation Assumptions 

It is assumed that all transit buses run an equal annual amount of time and mileage 

annually, per agency. 

https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100ABPE.pdf
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TABLE 18. ESTIMATED ANNUAL OPERATIONAL EMISSIONS FROM CURRENT BUS OPERATIONS 

Estimated Annual Emissions (Short Tons) 

 Transit 

Authority  NOx PM 2.5 HC CO CO2 

Fuel 

(Gallons) 

Chapel Hill 

Transit 

         

67.4 

         

0.28  

           

3.7  

         

16.4  

       

35,875.3  

           

3,188,920  

CATS 

   

2,656.2  

         

9.61  

       

124.3  

       

567.0  

     

1,450,181  

       

128,904,930  

GoRaleigh 

           

4.0  

         

0.02  

           

0.2  

           

1.0  

         

1,982.3  

              

176,202  

PART 

       

153.6  

         

0.61  

           

8.0  

         

36.5  

       

83,759.9  

           

7,445,328  

Winston-

Salem 

         

23.2  

         

0.10  

           

1.3  

           

5.7  

       

12,259.9  

           

1,089,768  

Total 

   

2,904.4  

       

10.61  

       

137.5  

       

626.7  

     

1,584,058  

       

140,805,148  

 

Table 18 shows the annual operational emissions estimated by current bus routes and mileage for 

the major public transit systems in North Carolina. Charlotte is a larger system, therefore has 

greater total operational emissions and annual operational emissions. Charlotte has the largest 

transit system and the greatest emissions from diesel bus operations. From that perspective, there 

is also the greatest potential to avoid emissions by replacing diesel buses with electric buses. On a 

per vehicle basis, however, there are many opportunities for electrification to reduce or avoid 

emissions based on current operational schedules and routes.  

 

 

TABLE 19. ANNUAL OPERATIONAL EMISSIONS PER VEHICLE 

Annual Operational Emissions per Vehicle (Short Tons) 

 Transit 

Authority  NOx PM 2.5 HC CO CO2 

Fuel 

(Gallons) 

Chapel Hill 

Transit 

           

1.2  

       

0.005  

         

0.07  

           

0.3  

            

640.6 

                

56,945  

CATS 

           

9.3  

       

0.034  

         

0.44  

           

2.0  

         

5,088.4  

              

452,298  

GoRaleigh 

           

0.4  

       

0.002  

         

0.03  

           

0.1  

            

220.3  

                

19,578  

PART 

           

7.0  

       

0.028  

         

0.36  

           

1.7  

         

3,807.3  

              

338,424  

Winston-

Salem 

           

1.0  

       

0.004  

         

0.05  

           

0.2  

            

510.8  

                

45,407  
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TABLE 20. ANNUAL ENERGY AVOIDED BY DIESEL REPLACEMENT 

 Transit 

Authority  Fuel (Gallons) BTU 

Electricity 

Required 

(GWh) 

Chapel Hill 

Transit 

            

3,188,920          4.3 x 1011        128.3  

CATS 

       

128,904,930     1.7 x 1013    5,190  

GoRaleigh 

               

176,202             2.4 x 1010            7,094  

PART 

            

7,445,328  1 x 1012       299.7  

Winston-

Salem 

            

1,089,768          1.5 x 1011          43.9  

Total 

       

140,805,148  1.9 x 1013    5,669  

 

TABLE 21. ABATEMENT COST OF DIFFERENT POLLUTANTS BY TRANSIT AUTHORITY ($/KG) 

 Transit Authority  NOx PM 2.5 HC CO CO2 

Chapel Hill Transit 
$687  $166,933  $12,617  $2,817  $1.29  

CATS 
$89  $22,557  $1,706  $374  $0.16  

GoRaleigh 
$1,879  $419,461  $31,681  $7,311  $3.75  

PART 
$118  $30,040  $2,271  $498  $0.22  

Winston-Salem 
$855  $205,274  $15,513  $3,481  $1.62  

 

4.7 Results and Discussion 
 Table Results 

The Annual Miles Traveled, Annual Fuel Gallons, and Quantity of fuel varies by transit 

agency.  The common theme across the model’s results is that the size of the agency’s fleet 

and the subsequent emissions, has a direct impact on the cost-effectiveness of 

electrification.  As the size of the fleet increases, the amount of each emissions increases 

substantially.  The model suggests that the larger the fleet in question, the more cost-

effective it is to electrify.  CATS is the largest fleet with 285 transit buses and emits the 

Commented [SVP1]: May need to update the format of 
this and other tables for consistency 
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most volume of pollutant as a result.  Yet CATS is also predicted to have the lowest costs 

to reduce a short ton of any pollutant.  Additionally, the model suggests that agencies with 

smaller fleets will spend more money on reducing one short ton of any pollutant.   

 

All dollar values in Table 20 show higher costs to reduce pollutants from an ICE than is 

suggested by the EPA. The DEQ was run to represent the total replacement of a diesel 

transit bus to an electric one. The brunt of the cost is most likely associated with extraneous 

expenses in addition to the vehicle replacement. To reduce one short ton of pollutant, this 

would require multiple vehicles to be electrified.   

 

Context for PM 2.5 

It is unlikely that that one diesel transit bus will produce an entire short ton of PM2.5 over 

its lifetime. According to the EPA, the cost to reduce one short ton of PM2.5 from an internal 

combustion engine (ICE) is $166,000 on average (US EPA, OAR, 2014).  This is 

approximately $182.98 per kilogram.  Due to the amount of PM2.5 being emitted by transit 

vehicles being substantially lower than a short ton over its individual lifetime, it costs much 

more to make a reduction of that impact.  In order to reduce an entire short ton of PM2.5 

from diesel transit buses in a year, the model suggests a 100% reduction of emissions from 

30 transit buses – which is the equivalent of electrifying 30 buses.  

 

CATS has the most opportunity to reduce PM2.5, and thus, the cheapest way to do it.  The 

amount of pollutant that CATS is producing is nearly 10 times that of every other agency.  

This would suggest that in order to reduce the same amount of PM2.5 from their vehicles 

as other agencies, strategies could be diversified to find the least expensive options of 

electrification.   

 

Agency Comparisons 

The number of active vehicles is the largest contributor to the amount of pollutant emitted 

by each agency.  With many of the DEQ inputs remaining constant across competing 

agency simulations, the active number of vehicles and the adjusted annual miles traveled 

are the source of the variability in emissions by vehicle.  The largest emitter, CATS, is 

responsible for 285 diesel transit buses that emit an estimated 1,450,181 short tons of 

CO2 annually.  For comparison, GoRaleigh is responsible for only 9 diesel transit buses 

that produce 1,982 short tons of CO2 annually.  The two largest fleets, CATS and PART, 

are more polluting prior to the transition to electric vehicles due to their volume of diesel-

based buses.  This section will explore the opportunity cost of reducing emissions from 

these large transit agencies. 
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In private conversations with the Piedmont Authority on Regional Transit (PART), the 

viability of transitioning to an electric vehicle fleet was stated as “not financially suitable.”  

The results in Table 4 shows that, when transitioning to electric transit buses, PART will 

find it less expensive to reduce emissions by electrifying their diesel fleets than GoRaleigh, 

Chapel Hill Transit, and Winston-Salem.  There is a lower cost of pollution abatement from 

electrifying in those areas. 

 

Operationally, from an energy perspective, North Carolina could benefit greatly from 

electrifying a certain percentage of vehicles, if they are aggregated for shaving peak and 

implemented as part of a generation adequacy plan. 

 

 
FIGURE 62.COMPARISON OF PEAK LOAD MANAGEMENT THROUGH MANAGED CHARGING OF 

ELECTRIC SCHOOL BUS FLEETS (ELLIOTT AND KITTNER, 2022) 

For instance, in a figure adapted from Elliott and Kittner (2022), 2-3 GW of peak load 

can be reduced through managed charging efforts in North Carolina alone. 

 

From an energy perspective, transportation electrification requires coordinated charging 

and an increase in available electricity. However, it also significantly can reduce diesel 

consumption in the transportation sector, which threatens public health and increases 

greenhouse gas emissions. Diesel can also be a costly fuel and the price can fluctuate with 

global diesel markets, so there is uncertainty of pricing within local municipal operational 

budgets. 
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5.0 Assess the Service Characteristics of Innovative Models in 

the Southeast in Support of Health Care Services  

5.1 Introduction 
Some individuals have been facing significant transportation barriers to accessing health 

care facilities, e.g., hospitals, dialysis centers, and urgent care centers, in the United 

States. A recent study found that, in 2017, 5.8 million Americans experienced delays in 

non-emergency medical care due to a lack of transportation means (Wolfe et al., 2020). 

Such scenario most happened among transportation-disadvantaged people, e.g., people 

who are older (over age 65) and disabled, have lower incomes, no access to personal 

vehicles, and/or limited or even no health insurance (Powers et al., 2016; Wolfe et al., 

2020). Demand-responsive paratransit systems were gradually adopted to provide these 

people with access to health care facilities. However, prior empirical studies have found 

that these systems have suffered from long waiting times, low operation frequencies, and 

high operating costs (Kaufman, 2016). 

In recent years, ridesourcing companies, also known as transportation network 

companies, such as Uber and Lyft, have emerged as important providers of non-

emergency medical transportation services (Powers et al., 2016; Surampudi, 2019). 

Moreover, health care providers are increasingly exploring the possibility of connecting 

with these ridesourcing services to transport patients to and from medical appointment 

(Wolfe et al., 2020). Therefore, to meet the challenges of the changing market ridership 

decline and the potential benefits, many transit agencies are developing public, on-

demand options for non-emergency medical transportation, where customers can 

schedule a round trip from their home to a health care facility with preferred pick-up and 

drop-off times minutes prior to an appointment, or days in advance. However, how to 

design an efficient and economical paratransit system to provide such demand-responsive 

service remains largely an unsolved problem. 

We should note that the underlying problem, i.e., paratransit system and ridesourcing 

systems have different operating objectives. For paratransit system, the goal is to deploy 

the fleet to meet riders' non-emergency medical transportation needs in the most efficient 

manner. However, ridesourcing companies seek to maximize profits by serving as many 

customers as possible in a timely fashion. In addition, Uber and Lyft have a pool of 

available drivers that are distributed across urban areas (Yan et al., 2020). Consequently, 

these drivers are generally likely to be close to customers and thus they have relatively 

less response time.  

Nevertheless, for paratransit systems, only a small size of fleet (vehicles) is available to 

serve customers across a relatively large, rural area. More importantly, since paratransit 

partially funded by the government, social equity may come to play a critical role. This 

suggests that even for long-distance trips (which are usually aligned with more travel 

cost) must be provided by the transit operators at an affordable price. However, 
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ridesourcing companies would seldom sacrifice the profits for equity purposes. To this 

end, substantial needs emerge for new models that are able to deploy the paratransit fleet 

efficiently and economically to meet the transportation needs for health care purposes. 

The essence of this problem is the trade-off between operating and waiting times. On the 

one hand, operators seek to minimize the total operating time, i.e., the total number of 

drivers' working hours, which affects the operating costs directly.  On the other hand, 

from the customers’ perspective, minimizing the total waiting time, i.e., the difference 

between the actual and scheduled drop-off and pick-up times, is of great importance. The 

trade-off between these two objectives cannot be achieved simultaneously in a 

straightforward way. If transportation resources were unlimited, we could simply assign a 

specific vehicle to transport every individual passenger such that no waiting is ever 

needed, which would inevitably impose more operating costs. However, with a fixed 

budget we have to design a system that allows ridesharing (i.e., a UberPool/Lyft-Line 

type of service that automatically pairs passengers with overlapping routes (Xu et al., 

2021)) to ensure each passenger is picked up and dropped off as they scheduled while 

shortening the trip length as much as possible. The routing aspect of ridesharing thus has 

to be taken into account, which drastically complicates the problem. 

Previous studies investigating demand-responsive transit operations predominantly 

focused on optimizing the trip distance, i.e., the routing. However, given the nature of 

paratransit system, we cannot simply model formulate this problem as shortening the trip 

distance. Both operating cost and user experience should be taken into consideration. 

Therefore, we approach this problem from both operator’s and user’s perspective. 

Specifically, we formulate the operator model to optimize the operating cost (i.e., 

operating time) and the user model to optimize the user experience (i.e., the waiting 

time). Overall, the main contributions of this are threefold. 

• We design a new, on-demand paratransit service system from the operator's and 

the user's perspectives, respectively. We formulate the problem with a mixed 

integer program (MIP) approach. 

• We propose two new objective functions in the two aforementioned situations, 

and add some application-specific constraints on top of the DARP model to 

accelerate the solution.  

• We use a real-world data set as a case study, and demonstrate that our approach is 

able to significantly improve the efficiency of the designed paratransit system. 

5.2 Literature Review 

5.2.1 Using innovative mobility to enhance paratransit in the U.S.  
Demand-response transit (DRT) services have historically been offered in U.S. cities as a 

complement to fixed-route, public transportation services (i.e., bus, rail), often focusing 

on providing services for low-mobility populations including people with disabilities and 

the elderly (Franckx, 2017). While both traditional DRT and microtransit offer flexible 
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services that can respond to relatively low demand, DRT may require pre-booking for 

trips or use larger vehicles than microtransit services (Franckx, 2017; Volinski, 2019). In 

small cities, low-density suburban areas, and rural areas, DRT services are often 

consolidated with paratransit service that must be provided for eligible individuals with 

disabilities, as mandated by the Americans with Disabilities Act (ADA) of 1990.  

Providing ADA paratransit is notoriously costly, services are inefficient with long 

waiting times, and user experience is often reported as poor. Accordingly, a number of 

innovative mobility solutions have been proposed to enhance paratransit services. 

Examples include allowing riders to book trips through multiple communications 

channels and using different technologies (e.g., telephone, apps, SMS messaging); 

optimizing connections between paratransit and transit services; and encouraging 

partnerships between paratransit agencies and taxis or app-based ridehailing services, like 

Uber, Lyft, and Via, to offer more efficient services (Kaufman et al., 2016). 

Transit/paratransit agency partnerships with technology-enabled third-party companies to 

provide a more demand responsive, or even on-demand service have proven successful in 

improving overall paratransit service operation and delivery, but providing these services 

in a manner that accommodates all riders, including those who require a wheelchair-

accessible vehicle, can be challenging (Choi & Maisel, 2022). Furthermore, demand for 

such services may be high, which can drive up operating costs. Thus, cost savings depend 

on how many trips can be diverted away from the traditional paratransit service 

(Gonzales et al., 2019; Miah, 2020; Turmo et al., 2018). 

DRT services have much higher operating expenses per trip than fixed-route public 

transportation services because DRT vehicles are typically smaller, and thus lower 

capacity; however, operating costs per vehicle mile and per vehicle hour are lower for 

DRT systems compared to fixed-route systems. In 2020, the average operating cost per 

trip for rural DRT systems in the U.S. was $25.68, while the average operating cost per 

vehicle mile was $3.21 and per vehicle hour was $53.09. Operating costs for rural transit 

systems have been increasing steadily since 2017 and increased significantly between 

2019 and 2020. The average fleet size for rural DRT systems in the U.S. in 2020 was 17 

vehicles, with “cutaways”—small buses built on a van or truck chassis—representing the 

majority of vehicles for both rural demand-response and fixed-route services (Mattson & 

Mistry, 2022). 

Because transit is so labor intensive, salaries, wages, and benefits represent the largest 

contributors (over 60%) to rural and small urban public transit agencies’ total operating 

costs (Edrington et al., 2016). From an operator’s perspective, enhancing rural demand-

response paratransit systems might involve reducing operating costs by decreasing 

vehicle operating hours, or time in which drivers are working. This could be 

accomplished through innovative solutions that facilitate more efficient or optimized 

vehicle dispatch and routing.  
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5.2.2 Modeling the operations of demand-responsive paratransit  
Paratransit services are to transport customers for a round trip from their home to a health 

care facility with their pre-scheduled pick-up and drop-off times minutes, hours or even 

days in advance. The transit agencies may decide the specific routes for serving the 

customers on time with the most cost-effective strategies. Therefore, the routing part 

plays an important role in deciding the service quality and operating cost.  

One of the popular routing problems is traveling salesman problem (TSP), where a set of 

cities should be visited by a salesman in a specific order and he must return to the start 

city. The vehicle routing problem (VRP) is a more complex routing problem (El-

Sherbeny, 2010). Specifically, each location (i.e., city) is associated with a specific 

demand and each vehicle has a capacity limit. Furthermore, the VRP becomes closer to 

real-world scenario when we set a time window when serving each customer. That 

means, a vehicle has to visit each customer with a specific time frame limit (i.e., 

customer can schedule their preferred time for travelling). Based on which, the dial-a-ride 

problem (DARP), which arose in door-to-door transportation services for elderly and 

disabled populations (Cordeau, 2006), was formulated and gained great scholarly 

attention. DARP has some common constraints, e.g., vehicle capacity and time window. 

Most DARP applications focused on two conflicting objectives: minimizing operating 

cost and improving user experience. Operating cost closely aligns with operating time 

and routing distance while user experience largely depends on the waiting time (from 

pickup and dropoff) and late arrival. To address this trade-off, prior studies have tried to 

separately formulate the problem from either operator’s side or user’s side, or optimizing 

travel cost while imposing user experience as constraints. DARP can be classified as both 

static and dynamic. Static means all trip requests are known a certain time before the fleet 

starts working, therefore the routing could be pre-specified. While dynamic usually 

assumes the trip request are received throughout the day and the routing is dynamically 

changed according to the demand. Even if the dynamic case is more reliable in real-world 

applications, the complex nature of it makes it hard to achieve. 

Solving DARP is notoriously difficult (i.e., NP-hard) due to the underlying routing 

constraints. Multiple models and algorithms have been proposed to tackle this problem 

(Cordeau and Laporte, 2003; Cordeau, 2006). One of the most popular approaches is 

mixed integer programming (MIP). MIP is one of the few exact solution frameworks that 

can produce high-quality solutions with an acceptable time complexity for small to 

medium sized problems. In addition, a set of efficient heuristic algorithms (e.g., 

(Attanasio, 2004)) have been proposed to achieve superior results. In our setting 

(optimizing paratransit operations for non-emergency medical transportation),  

minimizing travel distance is not the main objective for paratransit services. Therefore, 

we have to modify the objective to be optimized. And compared to the traditional DARP, 

medical transportation has unique constraints, e.g., no late arrivals especially for drop-off 

trips at health care facilities and wheel chair needs.  
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In view of the moderate problem size and the needs for optimal solutions, we approach 

this problem via the 3-index MIP model proposed in Cordeau (2006) with several 

modifications tailored to our problem of interest.  

5.3 Methodology  
Given the discussion of the need from both operator and user side, we propose two 

models: the Operator Model (OM) and User Model (UM) (Zhang et al., 2021). We first 

introduce the problem settings and some assumptions. Then we will describe the 

mathematical notations used throughout the rest of the paper, and then elaborate two 

models. 

5.3.1 Problem Description 
In this study, we develop an on-demand, door-to-door service system for providing non-

emergency medical transportation. As shown in Fig. 63, each vehicle departs the depot to 

pick up and drop off a set of customers as required by their scheduled times and 

locations, and then returns to the depot after serving all the designated requests. The 

departure and return times for each vehicle are not necessarily the same. There is an 

associated service time at each pick-up or drop-off location for boarding or alighting 

travelers, especially for the old and the disabled. All travelers need to book their trips by 

calling or making a request online in advance, usually at least an hour before their desired 

pick-up time. Vehicle working hours are divided into intervals of equal length. Before the 

start of each working time interval, a group of vehicles are selected from the pool of the 

fleet to form a group to serve the requests within this time interval. The size of the group 

is dependent on the number of requests received in this interval. 

 

FIGURE 63 OPERATING POLICY 

5.3.2 Assumptions 
 We make a list of assumptions for modeling this problem: 

• The demand-responsive services are only available by booking at least one hour 

in advance, so the optimization can be done offline; 
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• A 𝑣𝑖-minute time difference between the actual and scheduled pick-up/drop-ff 

times at location 𝑖 is allowed; 

• All travelers have no attendants, which means only one traveler is served for each 

order; 

• All vehicles meet the requirements of the Americans with Disabilities Act (ADA). 

5.3.1 Notion 
Let 𝑛 refer to the number of customers (orders) received within the time interval of 

interest. The model is constructed on a directed graph 𝐺 = (𝑁, 𝐴) with the node set 𝑁: = 

{0,1, … ,2𝑛 + 1} and the arc set 𝐴. Nodes 0 and 2𝑛 + 1 represent the origin and 

destination depots, and subsets 𝑃 = {1,2, … , 𝑛} and 𝐷 = {𝑛, 𝑛 + 1, … ,2𝑛} contain pick-

up and drop-off nodes, respectively. Let 𝑁0 = 𝑁 ∖ {0,2𝑛 + 1}, then 𝐴: =

{(𝑖, 𝑗): ∀𝑖, 𝑗 ∈ 𝑁0} ∪ {(0, 𝑗): ∀𝑗 ∈ 𝑃} ∪ {(𝑖, 2𝑛 + 1): ∀𝑖 ∈ 𝐷}. Let 𝐾 = {1,2, … , 𝑝} be the 

index set of the vehicles and vehicle 𝑘 has capacity 𝐶𝑘. Each node 𝑖 ∈ 𝑁 has a load 𝑞𝑖, 

which is equal to 1 if 𝑖 ∈ 𝑃, −1 if 𝑖 ∈ 𝐷, and 0 otherwise. Let 𝑑𝑖 be the corresponding 

non-negative service time for 𝑖 ∈ 𝑁. A time window [𝑒𝑖 , 𝑙𝑖] is enforced for each node 𝑖 ∈

𝑁 to make sure a vehicle will arrive within this time interval and the travel time is 𝑡𝑖,𝑗 for 

each arc (𝑖, 𝑗) ∈ 𝐴. 

5.3.2 Decision Variables 
• 𝑥𝑖𝑗𝑘 (binary): equals to 1 if vehicle 𝑘 ∈ 𝐾 uses arc (𝑖, 𝑗) ∈ 𝐴, otherwise 0; 

• 𝐵𝑖 (continuous): the time when vehicle 𝑘 ∈ 𝐾 arrives at node 𝑖 ∈ 𝑁 

• 𝑄𝑖 (continuous): the number of customers on vehicle 𝑘 ∈ 𝐾 at node 𝑖 ∈ 𝑁. Note the 

value should be integral, but it suffices to declare it to be continuous due to the model 

structure; 

• 𝑦𝑖 (binary): the indicator for potential waiting at node 𝑖 ∈ 𝐻; where H is the set of all 

drop-off nodes of inbound trips and pick-up nodes of outbound trips (see the detailed 

descriptions later in Operator Model subsection; 

• 𝑧 (continuous): the objective to be optimized; 

• 𝑜𝑖 (continuous): variables used to linearize the objective function of UM, 𝑖 ∈ 𝐻. 

It should be noted that the first three variables, i.e., 𝑥𝑖𝑗𝑘, 𝐵𝑖, and 𝑄𝑖, are decision variables 

for OM, while all these six variables are decision variables for UM. Furthermore, by 

using aggregated variables 𝐵𝑖 and 𝑄𝑖 instead of 𝐵𝑖𝑘 and 𝑄𝑖𝑘 for each vehicle 𝑘 ∈ 𝐾 at 

nodes other than the origin depot 0 and the destination depot (2𝑛 + 1) (Cordeau, 2006), 

the number of variables and constraints needed can be reduced significantly. 

5.3.3 Operator Model 
The goal of the operator (i.e., transit agencies) is to serve customers in the most cost-

effective way while ensuring that each customer can arrive on time for their appointment 
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and can be picked up from a health care facility no later than the scheduled time. 

Therefore, the time constraints at all health-care-facility related pickups or drop-offs 

locations should be hard constraints. By contrast, delayed or advanced pick-up's (drop-

off's) from (at) home will be acceptable. We define a trip from home to a health care 

facility to be an inbound trip while one going back home is an outbound trip. For operator 

model, for every health care facility related node 𝑖 ∈ 𝐻, i.e., a node 𝑖 that is a dropoff 

node of an inbound trip or a pick-up node of an outbound trip, the 𝑙𝑖 is set to the 

scheduled drop-off/pick-up time. For the remaining nodes in 𝑁0, the 𝑙𝑖 is set to 𝐿𝑖/2 after 

the scheduled time, where 𝐿𝑖 is a pre-specified number denoting the length of the time 

window (i.e., acceptable waiting time). The earliest arrival time at a node 𝑖, denoted by 

𝑒𝑖, is set accordingly as 𝐿𝑖/2 before the scheduled time to make sure that the length of the 

time window equals to 𝐿𝑖. 

The operator model is formulated as follows: 

min∑𝑘∈𝐾  𝐵2𝑛+1,𝑘 − 𝐵0𝑘       (1) 

s.t. 

∑𝑘∈𝐾  ∑𝑗∈𝑁  𝑥𝑖𝑗𝑘 = 1,  ∀𝑖 ∈ 𝑃,       (2) 

∑𝑗∈𝑁  𝑥𝑖𝑗𝑘 − ∑𝑗∈𝑁  𝑥𝑛+𝑖,𝑗𝑘 = 0,  ∀𝑖 ∈ 𝑃, 𝑘 ∈ 𝐾,    (3) 

∑𝑗∈𝑁  𝑥0𝑗𝑘 = 1,  ∀𝑘 ∈ 𝐾,       (4) 

∑𝑖∈𝑁  𝑥𝑖,2𝑛+1,𝑘 = 1,  ∀𝑘 ∈ 𝐾,       (5) 

∑𝑗∈𝑁  𝑥𝑗𝑖𝑘 − ∑𝑗∈𝑁  𝑥𝑖𝑗𝑘 = 0,  ∀𝑖 ∈ 𝑃 ∪ 𝐷, 𝑘 ∈ 𝐾,    (6) 

𝐵𝑗 ≥ 𝐵𝑖 + 𝑡𝑖𝑗 + 𝑑𝑖 − 𝑀1(1 − ∑𝑘∈𝐾  𝑥𝑖𝑗𝑘), ∀𝑖, 𝑗 ∈ 𝑁0, 𝑖 ≠ 𝑗,   (7) 

𝐵2𝑛+1,𝑘 ≥ 𝐵𝑖 + 𝑡𝑖,2𝑛+1 + 𝑑𝑖 − 𝑀1(1 − 𝑥𝑖,2𝑛+1,𝑘), ∀𝑖 ∈ 𝑁0, 𝑘 ∈ 𝐾,  (8) 

𝐵𝑗 ≥ 𝐵0𝑘 + 𝑡0𝑗 + 𝑑𝑖 − 𝑀1(1 − 𝑥0𝑗𝑘), ∀𝑗 ∈ 𝑁0, 𝑘 ∈ 𝐾,   (9) 

𝑄𝑗 ≥ 𝑄𝑖 + 𝑞𝑗 − 𝑀2(1 − ∑𝑘∈𝐾  𝑥𝑖𝑗𝑘),  ∀𝑖, 𝑗 ∈ 𝑁0, 𝑖 ≠ 𝑗,   (10) 

𝑄2𝑛+1,𝑘 ≥ 𝑄𝑖 − 𝑀2(1 − 𝑥𝑖,2𝑛+1,𝑘),  ∀𝑖 ∈ 𝑁0, 𝑘 ∈ 𝐾,   (11) 

𝑄𝑗 ≥ 𝑞𝑗 + 𝑀2(1 − 𝑥0𝑗𝑘),  ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾,     (12) 

𝐵𝑖 + 𝑡𝑖,𝑛+𝑖 + 𝑑𝑖 ≤ 𝐵𝑛+𝑖 ∀𝑖 ∈ 𝑃,      (13) 

𝑒𝑖 ≤ 𝐵𝑖 ≤ 𝑙𝑖 ∀𝑖 ∈ 𝑁,        (14) 

max{0, 𝑞𝑖} ⩽ 𝑄𝑖 ⩽ min{𝐶𝑘 , 𝐶𝑘 + 𝑞𝑖} ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾,   (15) 

𝑥𝑖𝑗𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾. 

The operator model focuses on minimizing the total operating time, 𝑇, of all vehicles, 

which is calculated as Eq. (1). Constraints (2) and (3) jointly ensure that every traveler 

should be visited only once and that the pick-up and drop-off locations should be visited 

by the same vehicle. Constraints (4) to (6) are used to ensure that every vehicle starts at 

the initial depot and returns at the final depot. For scenarios where some of the vehicles 

may not be used, the vehicles leave the initial depot 0 and travel directly to the final depot 

2𝑛 + 1 without contributing to objective value (i.e., total vehicle operating time). 
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Constraints (7) to (12) collectively model the load and time relationships between 

successive nodes, where 𝑀1 and 𝑀2 are two sufficiently large constraints that ensure the 

validity of the model. Specifically, if ∑𝑘∈𝐾  𝑥𝑖𝑗𝑘 = 1, constraints (7) guarantee a vehicle 

cannot arrive at node 𝑗 earlier than 𝐵𝑖 + 𝑡𝑖j + 𝑑𝑖 if it travels from node 𝑖 to node 𝑗. 

Otherwise, if ∑𝑘∈𝐾  𝑥𝑖𝑗𝑘 = 0, Eq. (7) does not enforce and restriction. Constraints (13) 

imposes that every traveler 𝑖 will be picked up before dropped off. Constraints (14) 

implies that each node 𝑖 is visited within a specific time window. Inequality (15) imposes 

the vehicle capacity constraint. 

In addition to the above formulations, we also propose a linear programming relaxation 

constraint to accelerate the computations. The following constraints, whose validity is 

straightforward, are also included in the model: 

𝐵2𝑛+1,𝑘 ≥ 𝐵0𝑘 ,  ∀𝑘 ∈ 𝐾,       (16) 

5.3.4 User Model 
User experience mostly depends on the difference between the scheduled and actual 

drop-off times of inbound trips and pick-up times of outbound trips, i.e., the waiting time 

at all healthcare-facility related locations. Therefore, from the user's perspective, the goal 

is to minimize the sum of those differences.  

In reality, late arrival is intuitivey less favorable than early arrival, especially when 

significant delay occurs (which usually lead to missing appointments). To adjust the 

model away from excess lateness, for each node 𝑖 ∈ 𝐻, a uniformly large penalty is 

imposed when the actual pickup or drop-off time is delayed more than a threshold 𝑇s. To 

model such situations, we introduce a binary variable 𝑦𝑖 as an indicator that takes a value 

of 1 if the lateness is more than the threshold 𝑇s, and equals to 0 otherwise. Let 𝑠𝑖 be the 

scheduled time at node 𝑖, and 𝛽 and 𝑀3 be two large constants. Then, the following 

constraint models the aforementioned situations. 

𝐵𝑖 − 𝑠𝑖 ≤ 𝑇(1 − 𝑦𝑖) + 𝑀3𝑦𝑖,  ∀𝑖 ∈ 𝐻,     (17) 

The validity of (17 ) can be shown by the fact that 𝑦𝑖 is forced to be 1 when 𝐵𝑖 − 𝑠𝑖 > 𝑇s, 

while it can either be 0 or 1 if 𝐵𝑖 − 𝑠𝑖 ≤ 𝑇s. In this way, when the actual pick-up/drop-off 

time suffer a delay larger than the pre-determined threshold 𝑇s, a big penalty is incurred. 

Therefore, our objective here is computed as the sum of the time difference or the 

potential penalty for excess delay. Specifically, this could be achieved  with the 

following formulations: 

min     𝑧 

s.t. 𝑧 ⩾ 𝑚𝑎𝑥{𝛽 ∑  𝑖∈𝐻 𝑦𝑖, ∑  𝑖∈𝐻 |𝐵𝑖 − 𝑠𝑖|},     (18) 
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Note constraints (18) is nonlinear, which can be linearized to constraints (19) to (22): 

     

𝑧 ⩾ 𝛽∑𝑖∈𝐻  𝑦𝑖,         (19) 

𝑜𝑖 ⩾ 𝐵𝑖 − 𝑠𝑖,  ∀𝑖 ∈ 𝐻,        (20) 

𝑜𝑖 ⩾ 𝑠𝑖 − 𝐵𝑖, ∀𝑖 ∈ 𝐻,        (21) 

𝑧 ⩾ ∑  𝑖∈𝐻 𝑂𝑖         (22) 

The complete user model will also include the constraints (2) to (15). We also note that 

for 𝑖 ∈ 𝐻, 𝑒𝑖 and 𝑙𝑖 are set to 0 and 1440, respectively. For other nodes, the 𝑒𝑖 and 𝑙𝑖 are 

set in the same way as in Operator Model. 

5.3.5 Model Discussion 
The validity of the load and time constraints (7) to (12) and (17) is ensured by sufficiently 

large constants 𝑀1, 𝑀2 and 𝑀3. However, the larger these constants are, the looser the 

lower bound (the optimal values of the LP relaxation) tend to be. Thus, we would like to 

pick the smallest valid constants. In view of 𝑀1 ≥ max{𝐵𝑖 − 𝐵𝑗 + 𝑡𝑖,𝑗 + 𝑑𝑖}, 𝑀2 ≥

max{𝑄𝑖 − 𝑄𝑗 + 𝑞𝑖} and 𝑀3 ≥ max{𝐵𝑖 − 𝑠𝑖}, we set 𝑀1 to max{𝑙𝑖} − min{𝑒𝑖} +

max{𝑡𝑖𝑗} + max{𝑑𝑖}, 𝑀2 to the maximum vehicle capacity, and 𝑀3 to max{𝑙𝑖} − min{𝑠𝑖}. 

5.3.6 Sensitivity Analysis 
We also performed the sensitivity analysis to see how the target variables are impacted by 

the changes in other critical input variables. For example, we control the irrelevant 

parameters as fixed, and change the magnitude of the fleet size (as the input variable) to 

see how it will affect the number of vehicles used and how passenger waiting time is 

shaped. We implemented sensitivity analysis for both operator model and user model. 

There is an evident trade-off between the user experience and operating cost. The 

sensitivity analysis is dedicated to quantitatively explore this trade-off. Our goal is to see 

the trade-off between several critical parameters. This study set the range of fleet size 

from 5 to 10 and examine how fleet size change will affect the number of vehicles used, 

the total operating time, the total time difference and the rideshare rate. 

5.4 Data 
We have access to the medical and nutritional purposes demand-responsive trips data 

collected by Anson County Transportation System (ACTS) in 2019. ACTS serves 

customers in Anson County, North Carolina—a rural county with approximately 25,000 

residents situated on the state’s southern border, about 50 miles southeast of Charlotte 

(Anson County: An Introduction, n.d.). The trips data includes information about the 

scheduled and actual pick-up/drop-off timestamps and locations (i.e., latitude and 
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longitude coordinates), appointment timestamps, odometer readings, cost billed ($), 

dates, and use of mobility aids (e.g., wheelchairs). Since timestamps at pick-up and drop-

off locations were manually recorded by drivers, errors were introduced inevitably. We 

treat trips with the same origin and destination, and those with travel distance less than 0 

as outliers and remove them. We also remove incomplete data points, i.e., ones with 

missing values. After data cleaning, the total number of data points is 22,870 which 

consist of trips that took place on 261 different dates in 2019, and the average travel 

demand (origin-destination [OD] pairs) per day is 90. In addition, the trip starting times 

range from 3:00 am to 8:00 pm, and a major proportion (55.1%) of the trips took place 

between 9:00 am and 1:00 pm. Spatially, as shown in the following figure, most trips 

took place within Anson County, North Carolina, especially in Wadesboro and Morven, 

while a small fraction of the trips occurred outside Anson County, e.g., Monroe, 

Charlotte, and Durham. Moreover, around 65% of the trips are short-to-medium-length 

trips with a travel distance less than 20 km (12.4 miles), while around 12% are longer 

than 50 km (31.1 miles). Among all the trips, the shortest one is 0.13 km while the 

longest distance is 216 km. We use the Distance Matrix API from Google Map API to 

estimate the travel time and distance for each OD pair. 

 

FIGURE 64 HEATMAP OF TRIP-GENERATION DISTRIBUTION 

We used the trips that took place on January 3,2019 as a case study. The total number of 

trips for this day is 58(32 inbound trips to health care facilities and 26 outbound trips) 

and the scheduled times range from 5:00 am to 4:00 pm. We implement the OM and UM 

on an hourly basis, which results in 11 different time intervals. The transit fleet size of 

ACTS is 14, and the capacity of each vehicle ranges from 7 to 18. As mentioned in 

problem description section, we take the number of vehicles used within a time interval 

as an input parameter 𝑢. In actual situations, the transit agency can flexibly select the 
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number of vehicles served within the time interval 𝐼. In this study, however, in order to 

consistently compare the results, we set 𝑢 to 5 uniformly and 𝐼 to one hour. We also 

assume that all vehicles are identical with a maximum capacity of 7. In addition, we set 

the boarding time to be 7 minutes and alighting time to 5 minutes. According to ACTS, 

all vehicles were parked around their office location (i.e., the depot): 2485 US-74, 

Wadesboro, NC 28170. We also assume that all customers must allow a 30 -minute time 

window for each pick-up and drop-off, i.e., 𝑣𝑖 = 30. We set 𝑞0 = 𝑞2𝑛+1 = 0, 𝑞𝑖 +

𝑞𝑛+𝑖 = 0, ∀𝑖 ∈ 𝑃 and 𝑑0 = 𝑑2𝑛+1 = 0. The depot nodes, 0 and 2𝑛 + 1, also need a 

specific time window, but for consistency, (𝑒0, 𝑙0) and (𝑒2𝑛+1, 𝑙2𝑛+1) are both set to 

(0,1440). Note all numbers related to time windows have been converted into minutes. 

5.5 Results 
Table 1 presents statistics about the models, including the number of orders, number of 

variables, number of constraints, and solution time. All the cases can be solved to 

optimality within an hour. Table 2 summarizes the results of the UM and OM. For a 

better understanding of the trade-off involved, we compute the UM objective (without the 

large penalty for excess lateness) using the solution yielded by the OM and vice versa. 

For convenience, we use A_B to denote the value computed by the objective function of 

model A at the solution yielded by model B. Thus, UM_Raw, UM_UM, UM_OM in 

Table 2 are the UM objective values ∑  𝑖∈𝐻 |𝐵𝑖 − 𝑠𝑖| evaluated at the existing operational 

data, the solutions yielded by UM and OM, respectively. The number in each bracket 

represents the reduction compared to UM_Raw. OM_UM, OM_OM are the OM 

objective values evaluated at the solutions yielded by UM and OM, respectively. Lastly, 

V_UM and V_OM are the number of vehicles actually used by UM and OM, 

respectively. 

5.5.1 Model Summary 
As shown in Table 22, in many cases, UM has slightly more variables and constraints 

than OM. We observed that when the number of trips is smaller than 8, both models can 

be solved in seconds. However, as the number of trips increases, solving OM becomes 

more time-consuming, but still takes less than 1 minute. It is worth mentioning that while 

solving UM for most instances is efficient, for period 12 pm -- 1pm, the CPU reaches 

more than 75 seconds. A possible explanation is that this period has the greatest number 

of orders; and compared to other periods, the spatial and temporal distributions of orders 

in this period are more uneven, which largely increases the CPU computing time. 

TABLE 22 MODEL SUMMARY 

Period 
# of 

orders 

UM OM 

Vars IntVars Constrs CPU(s) Vars IntVars Constrs CPU(s) 

5 am – 6 am 1 52 26 56 0.001 49 25 56 0.002 

6 am – 7 am 6 782 731 516 0.029 769 725 501 0.579 

7 am – 8 am 10 2086 2015 1172 0.638 2065 2005 1145 55.610 

8 am – 9 am 7 1048 992 656 0.052 1033 985 638 4.750 
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9 am – 10 am 1 52 26 56 0.001 49 25 56 0.002 

10 am – 11 am 8 1356 1294 815 0.995 1337 1285 791 6.176 

11 am – 12 pm 5 556 510 392 0.062 545 505 380 0.188 

12 pm – 1 pm 12 2978 2897 1596 75.030 2953 2885 1563 45.917 

1 pm – 2 pm 3 224 188 192 0.006 217 185 186 0.016 

3 pm – 4 pm 2 118 87 116 0.003 113 85 113 0.021 

4 pm – 5 pm 3 224 188 192 0.009 217 185 186 0.092 

 

5.5.2 Computational Results 
The third column of Table 23 shows the time difference of nodes in 𝐻 calculated by the 

raw data, which varies significantly across different time periods. For example, from 7 

am to 8 am, the difference is 190 minutes for 10 trips, while from 12 pm to 1 pm, it is 926 

minutes for 12 trips. In addition, based on the raw data, the average time difference for 

each trip is 35.7 min. In contrast, our proposed UM yields substantially better results 

where the average is reduced to 0.9 min for each trip. The UM can also improve this 

metric by around 97.4%. As mentioned, we evaluate the time difference of the solution 

yielded by OM, which is shown in the fifth column of Table 23. In addition, we observe 

that there are some instances (e.g., time period 6 am – 7 am) whose time difference of 

OM is worse than that of the benchmark, which is probably due to the modeling logic of 

OM described in Section III-C. More specifically, from the operator’s perspective, the 

operating policy is to ensure all customers reach and leave hospitals on time while 

minimizing the total operating time. Hence, in order to lower the total operating time, 

fewer vehicles will be used and more ridesharing will occur, resulting in an increase in 

customers’ in-vehicle time and thus an increase in the time difference. 

According to the results shown in Table 23, it is clear that the total operating time of OM 

(3235 minutes) is less than that of UM (5364 minutes). This improvement is very 

significant, which indicates that UM has to sacrifice a significant portion of operating 

cost in order to provide better user experience. Moreover, another finding is that UM 

generally uses more vehicles than OM, which is reasonable since using fewer vehicles 

will reduce the total operating. time and lead to more cost-effective operations of the 

paratransit system. 

TABLE 23 RESULTS OF THE UM AND OM 

Period # of 

orders 

UM_ Ra

w (min) 

UM_ UM 

(min) 

UM_ OM 

(min) 
OM_ UM 

(min) 

OM_ OM 

(min) 

V_ UM V _OM 

5 am – 6 am 1 15 0 (15) 30 (-15) 30 30 1  1 
6 am – 7 am 6 96 0 (96) 113(-17) 824 410 3  2 

7 am – 8 am 10 190 0 (190) 188 (2) 1132 517 5  3 

8 am – 9 am 7 163 0 (163) 99 (64) 600 359 5  1 

9 am – 10 am 1 10 0 (10) 30 (-20) 33 33 1  1 

10 am – 11 am 8 68 8 (60) 196 (-128) 845 502 5  3 

11 am – 12 pm 5 135 0 (135) 38 (97) 571 267 5  2 

12 pm – 1 pm 12 926 45 (881) 135 (791) 862 736 5  5 

1 pm – 2 pm 3 228 0 (228) 20 (208) 261 220 3  2 

3 pm – 4 pm 2 83 0 (83) 22 (61) 65 61 2  1 
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4 pm – 5 pm 3 156 0 (156) 69 (87) 141 100 3  1 

Total 58 2070 53 (2017) 940 (1130) 5364 3235 38  23 

 

5.5.3 Sensitivity Analysis Results 
TABLE 24 INFLUENCE OF FLEET SIZE ON TOTAL NUMBER OF VEHICLES 

Fleet Fleet = 5 Fleet = 6 Fleet = 7 Fleet = 8 Fleet = 9 Fleet = 10 

Total number of vehicles 

User Model 39 44 43 48 52 51 

Unit sensitivity - 5 -1 5 4 -1 

Operator Model 23 23 23 23 23 23 

Unit sensitivity - 0 0 0 0 0 

 

Table 24 presents the influence of fleet size on total number of vehicles used. The results 

show that for the user model, the number of vehicles used has an increasing trend when 

fleet size increases, while for the operator model, these two parameters are not much 

correlated. The intuition here is that the operator model focuses more on reducing the 

operating cost, so even if more vehicles are available, the best solution that has the least 

cost may not need that much vehicle therefor the number of vehicles does not change. 

TABLE 25 INFLUENCE OF FLEET SIZE ON TOTAL OPERATING TIME 

Fleet Fleet = 5 Fleet = 6 Fleet = 7 Fleet = 8 Fleet = 9 Fleet = 10 

Total operating time 

User Model 5364 5796 5829 6693 6977 6628 

Unit sensitivity - 432 33 864 284 -349 
       

Operator Model 3235 3235 3235 3235 3235 3235 

Unit sensitivity - 0.00 0.00 0.00 0.00 0.00 

Table 25 presents the influence of fleet size on total operating time. The results show that 

for the user model, the total operating time has an increasing trend when fleet size 

increases, while for the operator model, these two parameters are not much correlated. 

This finding is consistent with the number of vehicles scenario. As operator model is to 

minimize the transportation resources, even if more vehicles are available to use, the best 

solution still yields to the cost limit.  

TABLE 26 INFLUENCE OF FLEET SIZE ON TIME DIFFERENCE 

Fleet Fleet = 5 Fleet = 6 Fleet = 7 Fleet = 8 Fleet = 9 Fleet = 10 

Time difference remaining (the less time remaining, the more accurate trip matching) 

User Model 53 31 21 14 7 0 

Unit sensitivity - -22 -10 -7 -7 -7 
       

Operator Model 934 993 811 890 797 820 

Unit sensitivity - 59 -182 79 -103 23 

 

Table 26 introduces the influence of fleet size on total operating time. The results show 

that for the user model, the total operating time has an increasing trend when fleet size 

increases, while for the operator model, these two parameters are not much correlated. 
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This finding is consistent with the number of vehicles scenario. As operator model is to 

minimize the transportation resources, even if more vehicles are available to use, the best 

solution still yields to the cost limit.  

TABLE 27 INFLUENCE OF FLEET SIZE ON RIDESHARE RATE 

Fleet Fleet = 5 Fleet = 6 Fleet = 7 Fleet = 8 Fleet = 9 Fleet = 10 

Average orders served per vehicle (Rideshare rate) 

User Model 1.35 1.22 1.28 1.13 1.07 1.10 

Unit sensitivity -0.19 -0.14 0.06 -0.15 -0.06 0.03 
       

Operator Model 2.35 2.35 2.35 2.35 2.35 2.35 

Unit sensitivity - 0.00 0.00 0.00 0.00 0.00 

 

Table 27 introduces the influence of fleet size on rideshare rate, i.e., average orders 

served per vehicle. The results show rideshare rate has a decreasing trend when fleet size 

increases, and the rideshare rate is not sensitive to fleet size in operator model. This 

finding is consistent with our intuition. For user model, the objective is to maximize the 

user experience, therefore with the increase of fleet size, more vehicles will be used and 

intuitively the rideshare rate will decrease. While for operator model, ridesharing is not 

necessarily related to the operating cost, thus it is not sensitive to fleet size change. 

5.6 Discussion and Conclusion  
The total operating time of Operator Model (3235 minutes) is less than that of UM (5364 

minutes. This improvement is significant, suggesting UM has to sacrifice much on the 

total vehicle operating cost to complement the user experience. However, UM can 

significantly shrink the time difference from 2070 minutes (in raw data) to only 53 mins. 

While OM can only reduce it to 940 mins. The improvement yielded by UM is 97.4%, 

suggesting UM can effectively match the vehicle and user’s transportation needs as well 

as improving the user experience. 

UM does use more vehicles than OM, which is intuitive since using fewer vehicles will 

reduce the total operating time. Driver salaries and wages contribute substantially to rural 

DRT systems’ total costs (Edrington et al., 2016); those seeking to reduce operating costs 

should, accordingly, aim to minimize the number of vehicles operating and vehicle 

operating time. However, these cost savings must be weighed against performance 

measures that enhance customer experience (i.e., time difference). Our sensitivity 

analyses suggest that potential gains from minimizing the time difference in UM are 

smaller with fleet sizes larger than what might be determined a sufficient size—in our 

models, this size may be 7 vehicles. At this fleet size, the time difference minimized is 21 

minutes (reduced from 31 minutes for 6 vehicles) and the total operating time is 5830 

minutes. With a larger fleet size (8+ vehicles) the vehicle operating time, and thus cost to 

operate the paratransit system, increases significantly; time difference, however, does not 

decrease significantly. Notably, OM was not sensitive to the fleet sizes tested (between 5 

and 10 vehicles).  
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This research designs a novel, on-demand paratransit system from both the operator’s and 

the user’s perspectives, which is solved by using a MIP approach. Compared to the 

current paratransit service, the developed UM can considerably reduce the time 

difference between the actual and scheduled times (i.e., a 97.4% reduction). While for the 

developed operator model, it can significantly keep the used transportation resources and 

operating cost as low as possible. In other words, the results from UM and OM 

collectively suggest an evident trade-off between the operating cost and user experience. 

Transit agencies might thus use this modeling approach and perform sensitivity analyses 

with mutable parameters (e.g., fleet size) to quantify tradeoffs between operating costs 

and user experience when designing demand-responsive paratransit systems. 

The research has some limitations. For the computational experiments, we only use the 

data from a single day. More data from multiple days should be used to test the proposed 

models. Furthermore, all vehicles are considered to be identical in the experiments, but in 

reality, the capacity of the vehicles may be different and only a fraction of fleet vehicles 

are ADA accessible. Therefore, future work will be focused on producing more realistic 

results by taking these elements into consideration. 

Overall, the MIP approach used in this research has significant advantages for solving the 

dial-a-ride problem and informing the design of rural DRT systems. Approaches like this, 

which incorporate an optimization component, could make substantial contributions to 

transit operations research and practice. We advocate for future work examining the 

potential of an MIP approach versus a more common agent-based approach to modeling 

DRT systems to meet operations and performance goals from key stakeholders’ (i.e., 

operators’ and users’) perspectives. 
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